 
 
 
 
 
   
 Next: About this document ...
 Up: Numbers
 Previous: B. Associativity and Distributivity
Index
 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | Z
- A 
- absolute convergence 
- 11.4
- absolute summability 
- 11.4
- absolute value, of complex number 
- 6.1
- absolute value, product formula 
- 2.7
- absolute value, quotient formula for 
- 2.7
- absolute value 
- 2.7
- addition (field operation) 
- 2.3
- addition in    
- 2.2
- addition laws for sine and cosine 
- 12.6
- addition of inequalities 
- 2.6
- Alembert, Jean (1717-1783) 
- 11.4 
- alternating series 
- 11.3
- alternating series test 
- 11.3 
- ambiguous,   
- 12.1
- ambiguous, sequence notation 
- 5.1
- and, logical connective 
- 1.2
- Archimedean property 
- 5.2 | 5.2 | 5.2 | 5.3
- Archimedes 
- 5.3
- argument(of a complex number 
- 12.6
- Aristotle (384-322 B.C.) 
- 2.3
 |  3.2
- Arnold cats 
- 6.5
- Arnold, Vladimir (1937-??) 
- 6.5
- Ars Magna 
- 4.2
- Artin, Emil (1898-1962) 
- 2.7
- associative operation 
- 2.1
- associative 
- 2.2
- associativity of   
- B.
- associativity of   
- 4.1
 | B.
- axiom, completeness 
- 5.2
- axioms for a field 
- 2.3
- axioms, for ordered field 
- 2.6
- axioms 
- intro
- axis, imaginary 
- 6.2
- axis, real 
- 6.2
- B 
- Bernoulli, Jacob (1654-1705) 
- 2.3
 |  11.4 | 11.4 | 12.9
- between 
- 9.2
- Bhaskara (born 1114-1185) 
- 3.1
- binary operation 
- 2.1
- binary search sequence 
- 5.1
- Bolzano, Bernhard, (1781-1848) 
- 9.2
- Boole, George (1815-1864) 
- 2.2
- bound for a function 
- 8.3
- bound for a set 
- 8.3
- bound for sequence 
- 7.5
- bound, lower 
- 7.8
- bound, upper 
- 7.8
- bounded function 
- 8.3
- bounded sequence 
- 7.5
 | 7.5
- bounded set 
- 8.3
- boundedness theorem 
- 9.1
- bug 
- 2.2
- Buhler, Joe (1950-??) 
- intro
- C 
- calculator operations 
- 2.2
- cancellation law 
- 2.1  |  2.4
- Cardano, Girolamo (1501-1576) 
- 2.7 | 4.2
- Cartesian product 
- 1.4
- cat, Arnold 
- 6.5
- cat, discontinuous image of
- 8.3
- cat, exponential of 
- 12.6
- cat, inverse of 
- 6.5
- cat, square of  
- 6.5
- Cauchy, Augustin(1789-1857) 
- 3.5
 | 4.2
 | 9.2
- chain rule 
- 10.1
- circle of convergence 
- 12.2
- circle,unit 
- 6.2
- circle 
- 6.2
- Clenias 
- 3.2
- closed interval 
- 5.1
- codomain of function 
- 1.5
- commensurable 
- 3.2
- commutative operation 
- 2.1
- commutative 
- 2.2
- commutativity of addition in field 
- 2.4
- comparison test (limit) 
- 11.2
- comparison test for series 
- 11.2
- comparison theorem for null sequences 
- 7.3
- complete 
- 5.2 
- completeness axiom 
- 5.2
- completeness 
- 5.3
- complex conjugate 
- 4.2
- complex function 
- 8.1
- complex numbers 
- 6.1
- complexification 
- 4.1
- composition of continuous functions 
- 8.2
- composition of functions 
- 8.2
- composition 
- 8.1
- conjugate, complex 
- 4.2
- conjugate 
- 4.2
- constant sequence 
- 7.1 | 7.2 
- continuity of  , (in theorem 12.27) , (in theorem 12.27)
- 12.4
- continuity of roots 
- 8.2
- continuity, of   
- 12.5
- continuity 
- 5.3
- continuous at a point 
- 8.2
- continuous on a set 
- 8.2
- continuous 
- 8.2
- convergence of geometric sequence 
- 7.6
- convergence of geometric series 
- 7.6
- convergence of search sequence 
- 5.1
- convergence, absolute 
- 11.4
- convergence, circle of 
- 12.2
- convergence, disc of 
- 12.2
- convergence, radius of 
- 12.2
- convergence 
- 7.2
- convergent sequence, limit of 
- 7.5
- convergent sequence, product theorem 
- 7.5
- convergent sequence, reciprocal theorem 
- 7.5
- convergent sequence, sum theorem 
- 7.5
- convergent sequence, uniqueness theorem 
- 7.5
- convergent sequence 
- 7.2
- convergent sequences, quotient theorem 
- 7.5
- convergent sequences 
- 7.5
- copy (of  in in ) )
- 4.1
- cosine, complex 
- 11.4
- cosine 
- 12.3 | 12.7
- critical point theorem 
- 10.2
- critical point 
- 10.2
- D 
- D'Alembert, Jean (1717-1783) 
- 11.4
- De Moivre's formula 
- 6.2
- De Moivre, Abraham (1667-1754) 
- 6.5
- decimal notation 
- 7.6
- decimals 
- intro
- decomposition theorem 
- 7.5
- decreasing function 
- 5.3
- decreasing sequence 
- 7.8
- definition by recursion 
- 3.3
- derivative 
- 10.1
- Descartes, Rene, 1596-1650 
- 3.5
- Dickson, Leonard Eugene, (1874-1954 
- 2.3
- difference of sets 
- 1.4
- difference, symmetric 
- 2.1
- differential equation 
- 12.4
- differentiation of power series 
- 12.3
 | 12.8
- digits 
- 2.4
- direction in    
- 6.3
- direction of complex number 
- 6.3
- disc of convergence 
- 12.2
- disc open 
- 6.2
- disc, closed 
- 6.2
- disc, unit 
- 6.2
- distance (in ordered field) 
- 2.7
- distributive law in    
- B.
- distributive law in a field 
- 2.5
- distributive law 
- 2.3
- distributive 
- 2.2
- divergence of search sequence 
- 5.1
- divergence test 
- 7.7
- divergent sequence 
- 7.2
- division in a field 
- 2.5
- domain of function 
- 1.5
- double inverse theorem 
- 2.1 | 2.4
- draughts 
- 3.2
- dull sequence 
- 7.3
- E 
  
- 12.4 
 | 12.9
- empty set 
- 1.1
- endpoints of an interval 
- 2.7
- entertainments 
- intro
- Epicureans 
- 6.2
- equality of functions 
- 1.5
- equality of objects 
- 1.3
- equality of ordered pairs 
- 1.4
- equality of rules 
- 1.5
- equality of sets 
- 1.1
- equality, reflexive property 
- 1.3
- equality, substition property 
- 1.3
- equality, symmetric property 
- 1.3
- equality, transitive property 
- 1.3
- equivalence for sets of propositions 
- 2.5
- equivalence of propositions 
- 1.2
- Euclid (365-300BC??) 
- 3.1
 | 3.2 | 3.2 | 5.3 | 6.2
- Euler, Leonard (1707-1783) 
- 4.2
 | 6.5
 | 11.2 | 12.9
- Euler, summation notation 
- 3.5
- even integer 
- 3.2
- even number 
- 3.1
- exercises 
- intro
- exponential function 
- 12.4
- exponents, laws for fractional 
- 5.3
- exponents, rational 
- 5.3
- extreme value theorem 
- 9.1
- F 
- factorial function 
- 3.3
- factorial 
- 3.5
- factorization of   
- 3.4
- factorization (depends on field) 
- 3.4
- feature 
- 2.2
- field, axioms for 
- 2.3
- field, orderable 
- 2.6
- field, real 
- 5.2
- function, complex 
- 8.1
- function, increasing and decreasing 
- 5.3
- function, recursive 
- 3.3
- function 
- 1.5
- functions, addition and multiplication of 
- 5.3
- G 
- Göttingen 
- 11.4
- Gauss, Carl (1777-1855) 
- 12.7
- geometric sequence, convergence of 
- 7.6
- geometric sequence 
- 7.1 | 11.1
- geometric series, convergence of 
- 7.6
- geometric series 
- 3.4
- geometric series 
- 7.1 | 11.1
- graph 
- 5.3
- Gregory, John (1638-1675) 
- 11.4
 | 12.9
- H 
- Hamilton, William R. (1805-1865) 
- 2.2
 | 4.2
- harmonic series 
- 11.1  |  11.4
- Huntington, Edward (1874-1952) 
- 2.5
 | 2.7
- hyperbolic functions 
- 12.6
- I 
- identity element for binary operation 
- 2.1
- image of a function 
- 6.5
- imaginary axis 
- 6.2
- imaginary part of complex number 
- 6.1
- implication 
- 1.2
- incommensurables 
- 3.2  |  3.2
- increasing function 
- 5.3
- increasing sequence 
- 7.8
- induction theorem (generalized) 
- 3.1
- induction theorem 
- 3.1
- inductive 
- 3.1
- inequalities, addition of 
- 2.6
- inequalities, multiplication of 
- 2.6
- inequality theorem 
- 7.7
- inequality, triangle 
- 2.7
- infinite series 
- 11.1
- integer, even 
- 3.2
- integer, odd 
- 3.2
- integers in a field 
- 3.2
- integers, informal definition 
- 1.1
- integers 
- 3.2
- interior point 
- 10.2
- interior  
- 10.2
- intermediate value theorem 
- 9.2 | 9.2 | 9.2
- intersection 
- 1.4
- interval, closed or open 
- 5.1
- interval 
- 2.7
- inverse for binary operation 
- 2.1
- inverse of cat 
- 6.5
- invertible element for binary operation 
- 2.1
- J 
- Jones, William, (1675-1749) 
- 12.9
- K 
- Koch, Helge von (1870-1924) 
- 7.8
- Kramp, Christian, 1760-1826 
- 3.5
- L 
- Lagrange, Joseph, (1736-1813) 
- 11.4
- Landau, Edmund (1877-1938) 
- 11.4
- The Laws 
- 3.2
- laws of exponents (fractional) 
- 5.3
- laws of signs 
- 2.6
- Laws of Thought 
- 2.2
- least element principle 
- 3.1
- Leibniz,  Gottfried (1646-1716) 
- 11.4
 | 11.4 | 12.9
- length of complex number 
- 6.3
- limit comparison test 
- 11.2
- limit of a function 
- 8.3
- limit of sequence 
- 7.5
- limit point 
- 8.3
- limit, uniqueness of 
- 8.3
- line segment 
- 10.2
- logarithm 
- 12.5
- lower bound for a set 
- 9.1
- lower bound for sequence 
- 7.8
- M 
- Madhava of Sangamagramma (c. 1340-1425) 
- 10.3
 | 11.4
 | 12.9
- Mahavira (ninth century) 
- 3.1
- Maple 
- 2.2 | 3.5 | 3.5 | 4.2
 | 12.6 | 12.9 | 12.9
- maps to 
- 7.1
- Mathematica 
- 3.5 | 3.5 | 4.2
 | 12.6 | 12.9 | 12.9
- maximizing set 
- 9.1
- maximum function 
- 3.5  |  3.5 
- maximum, critical point theorem 
- 10.2
- maximum 
- 9.1
- mean value theorem 
- 10.2
- Mercator, Nicolaus(1620-1687) 
- 11.4
- midpoint 
- 5.1 
- minimum 
- 9.1
- monotonic sequence 
- 7.8
- multiplication (field operation) 
- 2.3 
- multiplication in    
- 2.2
- multiplication of inequalities 
- 2.6
- multiplication table 
- 2.2
- Mycielski, Jan 
- 7.8
- N 
- natural numbers, informal definition 
- 1.1
- natural numbers 
- 3.1 | 3.2
- negative elements in ordered field 
- 2.6
- Newton, Isaac (1643-1727)
-  5.3
 | 10.3
 | 11.4
- not, negation 
- 1.2
- null sequence, comparision theorem 
- 7.3
- null sequence, root theorem 
- 7.3
- null sequence, sum theorem 
- 7.4
- null sequence 
- 7.3
- null sequences, product theorem 
- 7.4
- null-times-bounded theorem 
- 7.5
- number, odd 
- 3.1
- number, even 
- 3.1
- numbers natural 
- 3.2
- numbers, complex 
- 6.1
- numbers, natural 
- 3.1
- numbers, rational 
- 3.2
- numbers, real 
- 5.2
- O 
- odd integer 
- 3.2
- odd number 
- 3.1
- open interval 
- 5.1
- opposite sign 
- 2.6
- or, logical connective 
- 1.2
- orderable field 
- 2.6
- ordered field, axioms for 
- 2.6
- ordered field, completemess of 
- 5.2
- ordered pair 
- 1.4
- ordered triple 
- 1.4
- Oresme, Nicole (1323-1382) 
- 11.4
- P 
- pair, ordered 
- 1.4
- paradox 
- 1.6
- parentheses 
- 2.3
- Pascal, Blaise (1623-1662) 
- 3.1
- path 
- 10.2
- Peano,Giuseppe (1858-1932) 
- 3.1
- periodicity of   
- 12.6
- periodicity of 
 and and , ,
-  12.59A h) and i)
 | 12.6 
- Philitas of Cos 
- 1.6
- pi
- 
- 12.6
    | 12.9
- Plato (427?-347B.C.), The Laws 
- 3.2
- polar decomposition 
- 6.3
- polygon representation for a complex sequence 
- 7.1
- polygon, snowflake 
- 7.6
- positive elements in ordered field 
- 2.6
- power function 
- 3.3 | 3.5
- power rule for differentiation 
- 10.1
- power series 
- 12.1
- power, integer 
- 3.3
- precedence 
- 2.3
- precision function 
- 7.3  |  7.8
-  Priora Analytica 
- 3.2
- Proclus 
- 6.2
- product formula for absolute value 
- 2.7
- product of functions 
- 5.3
- product rule for  differentiation 
- 10.1
- product theorem for  null sequences 
- 7.4
- product theorem for continuous functions 
- 8.2
- product theorem for convergent sequences 
- 7.5
- product theorem for limits of functions 
- 8.3
- proposition form 
- 1.4
- proposition 
- 1.2
- propositions, equivalence of 
- 1.2
- Pythagorean theorem 
- 6.2
- Q 
- quadratic formula 
- 2.5
- quotient formula for absolute value 
- 2.7
- quotient rule for  differentiation 
- 10.1
- quotient theorem for continuous functions 
- 8.2
- quotient theorem for convergent sequences 
- 7.5
- quotient, of functions 
- 5.3
- R 
- radius of convergence 
- 12.2
- ratio for a geometric sequence 
- 7.1
- ratio for geometric series 
- 7.1
- ratio test 
- 11.2 | 11.4
- rational exponents 
- 5.3
- rational numbers in a field 
- 3.2
- rational numbers, informally defined 
- 1.1
- rational numbers 
- 3.2
- rational, (in sense of Euclid) 
- 3.2
- real axis 
- 6.2
- real field 
- 5.2
- real part of comlex number 
- 6.1
- reciprocal rule for differentiation 
- 10.1
- reciprocal theorem for convergent sequences 
- 7.5
- recursion 
- 3.3
- Reed College 
- intro
- restriction theorem 
- 10.2
- reverse triangle inequality 
- 7.5
- Rolle's theorem 
- 10.2
- Rolle, Michel (1672-1719) 
- 10.3
- root of complex number 
- 6.3
- root of real number (theorem 5.49) 
- 5.3
- root theorem for  null sequences 
- 7.3
- roots of complex numbers 
- 12.6
- roots, continuity of 
- 8.2
- rule, recursive 
- 3.3
- Russell's paradox 
- 1.6
- Russell, Bertrand 1872-1970 
- 1.6
- S 
- Sangamagramma, Madhava (c. 1340-1425) 
- 10.3
- Schreier, Otto (1901-1929) 
- 2.7
- search sequence, convergence of 
- 5.1
- search sequence 
- 5.1
- segment 
- 10.2
- sequence, bounded 
- 7.5
 | 7.5
- sequence, constant 
- 7.1 | 7.2
- sequence, convergent 
- 7.2 | 7.2 | 7.5
- sequence, decreasing 
- 7.8
- sequence, divergent 
- 7.2
- sequence, dull 
- 7.3
- sequence, increasing 
- 7.8
- sequence, lower bound 
- 7.8
- sequence, null 
- 7.3
- sequence, search 
- 5.1
- sequence, summable 
- 11.1
- sequence, upper bound 
- 7.8
- sequence 
- 5.1
 | 7.1
- series alternating 
- 11.3
- series operator 
- 11.1
- series, power series 
- 12.1
- series, sum of 
- 11.1
- series 
- 11.1
- Servois, Francois-Joseph (1767-1847) 
- 2.2
- set 
- 1.1
- set difference 
- 1.4
- set empty 
- 1.1
- sine, complex 
- 11.4
- sine 
- 12.3 | 12.7
- Skolem functions 
- 7.8
- snowflake 
- 7.6 | 7.8
- square   
- 2.5
- square root of complex number 
- 6.4
- square root 
- 2.6
- subset 
- 1.1
 | 1.1
- substition property of equality 
- 1.3
- subtraction in a field 
- 2.5
- sum of a series 
- 11.1
- sum of functions 
- 5.3
- sum theorem for continuous functions 
- 8.2
- sum theorem for convergent sequences 
- 7.5
- sum theorem for differentiable functions 
- 10.1
- sum theorem for limits of fumctions 
- 8.3
- sum theorem for null sequences 
- 7.4
- sum theorem for series 
- 11.1
- summable sequence 
- 11.1
- summable, absolutely 
- 11.4
- summation function 
- 3.5
- summation 
- 3.4
- symmetric difference 
- 2.1
- T 
- transitivity of   
- 2.6
- transitivity of equality 
- 1.3
- transitivity of implication 
- 1.2
- translate of a sequence 
- 7.7
- translation theorem 
- 7.7
- triangle inequality , in    
- 6.1
- triangle inequality, reverse 
- 7.5
- triangle inequality 
- 2.7 | 6.2
- trichotomy 
- 2.6
- trigonometric functions 
- 11.4 | 12.3 | 12.6 | 12.7
- triple, ordered 
- 1.4
- U 
- union 
- 1.4
- uniqueness of    
- 5.2
- uniqueness of identities 
- 2.1
- uniqueness of inverses 
- 2.1
- uniqueness of limits 
- 8.3
- uniqueness theorem for convergent sequences 
- 7.5
- unit circle 
- 6.2
- unit disc 
- 6.2
- upper bound for a set 
- 9.1
- upper bound for sequence 
- 7.8
- W 
- Waring, Edward, (1734-1798) 
- 11.4
- Weber, Heinrich Martin (1842-1913) 
- 2.5
- Weierstrass, Karl (1815-1897) 
- 2.7
 | 9.2
- Z 
- zero-one law 
- 2.3
 
 
 
 
 
   
 Next: About this document ...
 Up: Numbers
 Previous: B. Associativity and Distributivity