next up previous index
Next: 17.6 Substitution in Integrals Up: 17. Antidifferentiation Techniques Previous: 17.4 Integration by Substitution   Index


17.5 Trigonometric Substitution

Integrals of the form $\displaystyle {\int F(\sqrt{a^2+x^2})dx}$ and $\displaystyle {\int F(\sqrt{a^2-x^2})dx}$ often arise in applications. There is a special trick for dealing with such integrals. Since

\begin{displaymath}x=a\tan (\arctan ({x\over a})) \mbox{ for all } x\in\mbox{{\bf R}},\end{displaymath}

we can write

\begin{displaymath}\int F(\sqrt{a^2+x^2})dx = \int F(\sqrt{a^2+\Big(a\tan(\arctan ({x\over
a}))\Big)^2})dx.\end{displaymath}

If we now make the substitution

\begin{displaymath}u=\arctan( {x\over a}) \mbox{ or } x=a\tan (u), \hspace{2em}
\Big(u \in (-{\pi\over 2},{\pi\over 2})\Big)\end{displaymath}

then we find $dx=a\sec^2(u)du$, or

\begin{displaymath}\int F(\sqrt{a^2+x^2})dx=\int F(\sqrt{a^2+\Big(a\tan (u)\Big)^2})a\sec^2
u\;du.\end{displaymath}

Now

\begin{displaymath}a^2+\Big(a\tan (u)\Big)^2=a^2\Big(1+\tan^2(u)\Big)=a^2\sec^2(u)\end{displaymath}

so

\begin{displaymath}\sqrt{a^2+\Big( a\tan (u)\Big)^2}=a\sec (u).\end{displaymath}

(Since $\displaystyle {u\in \Big( -{\pi\over 2},{\pi\over 2}\Big)}$ we have $\sec (u)>0$ and the square root is positive.) Thus

\begin{displaymath}\int F(\sqrt{a^2+x^2})dx=a\int F\Big( a\sec (u)\Big)\cdot\sec^2(u)du.\end{displaymath}

Often this last antiderivative can be found. If

\begin{displaymath}a\int F\Big( a\sec (u)\Big)\cdot\sec^2(u)du = H(u), \end{displaymath}

then by the ritual (17.37)

\begin{displaymath}\int F(\sqrt{a^2+x^2})dx=a\int F\Big( a\sec (u)\Big)\cdot\sec^2(u)du
= H(u) = H(\arctan({x\over a})). \end{displaymath}

The ritual to apply when using this method for finding $\displaystyle {\int F(\sqrt{a^2+x^2})dx}$ is:

Let $x=a\tan(u)$. Then $dx=a\sec^2(u)du$, and

\begin{displaymath}\sqrt{a^2+x^2}=\sqrt{a^2+a^2\tan^2(u)}=\sqrt{a^2\sec^2(u)}=a\sec (u),\end{displaymath}

so

\begin{displaymath}\int F(\sqrt{a^2+x^2})dx=a\int F\Big(a\sec (u)\Big)\sec^2(u)du
= H(u) = H(\arctan({x\over a})).\end{displaymath}

There is a similar ritual for integrals of the form $\displaystyle {\int F(\sqrt{a^2-x^2})dx}$ (Here we will just describe the ritual).

Let $x=a\sin (u)$. Then $dx=a\cos (u)du$ and

\begin{displaymath}
\sqrt{a^2-x^2}=\sqrt{a^2-a^2\sin (u)}=\sqrt{a^2\cos^2(u)}=a\cos (u)
\end{displaymath} (17.43)

so

\begin{displaymath}\int F(\sqrt{a^2-x^2})dx=a\int F\Big( a\cos (u)\Big)\cdot \cos (u)du
= H(u) = H(\arcsin({x\over a})).\end{displaymath}

Observe that in equation (17.43) we are assuming that $u=\arcsin
\displaystyle {({x\over a})}$, so $\displaystyle {u\in ( -{\pi\over 2},{\pi\over 2})}$, so $\cos
(u)\geq
0$, and the sign of the square root is correct.

17.44   Example. Find $\int\sqrt{4+x^2}dx$.

Let $x=2\tan \theta$. Then $dx=2\sec^2\theta\;d\theta$, and

\begin{displaymath}
\sqrt{4+x^2}=\sqrt{4(1+\tan^2\theta)}=2\sqrt{\sec^2(\theta)}=2\sec(\theta).
\end{displaymath} (17.45)

Thus

\begin{displaymath}\int\sqrt{4+x^2}\;dx=2^2\int\sec\theta\cdot\sec^2\theta\;d\theta=
4\int\sec^3(\theta)\;d\theta.\end{displaymath}

To find $\int\sec^3(\theta)d\theta$, I will integrate by parts. Let

\begin{displaymath}\begin{array}{ll}
f(\theta)=\sec(\theta), & g'(\theta) = \sec...
...theta)\tan(\theta), & g(\theta) = \tan (\theta).\\
\end{array}\end{displaymath}

Hence,

\begin{eqnarray*}
\int\sec^3(\theta)d\theta &=& \int f(\theta)g'(\theta)d\theta ...
...an(\theta)-\int\sec^3(\theta)d\theta+\int\sec(\theta)d\theta.\\
\end{eqnarray*}



Hence

\begin{eqnarray*}
2\int\sec^3(\theta)d\theta &=& \sec(\theta)\tan(\theta)+\int\s...
...\theta)\tan(\theta)+\ln(\vert\sec(\theta)+\tan(\theta)\vert);\\
\end{eqnarray*}



i.e.,
\begin{displaymath}
\int\sec^3(\theta)d\theta={1\over
2}\Bigg(\sec(\theta)\tan(\theta)+\ln\Big(\vert\sec(\theta)
+\tan(\theta)\vert\Big)\Bigg).
\end{displaymath} (17.46)

Hence

\begin{eqnarray*}
\int\sqrt{4+x^2}dx &=& 4\int\sec^3(\theta)d\theta \\
&=&
2\Bi...
...(\theta)+\ln\Big(\vert\sec(\theta)+\tan(\theta)\vert\Big)\Bigg).
\end{eqnarray*}



By (17.45) we have $\tan(\theta)=\displaystyle { {x\over 2}}$ and $\displaystyle {\sec(\theta) ={1\over 2}\sqrt{4+x^2}}$. Thus

\begin{eqnarray*}
\int\sqrt{4+x^2}dx &=& 2\Bigg( {1\over 2} \sqrt{4+x^2}\cdot{x\...
... 2}+2\ln \Big(\Big\vert {{\sqrt{4+x^2}+x}\over
2}\Big\vert\Big).
\end{eqnarray*}



17.47   Example. In the process of working out the last example we found $\int\sec^3(\theta)d\theta$ using integration by parts. Here is a different tricky way of finding the same integral [32].

\begin{eqnarray*}
\int \sec^3(\theta) d\theta &=& {1\over 2} \int (\sec^3(\theta...
...rt\sec(\theta) + \tan(\theta)\vert) + \sec(\theta)\tan(\theta)).
\end{eqnarray*}




17.48   Example. Find $\displaystyle { \int {1\over {\sqrt{a^2-x^2}}}dx}$.

Let $x=a\sin(\theta)$. Then $dx=a\cos (\theta)d\theta$ and

\begin{displaymath}\sqrt{a^2-x^2}=\sqrt{a^2-a^2\sin^2\theta}=a\sqrt{\cos^2\theta}=a\cos\theta.\end{displaymath}

Thus

\begin{eqnarray*}
\int {1\over {\sqrt{a^2-x^2}}}dx &=& \int {{a\cos(\theta)}\ove...
...eta)}}d\theta=\int 1\;d\theta\\
&=&\theta =\arcsin({x\over a}).
\end{eqnarray*}



17.49   Exercise. Find the following antiderivatives:
a)
$\displaystyle {\int\sqrt{a^2-x^2}\;dx}$

b)
$\displaystyle {\int \displaystyle { {1\over {\sqrt{a^2+x^2}}}}\;dx}$

c)
$\displaystyle {\int \displaystyle { {x\over {\sqrt{a^2-x^2}}}\;dx}}$

d)
$\displaystyle {\int x\sqrt{a^2+x^2}\; dx}$ A

17.50   Example (Area of a circular sector) Let $a$ be a positive number, and let $\theta_0$ be a number in $[0,{\pi\over 2})$. Let ${\bf o} = (0,0)$, and let ${\bf p} = (a\cos(\theta_0), a\sin(\theta_0)$. Let $T(a,\theta_0)$ be the circular sector bounded by the positive $x$-axis, the segment $[{\bf op]}$, and the circle $\{x^2 + y^2 = a^2\}$.
\psfig{file=ch17a.eps,width=2.5in}
The equation for $[{\bf op}]$ is

\begin{displaymath}y = {a\sin(\theta_0) \over a \cos(\theta_0)} x = x \tan(\theta_0), \end{displaymath}

and the equation for the upper semicircle is

\begin{displaymath}y = \sqrt{a^2 - x^2}. \end{displaymath}

Hence

\begin{displaymath}\mbox{\rm area}(T(a,\theta_0)) = A_0^a(f),\end{displaymath}

where

\begin{displaymath}
f(x) = \cases{ x\tan(\theta_0) & if $0 \leq x \leq a\cos(\th...
...\cr
\sqrt{a^2 - x^2} & if $ a\cos(\theta_0) \leq x \leq a.$ }
\end{displaymath}

i.e.

\begin{displaymath}\mbox{\rm area}(T(a,\theta_0)) = \int_0^{a \cos(\theta_0)} x\...
...\theta_0) dx
+ \int_{a\cos(\theta_0)}^a \sqrt{a^2 - x^2}\; dx. \end{displaymath}

In exercise 17.49A.a you showed that

\begin{displaymath}
\int \sqrt{a^2 - x^2} = {1\over 2} a^2 \arcsin\left({x\over a}\right) +
{1\over 2} x\sqrt{a^2 - x^2}, \end{displaymath}

so

\begin{eqnarray*}
\mbox{\rm area}(T(a,\theta_0)) &=&
\tan(\theta_0) \left. {x^2 ...
...ver 2}\sin(\theta_0)\cos(\theta_0)\\
&=& {1\over 2}a^2\theta_0.
\end{eqnarray*}



By using symmetry arguments, you can show that this formula actually holds for $0\leq \theta_0 \leq {2\pi}$.


next up previous index
Next: 17.6 Substitution in Integrals Up: 17. Antidifferentiation Techniques Previous: 17.4 Integration by Substitution   Index
Ray Mayer 2007-09-07