next up previous index
Next: 14.5 Inverse Function Theorems Up: 14. The Inverse Function Previous: 14.3 Inverse Functions   Index

14.4 The Exponential Function

14.29   Example. We will now derive some properties of the inverse function $E$ of the logarithm.

We have

\begin{eqnarray*}
\ln(1) = 0 & \mbox{$\Longrightarrow$}& E(0) = 1,
\\
\ln(e) = 1 & \mbox{$\Longrightarrow$}& E(1) = e.
\end{eqnarray*}



For all $a$ and $b$ in R,

\begin{displaymath}a+b = \ln(E(a)) + \ln(E(b)) = \ln( E(a)E(b) ).\end{displaymath}

If we apply $E$ to both sides of this equality we get

\begin{displaymath}E(a+b) = E(a)E(b) \mbox{ for all }a,b\in \mbox{{\bf R}}.\end{displaymath}

For all $a\in\mbox{{\bf R}}$ we have

\begin{displaymath}1 = E(0) = E(a+(-a)) = E(a)E(-a),\end{displaymath}

from which it follows that

\begin{displaymath}E(-a) = (E(a))^{-1} \mbox{ for all }a \in \mbox{{\bf R}}.\end{displaymath}

If $a\in\mbox{{\bf R}}$ and $q \in \mbox{{\bf Q}}$ we have

\begin{displaymath}\ln( (E(a))^q) = q\ln(E(a)) = qa.\end{displaymath}

If we apply $E$ to both sides of this identity we get

\begin{displaymath}(E(a))^q = E(qa) \mbox{ for all }a\in\mbox{${\mbox{{\bf R}}}^{+}$}, q\in \mbox{{\bf Q}}.\end{displaymath}

In particular,
\begin{displaymath}e^q = (E(1))^q = E(q) \mbox{ for all }q\in\mbox{{\bf Q}}.
\end{displaymath} (14.30)

Now we have defined $E(x)$ for all $x \in \mbox{{\bf R}}$, but we have only defined $x^q$ when $x \in \mbox{${\mbox{{\bf R}}}^{+}$}$ and $q \in \mbox{{\bf Q}}$. (We know what $\displaystyle { 2^{1 \over 2}}$ is, but we have not defined $2^{\sqrt 2}$.) Because of relation (14.30) we often write $e^x$ in place of $E(x)$. $E$ is called the exponential function, and is written

\begin{displaymath}E(x) = e^x = \exp(x) \mbox{ for all }x \in \mbox{{\bf R}}.\end{displaymath}

We can summarize the results of this example in the following theorem:


14.31   Theorem (Properties of the exponential function.) The exponential function is a function from R onto $\mbox{${\mbox{{\bf R}}}^{+}$}$. We have
$\displaystyle e^{a+b}$ $\textstyle =$ $\displaystyle e^a e^b \mbox{ for all }a,b \in \mbox{{\bf R}}.\mbox{{}}$  
$\displaystyle e^{a-b}$ $\textstyle =$ $\displaystyle {e^a \over e^b} \mbox{ for all }a,b \in \mbox{{\bf R}}.$ (14.32)
$\displaystyle (e^a)^q$ $\textstyle =$ $\displaystyle e^{aq} \mbox{ for all }a\in\mbox{{\bf R}},\mbox{ and }\mbox{ for all }q \in\mbox{{\bf Q}}.\mbox{{}}$  
$\displaystyle (e^a)^{-1}$ $\textstyle =$ $\displaystyle e^{-a} \mbox{ for all }a \in\mbox{{\bf R}}.\mbox{{}}$  
$\displaystyle e^{\ln(x)}$ $\textstyle =$ $\displaystyle x \mbox{ for all }x \in\mbox{${\mbox{{\bf R}}}^{+}$}.\mbox{{}}$  
$\displaystyle \ln(e^a)$ $\textstyle =$ $\displaystyle a \mbox{ for all }a \in\mbox{{\bf R}}.\mbox{{}}$  
$\displaystyle e^0$ $\textstyle =$ $\displaystyle 1.\mbox{{}}$  
$\displaystyle e^1$ $\textstyle =$ $\displaystyle e.$ (14.33)

Proof: We have proved all of these properties except for relation (14.32). The proof of (14.32) is the next exercise.

14.34   Exercise. Show that $\displaystyle {e^{a-b} = {e^a \over e^b} \mbox{ for all }a,b \in \mbox{{\bf R}}}$.

14.35   Exercise. Show that if $a \in \mbox{${\mbox{{\bf R}}}^{+}$}$ and $q \in \mbox{{\bf Q}}$, then

\begin{displaymath}a^q = e^{q\ln(a)}. \end{displaymath}

14.36   Definition ($a^x$.) The result of the last exercise motivates us to make the definition

\begin{displaymath}a^x = e^{x\ln(a)} \mbox{ for all }x\in\mbox{{\bf R}}\mbox{ and }\mbox{ for all }a\in\mbox{${\mbox{{\bf R}}}^{+}$}.\end{displaymath}

14.37   Exercise. Prove the following results:

\begin{eqnarray*}
a^x a^y &=& a^{x+y} \mbox{ for all }a\in\mbox{${\mbox{{\bf R}}...
...x{{\bf R}}}^{+}$}\mbox{ and }\mbox{ for all }x\in\mbox{{\bf R}}.
\end{eqnarray*}




next up previous index
Next: 14.5 Inverse Function Theorems Up: 14. The Inverse Function Previous: 14.3 Inverse Functions   Index
Ray Mayer 2007-09-07