next up previous index
Next: 8. Continuity Up: 7. Complex Sequences Previous: 7.7 The Translation Theorem   Index

7.8 Bounded Monotonic Sequences

7.87   Theorem. Let $\{[a_n,b_n]\}$ be a binary search sequence in $\mbox{{\bf R}}$. Suppose $\{[a_n,b_n]\} \to c$ where $c\in\mbox{{\bf R}}$.Then $\{b_n-a_n\}$ is a null sequence. Also $\{a_n\} \to c$ and $\{b_n\} \to c$.

Proof: We know that $\displaystyle {b_n - a_n = {b_0 - a_0 \over 2^n}}$, and that $\{{1\over 2^n}\}$ is a null sequence, so $\{b_n-a_n\}$ is a null sequence. Since $\{[a_n,b_n]\} \to c$ we know that $a_n \leq c \leq b_n$ for all $n\in\mbox{{\bf N}}$, and hence

\begin{displaymath}0 \leq \vert b_n - c\vert \leq \vert b_n - a_n\vert \hspace{....
...space{.5in}
0 \leq \vert c - a_n\vert \leq \vert b_n - a_n\vert\end{displaymath}

for all $n\in\mbox{{\bf N}}$. By the comparison theorem for null sequences it follows that $\{c-a_n\}$ and $\{b_n-c\}$ are null sequences, and hence $\{a_n\} \to c$ and $\{b_n\} \to c.$ $\mid\!\mid\!\mid$

7.88   Definition (Increasing, decreasing, monotonic) Let $f$ be a real sequence. We say $f$ is increasing if $f(n)\leq
f(n+1)$ for all $n\in\mbox{{\bf N}}$, and we say $f$ is decreasing if $f(n)\geq f(n+1)$ for all $n\in\mbox{{\bf N}}$. We say that $f$ is monotonic if either $f$ is increasing or $f$ is decreasing.

7.89   Theorem. Let $f$ be an increasing real sequence. Then for all $k,n\in\mbox{{\bf N}}$

\begin{displaymath}f(k) \leq f(k+n).\end{displaymath}

Proof: Define a proposition form $P$ on $\mbox{{\bf N}}$ by

\begin{displaymath}P(n) = \lq\lq\mbox{for all }k\in\mbox{{\bf N}}( f(k) \leq f(k+n ))'', \mbox{ for all }n\in\mbox{{\bf N}}.\end{displaymath}

Then $P(0)$ says ``for all $k\in\mbox{{\bf N}}(f(k) \leq f(k))$'', so $P(0)$ is true. Since $f$ is increasing, we have for all $n\in\mbox{{\bf N}}$,

\begin{eqnarray*}
P(n) &\mbox{$\Longrightarrow$}& \mbox{ for all }k\in\mbox{{\bf...
...k) \leq f( k +(n+1)) \Big)\\
&\mbox{$\Longrightarrow$}& P(n+1).
\end{eqnarray*}



By induction, we conclude that $P(n)$ is true for all $n\in\mbox{{\bf N}}$, i.e.

\begin{displaymath}\mbox{ for all }n\in\mbox{{\bf N}}\Big(\mbox{for all }k\in\mbox{{\bf N}}(f(k) \leq f(k+n)) \Big).\mbox{ $\mid\!\mid\!\mid$}\end{displaymath}

7.90   Corollary. Let $f$ be an increasing real sequence. Then for all $k,n\in\mbox{{\bf N}}$,
\begin{displaymath}
k\leq n\mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}f(k)\leq f(n).
\end{displaymath} (7.91)

Proof: For all $k,n\in\mbox{{\bf N}}$

\begin{displaymath}k \leq n \mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}n-k ...
...ce{1ex}$}f(k) \leq f(k+(n-k)) = f(n).\mbox{ $\mid\!\mid\!\mid$}\end{displaymath}

7.92   Definition (Upper bound, lower bound.) Let $f$ be a real sequence. We say that $f$ has an upper bound if there is a number $U\in\mbox{{\bf R}}$ such that $f(n) \leq U$ for all $n\in\mbox{{\bf N}}$. Any such number $U$ is called an upper bound for $f$. We say that $f$ has a lower bound if there is a number $L\in\mbox{{\bf R}}$ such that $L \leq f(n)$ for all $n\in\mbox{{\bf N}}$. Any such number $L$ is called a lower bound for $f$.

7.93   Examples. If $f(n) = {(-1)^n n\over n+1}$ for all $n\in\mbox{{\bf N}}$ then $1$ (or any number greater than $1$) is an upper bound for $f$, and $-1$ (or any number less than $-1$) is a lower bound for $f$. The sequence $g: n \mapsto n$ has no upper bound, but $0$ is a lower bound for $g$.

7.94   Exercise. A In definition 7.41, we defined a complex sequence $f$ to bounded if there is a number $B\in[0,\infty)$ such that $\vert f(n)\vert\leq B$ for all $n\in\mbox{{\bf N}}$. Show that a real sequence is bounded if and only if it has both an upper bound and a lower bound.

7.95   Theorem (Bounded monotonic sequences converge.)Let $f$ be
an increasing sequence in $\mbox{{\bf R}}$, and suppose $f$ has an upper bound. Then $f$ converges. (Similarly, decreasing sequences that have lower bounds converge.)

Proof: Let $B$ be an upper bound for $f$. We will construct a binary search sequence $\{[a_n,b_n]\}$ satisfying the following two conditions:

i. For every $n\in\mbox{{\bf N}}$, $b_n$ is an upper bound for $f$,

ii. For every $n\in\mbox{{\bf N}}$, $a_n$ is not an upper bound for $f$.

Let

\begin{eqnarray*}[a_0,b_0]&=&[f(0) - 1,B]\cr
[a_{n+1},b_{n+1}]&=&
\cases{ \left[...
...ght] & if ${{a_n+b_n}\over 2}$\ is
not an upper bound for $f$.}
\end{eqnarray*}



A straightforward induction argument shows that $\{[a_n,b_n]\}$ satisfies conditions i) and ii).

Let $c$ be the number such that $\{[a_n,b_n]\} \to c$. I will show that $f\to c$.

We know that $\{b_n - a_n\}=\{ {b_0 - a_0 \over 2^n}\}$ is a null sequence. Let $N$ be a precision function for $\{b_n-a_n\}$, so that for all $\varepsilon\in\mbox{${\mbox{{\bf R}}}^{+}$}$,

\begin{displaymath}n \geq N(\varepsilon) \mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}\vert b_n - a_n\vert < \varepsilon.\end{displaymath}

I will use $N$ to construct a precision function $K$ for $f - \tilde{c}$.

Let $\varepsilon\in\mbox{${\mbox{{\bf R}}}^{+}$}$. Since $a_{N(\varepsilon)}$ is not an upper bound for $f$, there is a number $K(\varepsilon) \in\mbox{{\bf N}}$ such that $f(K(\varepsilon)) > a_{N(\varepsilon)}$. By condition i), I know that $ f(n) \leq b_{N(\varepsilon)}$ for all $n\in\mbox{{\bf N}}$. Hence, since $f$ is increasing, we have for all $n\in\mbox{{\bf N}}$:

\begin{eqnarray*}
n \geq K(\varepsilon) & \mbox{$\Longrightarrow$}& a_{N(\vareps...
...rightarrow$}& f(n) \in [a_{N(\varepsilon)}, b_{N(\varepsilon)}].
\end{eqnarray*}



Since $\{[a_n,b_n]\} \to c$ we also have

\begin{displaymath}c \in [a_{N(\varepsilon)},b_{N(\varepsilon)}].\end{displaymath}

Hence

\begin{displaymath}\vert f(n) - c\vert \leq b_{N(\varepsilon)} - a_{N(\varepsilon)} < \varepsilon
\mbox{ for all }n \geq K(\varepsilon).\end{displaymath}

This says that $K$ is a precision function for $\{ f(n)-c\}$, and hence $f\to c$ $\mid\!\mid\!\mid$

7.96   Corollary. Let $f$ be a real sequence. If $f$ has an upper bound, and there is some $N\in\mbox{{\bf N}}$ such that

\begin{displaymath}f(n+1) \geq f(n) \mbox{ for all }n \in \mbox{{\bf Z}}_{\geq N}\end{displaymath}

then $f$ converges. Similarly, if $f$ has a lower bound, and there is some $N\in\mbox{{\bf N}}$ such that

\begin{displaymath}f(n+1) \leq f(n) \mbox{ for all }n \in \mbox{{\bf Z}}_{\geq N}\end{displaymath}

then $f$ converges.

7.97   Example. Let $a\in\mbox{${\mbox{{\bf R}}}^{+}$}$. Define a sequence $\{x_n\}$ by

\begin{eqnarray*}
x_0&=&a+1\\
x_{n+1}&=&{{x_n^2+a}\over {2x_n}}\mbox{ for all }n\in\mbox{{\bf N}}.
\end{eqnarray*}



We have $x_n>0$ for all $n$. Suppose $\{x_n\}$ converges to a limit $L$. Since $2x_nx_{n+1} = x_n^2 + a$ for all $n\in\mbox{{\bf N}}$, we can use the translation theorem to show that

\begin{displaymath}
2L^2=2\lim\{x_n\}\lim\{x_{n+1}\}=\lim\{x_{n}^2 + a\}=
L^2 + a,\end{displaymath}

so $2L^2=L^2+a$, and hence $L^2=a$, so $L$ must be $\pm\sqrt a$. Since $x_n\geq 0$ for all $n$, it follows from the inequality theorem that $L\geq 0$, and hence if $\{x_n\}$ converges, it must converge to $\sqrt a$. In order to show that $\{x_n\}$ converges, it is sufficient to show that $\{x_n\}$ is decreasing. (We've already noted that $0$ is a lower bound.)

Well,

\begin{displaymath}x_n-x_{n+1}=x_n-{{x_n^2+a}\over {2x_n}}={{2x_n^2-x_n^2-a}\over
{2x_n}}={{x_n^2-a}\over {2x_n}},\end{displaymath}

so if I can show that $x_n^2-a\geq 0$ for all $n\in\mbox{{\bf N}}$, then I'll know that $\{x_n\}$ is decreasing. Now

\begin{eqnarray*}
x_{n+1}^2-a &=&\left({{x_n^2+a}\over {2x_n}}\right)^2 - a ={{x...
...a^2-4ax_n^2}\over {4x_n^2}}={{(x_n^2-a)^2}\over {4x_n^2}}\geq 0.
\end{eqnarray*}



I also note that $x_0^2-a=a^2+a+1>0$, so I finally conclude that $\{x_n\}$ is decreasing, and hence $\{x_n\}\to\sqrt a$. In fact, this sequence converges very fast, and is the basis for the square root algorithm used on most computers.

7.98   Example ( $\{n^{1\over n}\}$) We will show that $\{n^{1\over n} \}_{n \geq 1} \to 1.$

Claim: $\{n^{1\over n}\}_{n \geq 3}$ is a decreasing sequence.

Proof: For all $n\in\mbox{{\bf Z}}_{\geq 1}$,

$\displaystyle (n+1)^{1\over n+1} \leq n^{1\over n}$ $\textstyle \mbox{$\Longleftrightarrow$}$ $\displaystyle (n+1)^n \leq n^{n+1} \mbox{{}}$  
  $\textstyle \mbox{$\Longleftrightarrow$}$ $\displaystyle \left({n+1 \over n}\right)^n \leq n.$ (7.99)

We will show by induction that (7.99) holds for all $n \in \mbox{{\bf Z}}_{\geq 3}$. Let

\begin{displaymath}P(n) = \mbox{\lq\lq }\left({n+1\over n}\right)^n \leq n\mbox{''} \mbox{ for all }n \in \mbox{{\bf Z}}_{\geq 3}.\end{displaymath}

Then $P(3)$ says $({4\over 3})^3 \leq 3$, which is true since $64<81$. For all $n \in \mbox{{\bf Z}}_{\geq 3}$,

\begin{eqnarray*}
P(n) & \mbox{$\Longrightarrow$}& \left({n+1\over n}\right)^n \...
...}\right)^{n+1} \leq n+1 \\
&\mbox{$\Longrightarrow$}& P(n+1).
\end{eqnarray*}



By induction, $P(n)$ is true for all $n \in \mbox{{\bf Z}}_{\geq 3}$, and the claim is proved.

Let $L = \lim\{ n^{1\over n} \}.$ Then $\{(2n)^{1\over 2n}\} \to L$, since any precision function for $\{n^{1\over n}\}$ is also a precision function for $\{(2n)^{1\over 2n}\}$. Hence

\begin{displaymath}L^2 = \lim\{\Big( (2n)^{1\over 2n}\Big)^2\}
= \lim\{2^{1\over n} n^{1\over n}\} = 1 \cdot L = L.\end{displaymath}

Thus $L^2 = L$, and hence $L \in \{0,1\}$. Since $n^{1\over n} \geq 1$ for all $n \in \mbox{{\bf Z}}_{\geq 3}$ it follows from the inequality theorem that $L \geq 1$, and hence $L=1.$ $\mid\!\mid\!\mid$

7.100   Exercise. A Show that the sequence

\begin{displaymath}\left\{ {60^n \over n!}\right\} = \{ 1,60,1800,36000, \cdots\}\end{displaymath}

is a null sequence.

7.101   Exercise. Criticize the following argument.

We know that $\displaystyle { \left\{ 1 + {1\over n} \right\}_{n\geq 1} \to
1+0 = 1}$.

Hence $\displaystyle { \left\{ \left(1 + {1\over n}\right)^n \right\}_{ n\geq 1} \to 1^n = 1.\mbox{ $\mid\!\mid\!\mid$}}$

7.102   Note.I got the idea of using precision functions from a letter by Jan Mycielski in the Notices of the American Mathematical Society[34, p 569]. Mycielski calls precision functions Skolem functions.


The snowflake was introduced by Helge von Koch(1870-1924) who published his results in 1906 [32]. Koch considered only the part of the boundary corresponding to the bottom third of our polygon, which he introduced as an example of a curve not having a tangent at any point.


The sequence $g$ from Exercise 7.82 is taken from [12, page 55, ex 20]


next up previous index
Next: 8. Continuity Up: 7. Complex Sequences Previous: 7.7 The Translation Theorem   Index