next up previous index
Next: 1.4 More Sets Up: 1. Notation, Undefined Concepts Previous: 1.2 Propositions   Index

1.3 Equality

1.34   Notation ($=$.) Let $x$ and $y$ be (names of) objects. I write

\begin{displaymath}x=y\end{displaymath}

to mean that $x$ and $y$ are names for the same object. I will not make a distinction between an object and its name.


\begin{displaymath}
\mbox{ For all objects } x,\quad x = x.
\index{reflexivity of equality}
\end{displaymath} (1.35)

We describe this property by saying that equality is reflexive.


\begin{displaymath}
\mbox{ For all objects } x,y, \quad (x=y)\mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}(y=x).
\index{symmetry of equality}
\end{displaymath} (1.36)

We describe this property by saying that equality is symmetric.


\begin{displaymath}
\mbox{ For all objects } x,y,z \;\; \left((x=y) \mbox{ and }...
...\right)\mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}
(x=z).
\end{displaymath} (1.37)

We describe this property by saying that equality is transitive.

Let $P$ be a proposition involving the object $x$. Let $Q$ be a proposition obtained by replacing any or all occurrences of $x$ in $P$ by $y$. Then $P\mbox{$\Longleftrightarrow$}Q$. We call this property of equality the substitution property.

1.38   Examples. Suppose that $x,y$ are integers, and $x=y$. Then

\begin{displaymath}
\Big((x+3)(x+4)=28+x\Big)\hspace{1ex}\Longleftrightarrow\hspace{1ex}\Big((x+3)(y+4)=28+y\Big),
\end{displaymath}

and

\begin{displaymath}\Big((x+3)(x+4)=28+x\Big)\iff\Big((y+3)(y+4)=28+y\Big),
\end{displaymath}

and

\begin{displaymath}\Big((x+3)(x+4)=28+x\Big)\hspace{1ex}\Longleftrightarrow\hspace{1ex}\Big((y+3)(x+4)=28+x\Big).
\end{displaymath}

We will frequently make statements like

\begin{displaymath}(x=y)\mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}(x+3=y+3).\end{displaymath}

The justification for this is

\begin{displaymath}x+3=x+3 \qquad \mbox{ (by reflexivity of } =.)\end{displaymath}

Hence, if $x=y$, then by the substitution property,

\begin{displaymath}x+3=y+3.\end{displaymath}

1.39   Warning. Because we are using a vague notion of proposition, the substitution property of equality as stated is not precisely true. For example, although
\begin{displaymath}
5=2+3
\end{displaymath} (1.40)

and
\begin{displaymath}
5\cdot 4=20
\end{displaymath} (1.41)

are both true, the result of substituting the $5$ in the second equation by $2+3$ yields

\begin{displaymath}2+3\cdot 4=20\end{displaymath}

which is false.

The proper conclusion that follows from (1.40) and (1.41) is

\begin{displaymath}(2+3)\cdot 4=20.\end{displaymath}

(The use of parentheses is discussed in Remark 2.50.)

1.42   Notation ($a=b=c=d.$) Let $a,b,c,d$ be objects. We write
\begin{displaymath}
a=b=c=d
\end{displaymath} (1.43)

as an abbreviation for

\begin{displaymath}\left((a=b) \mbox{ and } (b=c)\right) \mbox{ and } (c=d).\end{displaymath}

If (1.43) is true, then by several applications of transitivity, we conclude that

\begin{displaymath}a=d.\end{displaymath}


next up previous index
Next: 1.4 More Sets Up: 1. Notation, Undefined Concepts Previous: 1.2 Propositions   Index