next up previous index
Next: 15. The Second Derivative Up: 14. The Inverse Function Previous: 14.5 Inverse Function Theorems   Index

14.6 Some Derivative Calculations

14.46   Example (Derivative of $\exp$.) We know that

\begin{displaymath}\ln(E(t)) = t \mbox{ for all }t \in \mbox{{\bf R}}.\end{displaymath}

If we differentiate both sides of this equation, we get

\begin{displaymath}{1\over E(t)} E'(t) = 1,\end{displaymath}

i.e.

\begin{displaymath}E'(t) = E(t) \mbox{ for all }t\in \mbox{{\bf R}}.\end{displaymath}




14.47   Example (Derivative of $x^r.$) Let $r$ be any real number and let $f(x)=x^r$ for all $x \in \mbox{${\mbox{{\bf R}}}^{+}$}$. Then

\begin{displaymath}f(x) = x^r = E(r\ln(x)),\end{displaymath}

so by the chain rule

\begin{displaymath}f'(x) = E'(r\ln(x))\cdot{r\over x} = E(r\ln(x))\cdot rx^{-1}
= x^r r x^{-1} = r x^{r-1}.\end{displaymath}

(Here I have used the result of exercise 14.37.) Thus the formula

\begin{displaymath}{d\over dx}(x^r) = rx^{r-1}\end{displaymath}

which we have known for quite a while for rational exponents, is actually valid for all real exponents.

14.48   Exercise (Derivative of $a^x$.) Let $a \in \mbox{${\mbox{{\bf R}}}^{+}$}$. Show that

\begin{displaymath}{d \over dx}(a^x) = a^x\ln(a) \end{displaymath}

for all $x\in \mbox{{\bf R}}.$

14.49   Example (Derivative of $x^x$.)

\begin{eqnarray*}
{d \over dx} x^x &=& {d\over dx}e^{x\ln(x)}
= e^{x\ln(x)}{d\o...
...ln(x))\\
&=& x^x ( x \cdot {1\over x} + \ln(x)) =x^x(1+\ln(x)).
\end{eqnarray*}



Hence

\begin{displaymath}{d \over dx} x^x = x^x(1+\ln(x)) \mbox{ for all }x\in\mbox{${\mbox{{\bf R}}}^{+}$}.\end{displaymath}

14.50   Example (Derivative of $\arccos$.) Let $C:[0,\pi] \to [-1,1]$ be defined by

\begin{displaymath}C(x) = \cos(x) \mbox{ for all }x \in [0,\pi]. \end{displaymath}

\psfig{file=ch14i.eps,width=3in}
We have

\begin{displaymath}C'(x) = -\sin(x) < 0 \mbox{ for all }x \in (0,\pi), \end{displaymath}

so $C$ has an inverse function which is denoted by $\arccos$. By the inverse function theorem $\arccos$ is differentiable on $(-1,1)$. and we have

\begin{displaymath}\cos(\arccos(t)) = C(\arccos(t)) = t \mbox{ for all }t\in [-1,1].\end{displaymath}

By the chain rule

\begin{displaymath}-\sin(\arccos(t)) \arccos'(t) = 1 \mbox{ for all }t \in (-1,1).\end{displaymath}

Now since the sine function is positive on $(0,\pi)$ we get

\begin{displaymath}\sin(s) = \sqrt{1-\cos^2(s)} \end{displaymath}

for all $s \in (0,\pi)$, so

\begin{displaymath}\sin(\arccos(t)) = \sqrt{ 1 - (\cos(\arccos(t)))^2} = \sqrt{1-t^2}
\mbox{ for all }t \in (-1,1).\end{displaymath}

Thus

\begin{displaymath}\arccos'(t) ={-1\over \sin(\arccos(t))} = {-1 \over \sqrt{1-t^2}} \mbox{ for all }t\in(-1,1).\end{displaymath}

14.51   Exercise (Derivative of $\arcsin$.) Let

\begin{displaymath}S(t) = \sin(t) \mbox{ for all }t \in [-\frac{\pi}{2},\frac{\pi}{2}]. \end{displaymath}

Show that $S$ has an inverse function that is differentiable on the interior of its domain. This inverse functions is called $\arcsin$. Describe the domain of $\arcsin$, sketch the graphs of $S$ and of $\arcsin$, and show that

\begin{displaymath}\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}. \end{displaymath}

14.52   Example (Derivative of $\arctan$.) Let

\begin{displaymath}T(x) = \tan(x) \mbox{ for all }x \in (-\frac{\pi}{2}, \frac{\pi}{2}). \end{displaymath}

Then T is continuous, and the image of $T$ is unbounded both above and below, so image($T$) = R. Also

\begin{displaymath}T'(x) = \sec^2(x) > 0 \mbox{ for all }x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \end{displaymath}

so $T$ has an inverse function, which we denote by $\arctan$.
\psfig{file=ch14j.eps,width=4in}
For all $x \in \mbox{{\bf R}}$

\begin{displaymath}\tan(\arctan(x)) = T(\arctan(x)) = x,\end{displaymath}

so by the chain rule

\begin{displaymath}\sec^2(\arctan(x))\arctan'(x) = 1 \mbox{ for all }x\in\mbox{{\bf R}}.\end{displaymath}

Now

\begin{displaymath}\sec^2(t) = 1 + \tan^2(t) \mbox{ for all }t \in \mbox{{\rm dom}}{(\sec)},\end{displaymath}

so

\begin{displaymath}\sec^2(\arctan(x)) = 1 + \tan^2(\arctan(x)) = 1+x^2 \mbox{ for all }x\in\mbox{{\bf R}}.\end{displaymath}

Thus

\begin{displaymath}\arctan'(x) = {1\over \sec^2(\arctan(x))} = \frac{1}{1+x^2} \mbox{ for all }x \in \mbox{{\bf R}}. \end{displaymath}

14.53   Exercise (Derivative of arccot.) Let

\begin{displaymath}V(x) = \cot(x) \mbox{ for all }x \in (0,\pi). \end{displaymath}

Show that $V$ has an inverse function arccot, and that

\begin{displaymath}\frac{d}{dx} {\rm arccot}(x) = -\frac{1}{1+x^2}. \end{displaymath}

What is $\mbox{{\rm dom}}{({\rm arccot})}$? Sketch the graphs of $V$ and of arccot.

Remark The first person to give a name to the inverse trigonometric functions was Daniel Bernoulli (1700-1792) who used $AS$ for $\arcsin$ in 1729. Other early notations included arc(cos. = $x$) and ang(cos. = $x$)[15, page 175]. Many calculators and some calculus books use $\cos^{-1}$ to denote arccos. (If you use your calculator to find inverse trigonometric functions, make sure that you set the degree-radian-grad mode to radians.)

14.54   Exercise. A Calculate the derivatives of the following functions, and simplify your answers (Here $a$ is a constant.)
a)
$\displaystyle { f(x) = x\sqrt{a^2-x^2} + a^2 \arcsin(\frac{x}{a})}$.
b)
$\displaystyle { g(x) = \arcsin(x) + \frac{x}{1-x^2}}$.
c)
$\displaystyle { h(x) = x \arccos(ax)-\frac{1}{a} \sqrt{1-a^2x^2}}$.
d)
$\displaystyle { k(x) = \arctan( e^x + e^{-x})}$.
e)
$\displaystyle { m(x) = x\sqrt{1-x^2} +\arcsin(x) (2x^2-1)}$.
f)
$\displaystyle { n(x) = e^{ax}(a\sin(bx) -b\cos(bx)).\mbox{ Here $a$ and $b$ are constants}}$.
g)
$\displaystyle { p(x) = e^{ax}(a^2x^2 - 2ax +2). \mbox{ Here $a$ is a constant.}}$.

14.55   Exercise. A Let

\begin{displaymath}l(x) = \arctan(\tan(x)).\end{displaymath}

Calculate the derivative of $l$. What is the domain of this function? Sketch the graph of $l$.

14.56   Exercise (Hyperbolic functions.) We define functions $\sinh$ and $\cosh$ on R by

\begin{eqnarray*}
\cosh(x) &=& { e^x + e^{-x} \over 2} \mbox{ for all }x \in \mb...
...=& { e^x - e^{-x} \over 2} \mbox{ for all }x \in \mbox{{\bf R}}.
\end{eqnarray*}



These functions are called the hyperbolic sine and the hyperbolic cosine respectively. Show that

\begin{displaymath}{d \over dx} \cosh(x) = \sinh(x),\end{displaymath}

and

\begin{displaymath}{d \over dx} \sinh(x) = \cosh(x).\end{displaymath}

Calculate

\begin{displaymath}{d \over dx} \Big(\cosh^2(x) - \sinh^2(x)\Big),\end{displaymath}

and simplify your answer as much as you can. What conclusion can you draw from your answer? Sketch the graphs of $\cosh$ and $\sinh$ on one set of coordinate axes.


next up previous index
Next: 15. The Second Derivative Up: 14. The Inverse Function Previous: 14.5 Inverse Function Theorems   Index
Ray Mayer 2007-09-07