next up previous index
Next: 11.3 Composition of Functions Up: 11. Calculation of Derivatives Previous: 11.1 Derivatives of Some   Index

11.2 Some General Differentiation Theorems.

11.12   Theorem (Sum rule for derivatives.) Let $f,g$ be real valued functions with domain $(f)\subset\mbox{{\bf R}}$ and domain $(g)\subset\mbox{{\bf R}}$, and let $c \in \mbox{{\bf R}}$. Suppose $f$ and $g$ are differentiable at $a$. Then $f+g$, $f-g$ and $cf$ are differentiable at $a$, and

\begin{eqnarray*}
(f+g)^\prime (a) &=& f^\prime (a)+g^\prime (a)\\
(f-g)^\prime (a) &=& f^\prime (a)-g^\prime (a) \\
(cf)'(a) &=& c\cdot f'(a).
\end{eqnarray*}



Proof: We will prove only the first statement. The proofs of the other statements are similar. For all $x \in \mbox{{\rm dom}}(f)$ we have

\begin{eqnarray*}
{(f+g)(x) - (f+g)(a) \over x-a} &=&
{f(x) + g(x) - ( f(a) + g(...
...r x-a} \\
&=& {f(x) - f(a) \over x-a} + {g(x) - g(a) \over x-a}
\end{eqnarray*}



By the sum rule for limits of functions, it follows that

\begin{displaymath}\lim_{x\to a}\left( {(f+g)(x) - (f+g)(a) \over x-a} \right)
=...
...\right)
+ \lim_{x\to a}\left( {g(x) - g(a) \over x-a} \right),
\end{displaymath}

i.e.

\begin{displaymath}(f+g)'(a) = f'(a) + g'(a).\mbox{ $\diamondsuit$}\end{displaymath}

11.13   Examples. If

\begin{displaymath}f(x)=27x^3+{1\over {3x}}+\sqrt{8x},\end{displaymath}

then

\begin{displaymath}f(x)=27x^3+{1\over 3}x^{-1}+\sqrt 8 \cdot x^{1/2},\end{displaymath}

so

\begin{eqnarray*}
f^\prime (x) &=& 27\cdot (3x^2)+{1\over 3}(-1\cdot x^{-2})+\sq...
... 2}x^{-1/2}) \\
&=& 81x^2 -{1\over {3x^2}}+ \sqrt{ {2\over x}}.
\end{eqnarray*}





If $g(x)=(3x^2+7)^2$, then $g(x)=9x^4+42x^2+49$, so

\begin{displaymath}g^\prime (x)=9\cdot
4x^3+42\cdot 2x=36x^3+84x.\end{displaymath}



If $h(x)=\sin (4x)+\sin^2(4x)$, then $\displaystyle {h(x)=\sin (4x)+{1\over 2}\Big(1-\cos
(8x)\Big)}$, so

\begin{eqnarray*}
h^\prime (x) &=& 4\cos (4x)+{1\over 2}(-1)\Big( -8\cdot\sin (8x)\Big)\\
&=& 4\cos (4x) +4\sin (8x).
\end{eqnarray*}






\begin{displaymath}{d\over {ds}}\Big(8\sin (4s)+s^2+4\Big)=32\cos (4s)+2s.\end{displaymath}

11.14   Exercise. Calculate the derivatives of the following functions:
a)
$f(x)=(x^2+4x)^2$
b)
$\displaystyle { g(x)=\sqrt{3x^3}+{4\over{x^4}}}$
c)
$h(t)=\ln (t)+\ln (t^2)+\ln (t^3)$
d)
$k(x)=\ln (10\cdot x^{5/2})$
e)
$l(x)=3\cos (x)+\cos (3x)$
f)
$m(x)=\cos (x)\cos (3x)$
g)
$n(x)=\Big(\sin^2(x)+\cos^2(x)\Big)^4$

11.15   Exercise. A Calculate
a)
$\displaystyle { {d\over {dt}}\Big( 1+t+{{t^2}\over {2!}}+{{t^3}\over
{3!}}+{{t^4}\over {4!}}\Big)}$
b)
$\displaystyle { {d\over {dt}}\Big( h_0+v_0(t-t_0)-{1\over 2}g(t-t_0)^2\Big)}$. Here $h_0,v_0,t_0$ and $g$ are all constants.
c)
$\displaystyle { {d\over {dt}}(\vert-100t\vert)}$

11.16   Theorem (The product rule for derivatives.) Let $f$ and $g$ be real valued functions with $\mbox{{\rm dom}}(f)\subset\mbox{{\bf R}}$ and $\mbox{{\rm dom}}(g)\subset\mbox{{\bf R}}$. Suppose $f$ and $g$ are both differentiable at $a$. Then $fg$ is differentiable at $a$ and

\begin{displaymath}(fg)^\prime (a)=f(a)\cdot g^\prime (a)+f^\prime (a)\cdot g(a).\end{displaymath}

In particular, if $f= c$ is a constant function, we have

\begin{displaymath}(cf)'(a) = c\cdot f'(a).\end{displaymath}

Proof: Let $x$ be a generic point of $\mbox{{\rm dom}}(f)\cap\mbox{{\rm dom}}
(g)\setminus\{a\}$. Then

\begin{eqnarray*}
{{(fg)(x)-(fg)(a)}\over {x-a}} &=& {{f(x)\Big( g(x)-g(a)\Big)+...
...)+\Bigg( {{f(x)-f(a)}\over
{x-a}}\Bigg) g(a). \mbox{{\nonumber}}
\end{eqnarray*}



We know that $\displaystyle {\lim_{x\to a}\Big( {{g(x)-g(a)}\over {x-a}}\Big)=g^\prime
(a)}$ and $\displaystyle {\lim_{x\to a}\Big( {{f(x)-f(a)}\over {x-a}}\Big) =f^\prime (a)}$. If we also knew that $\displaystyle {\lim_{x\to a}f(x)=f(a)}$, then by basic properties of limits we could say that

\begin{displaymath}(fg)^\prime (a)=\lim_{x\to a}{{(fg)(x)-(fg)(a)}\over {x-a}}=f(a)g^\prime
(a)+f^\prime (a)g(a)\end{displaymath}

which is what we claimed.

This missing result will be needed in some other theorems, so I've isolated it in the following lemma.

11.17   Lemma (Differentiable functions are continuous.) Let $f$ be a real valued function such that $\mbox{{\rm dom}}(f)\subset\mbox{${\mbox{{\bf R}}}^{+}$}$. Suppose $f$ is differentiable at a point $a\in\mbox{{\rm dom}}(f)$. Then $\displaystyle {\lim_{x\to a}f(x)=f(a)}$. (We will define `` continuous" later. Note that neither the statement nor the proof of this lemma use the word `` continuous" in spite of the name of the lemma.)

Proof:

\begin{displaymath}\lim_{x\to a}f(x)=\lim_{x\to a}\Bigg( {{f(x)-f(a)}\over {x-a}}\cdot
(x-a)+f(a)\Bigg).\end{displaymath}

Hence by the product and sum rules for limits,

\begin{displaymath}\lim_{x\to a}f(x)=f^\prime (a)\cdot (a-a)+f(a)=f(a).\mbox{ $\diamondsuit$}\end{displaymath}

11.18   Example (Leibniz's proof of the product rule.) Leibniz stated the product rule as

\begin{displaymath}dxy = xdy + ydx\cite[page 143]{leibchild.b}\footnotemark \end{displaymath}

His proof is as follows:

$dxy$ is the difference between two successive $xy$'s; let one of these be $xy$ and the other $x+dx$ into $y+dy$; then we have

\begin{displaymath}dxy = \overline{\overline{x+dx} \cdot \overline{y+dy}} - xy
= xdy + ydx + dxdy;\end{displaymath}

the omission of the quantity $dxdy$ which is infinitely small in comparison with the rest, for it is supposed that $dx$ and $dy$ are infinitely small (because the lines are understood to be continuously increasing or decreasing by very small increments throughout the series of terms), will leave $xdy + ydx$.[34, page 143]
Notice that for Leibniz, the important thing is not the derivative, $\displaystyle {dxy
\over dt}$, but the infinitely small differential, $dxy$.

11.19   Theorem (Derivative of a reciprocal.) Let $f$ be a real valued function such that $\mbox{{\rm dom}}(f)\subset\mbox{{\bf R}}$. Suppose $f$ is differentiable at some point $a$, and $f(a)\neq 0$. Then $\displaystyle {{1\over f}}$ is differentiable at $a$, and

\begin{displaymath}\Big( {1\over f}\Big)^\prime (a)={{-f^\prime (a)}\over {\Big( f(a)\Big)^2}}.\end{displaymath}

Proof: For all $\displaystyle { x\in\mbox{{\rm dom}}\Big( {1\over f}\Big)\setminus\{a\} }$

\begin{displaymath}{{ {1\over {f(x)}} - {1\over {f(a)}} }\over {x-a}} = {{f(a)-f...
...{{\Big( f(x)-f(a)\Big)}\over {(x-a)}}\cdot {1\over
{f(x)f(a)}}.\end{displaymath}

It follows from the standard limit rules that

\begin{displaymath}\lim_{x\to a} {{ {1\over {f(x)}}-{1\over {f(a)}}}\over {x-a}}=-f^\prime
(a)\cdot
{1\over {\Big( f(a)\Big)^2}}.\end{displaymath}

11.20   Theorem (Quotient rule for derivatives.) Let $f,g$ be real valued
functions with $\mbox{{\rm dom}}(f)\subset\mbox{{\bf R}}$ and $\mbox{{\rm dom}}(g)\subset\mbox{{\bf R}}$. Suppose $f$ and $g$ are both differentiable at $a$, and that $g(a)\neq 0$. Then $\displaystyle { {f\over g}}$ is differentiable at $a$, and

\begin{displaymath}\Big( {f\over g}\Big)^\prime (a)={{g(a)f^\prime (a)-f(a)g^\prime (a)}\over
{\Big(g(a)\Big)^2}}.\end{displaymath}

11.21   Exercise. A Prove the quotient rule.

11.22   Examples. Let

\begin{displaymath}f(x)={{\sin (x)}\over x} \mbox{ for } x\in\mbox{{\bf R}}\setminus\{0\}.\end{displaymath}

Then by the quotient rule

\begin{displaymath}f^\prime (x)={{x(\cos (x))-\sin (x)}\over {x^2}}.\end{displaymath}



Let $h(x)=x^2\cdot\vert x\vert$. Then by the product rule

\begin{displaymath}h^\prime (x)=x^2 \Big( {x\over {\vert x\vert}}\Big) +2x\vert x\vert=x\vert x\vert+2x\vert x\vert=3x\vert x\vert\end{displaymath}

(since $\displaystyle { {{x^2}\over {\vert x\vert}}={{\vert x\vert^2}\over {\vert x\vert}}=\vert x\vert}$).

The calculation is not valid at $x=0$ (since $\vert x\vert$ is not differentiable at $0$, and we divided by $\vert x\vert$ in the calculation. However $h$ is differentiable at $0$ since $\displaystyle { \lim_{t\to 0}{{h(t)-h(0)}\over {t-0}}=\lim_{t\to 0} {{t^2\vert t\vert}\over
t}=\lim_{t\to 0} t\vert t\vert=0}$, i.e., $h^\prime (0)=0=3\cdot 0\cdot \vert\vert$. Hence the formula

\begin{displaymath}{d\over {dx}}(x^2\vert x\vert)=3x\vert x\vert\end{displaymath}

is valid for all $x \in \mbox{{\bf R}}$.



Let $g(x)=\ln (x)\cdot\sin (10x)\cdot\sqrt x$. Consider $g$ to be a product $g=hk$ where $h(x)=\ln (x)\cdot\sin (10x)$ and $k(x)=\sqrt x$. Then we can apply the product rule twice to get

\begin{eqnarray*}
g^\prime (x) &=& \Big( \ln (x)\cdot\sin (10x)\Big)\cdot {1\ove...
...x)\cdot \Big(10\cos (10x)\Big)+{1\over x}\sin (10x)\Bigg)\sqrt
x.\end{eqnarray*}



11.23   Exercise (Derivatives of tangent, cotangent, secant, cosecant.) We define functions tan, cot, sec, and csc by

\begin{displaymath}\begin{array}{ll}
\tan (x)=\displaystyle {{\sin (x)}\over {\c...
...x)}}, & \csc (x)=\displaystyle {1\over {\sin (x)}}.
\end{array}\end{displaymath}

The domains of these functions are determined by the definition of the domain of a quotient, e.g. $\mbox{{\rm dom}}(\sec)=\{x\in\mbox{{\bf R}}\colon\cos x\neq 0\}$. Prove that

\begin{displaymath}\begin{array}{ll}
{d\over {dx}}\tan (x)=\sec^2(x), & {d\over ...
...sec (x), & {d\over {dx}}\csc (x)=-\cot (x)\csc
(x).
\end{array}\end{displaymath}

(You should memorize these formulas. Although they are easy to derive, later we will want to use them backwards; i.e., we will want to find a function whose derivative is $\sec^2 (x)$. It is not easy to derive the formulas backwards.)

11.24   Exercise. A Calculate the derivatives of the following functions. Simplify your answers if you can.
a)
$f(x)=x\cdot \ln (x)-x$.
b)
$g(x)=\displaystyle { {{ax+b}\over {cx +d}}}$ (here $a, b, c, d$ are constants).
c)
$k(x)=(x^2+3x+10)(x^2+3x+12)$.
d)
$\displaystyle { m(x)= {{\cos (6x)}\over {\cos (7x)}}}$.

11.25   Exercise. Let $f$, $g$, $h$, and $k$ be differentiable functions defined on $\mbox{{\bf R}}$.

a) Express $(fgh)'$ in terms of $f$, $f'$, $g$, $g'$, $h$ and $h'$.

b) On the basis of your answer for part a), try to guess a formula for $(fghk)'$. Then calculate $(fghk)'$, and see whether your guess was right.


next up previous index
Next: 11.3 Composition of Functions Up: 11. Calculation of Derivatives Previous: 11.1 Derivatives of Some   Index
Ray Mayer 2007-09-07