next up previous index
Next: 4. Analytic Geometry Up: 3. Propositions and Functions Previous: 3.4 Summation Notation   Index

3.5 Mathematical Induction

The induction principle is a way of formalizing the intuitive idea that if you begin at $1$ and start counting ``$1,2,3,\ldots$'', then eventually you will reach any preassigned number (such as for example, $200004$).


3.55   Assumption (The Induction Principle)     Let $k$ be an integer, and let $P$ be a proposition form over $\mbox{{\bf Z}}_{\geq k}$. If

$P(k)$ is true,

and

``for all $n \in \mbox{{\bf Z}}_{\geq k}[ P(n) \mbox{$\Longrightarrow$} P(n+1)]$'' is true,

then

``for all $n \in \mbox{{\bf Z}}_{\geq k}[ P(n)]$'' is true.

In order to prove ``for all $n \in \mbox{{\bf Z}}_{\geq k},P(n)$'' by using the induction principle, you should

1. Prove that $P(k)$ is true.

2. Take a generic element $n$ of $\mbox{{\bf Z}}_{\geq k}$ and prove $(P(n) \mbox{$\Longrightarrow$} P(n+1))$.


Recall that the way to prove `` $P(n) \mbox{$\Longrightarrow$}P(n+1)$'' is true, is to assume that $P(n)$ is true and show that then $P(n+1)$ must be true.


3.56   Example. We will use the induction principle to do exercise 2.10. For all $n \in \mbox{{\bf Z}}_{\geq 1}$, let

\begin{displaymath}P(n) = \left[\sum_{p=1}^n p^3 = \frac{n^2 (n+1)^2}{4}\right]. \end{displaymath}

Then $P(1)$ says

\begin{displaymath}\sum_{p=1}^1 p^3 = \frac{(1^2)(1+1)^2}{4}\end{displaymath}

which is true, since both sides of this equation are equal to $1$. Now let $n$ be a generic element of $\mbox{{\bf Z}}_{\geq 1}$ Then

\begin{eqnarray*}
P(n) & \iff &\sum_{p=1}^n p^3 = \frac{n^2(n+1)^2}{4}\\
& \mbo...
...um_{p=1}^{n+1} p^3 = \frac{(n+1)^2(n+2)^2}{4}\\
& \iff& P(n+1).
\end{eqnarray*}



It follows from the induction principle that $P(n)$ is true for all $n \in \mbox{{\bf Z}}_{\geq 1}$, which is what we wanted to prove. $\diamondsuit$

3.57   Example. We will show that for all $n \in \mbox{{\bf Z}}_{\geq 4}[ n! > 2^n].$

Proof: Define a proposition form $P$ over $\mbox{{\bf Z}}_{\geq 4}$ by


\begin{displaymath}P(n) = [n! > 2^n].\end{displaymath}

Now $4! = 24 > 16 = 2^4$, so $4! > 2^4$ and thus $P(4)$ is true.

Let $n$ be a generic element of $\mbox{{\bf Z}}_{\geq 4}.$ Since $n \in \mbox{{\bf Z}}_{\geq 4}$, we know that

\begin{displaymath}n+1 \geq 4+1 > 2.\end{displaymath}

Hence
$\displaystyle P(n)$ $\textstyle \mbox{$\Longrightarrow$} $ $\displaystyle (n! > 2^n > 0) \mbox{ and } (n+1 > 2 > 0) \mbox{{}}$  
  $\textstyle \mbox{$\Longrightarrow$} $ $\displaystyle (n+1) \cdot n! > 2 \cdot 2^n \mbox{{}}$  
  $\textstyle \mbox{$\Longrightarrow$} $ $\displaystyle ((n+1)! > 2^{n+1}) \mbox{$\Longrightarrow$}P(n+1). \mbox{{}}$  

Hence, for all $n \in \mbox{{\bf Z}}_{\geq 4}[ P(n) \mbox{$\Longrightarrow$}P(n+1)].$ It follows from the induction principle that for all $n \in \mbox{{\bf Z}}_{\geq 4}[ n! > 2^n].$  $\diamondsuit$



next up previous index
Next: 4. Analytic Geometry Up: 3. Propositions and Functions Previous: 3.4 Summation Notation   Index
Ray Mayer 2007-09-07