next up previous
Next: Miscellaneous Geometrical Properties Up: C. Prerequisites Previous: Miscellaneous Algebraic Properties

Area Formulas

It will be assumed that you are familiar with the results from Euclidean and coordinate geometry listed below.

Area of a parallelogram:


(C.110)

\psfig{file=prea.eps,width=4.5in}

Area of a triangle:

(C.111)

\psfig{file=preb.eps,width=4.5in}

Area of a trapezoid:

(C.112)

\psfig{file=prec.eps,width=4.5in}

We will always assume that angles are measured in radians unless otherwise specified. If an angle $\theta$ is inscribed in a circle of radius $r$ and $s$ is the length of the subtended arc, then


(C.113)

\psfig{file=pred.eps,width=3in}

A right angle is $\pi/2$ and the sum of the angles of a triangle is $\pi$. When $\theta$ is four right angles in (C.113) we get


\begin{displaymath}
\mbox{circumference(circle)\index{circle circumference of}} = 2 \pi r.
\end{displaymath} (C.114)

Area of a circular sector:

$\displaystyle \mbox{Area}$ $\textstyle =$ $\displaystyle \frac{1}{2} \cdot \mbox{radius} \cdot
\mbox{subtended arc}$  
  $\textstyle =$ $\displaystyle \frac{1}{2} r s$  
  $\textstyle =$ $\displaystyle \frac{1}{2} \cdot \mbox{central angle} \cdot
\mbox{radius}^2$  
  $\textstyle =$ $\displaystyle \frac{1}{2} \theta r^2.$ (C.115)

In particular when $\theta$ is four right angles
\begin{displaymath}
\mbox{Area(circle)} = \pi r^2.\index{circle area of}
\end{displaymath} (C.116)


next up previous
Next: Miscellaneous Geometrical Properties Up: C. Prerequisites Previous: Miscellaneous Algebraic Prerequisites
Ray Mayer 2007-08-31