next up previous index
Next: 7.5 Theorems About Convergent Up: 7. Complex Sequences Previous: 7.3 Null Sequences   Index


7.4 Sums and Products of Null Sequences

7.27   Theorem (Sum theorem for null sequences.)Let $f,g$ be complex null sequences and let $\alpha\in\mbox{{\bf C}}$. Then $f+g$, $f-g$, and $\alpha
f$ are null sequences.

Scratchwork for $\alpha
f$: I want to find $N_{\alpha f}$ so that

\begin{displaymath}n\geq N_{\alpha f}(\varepsilon)\mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}\vert\alpha
f(n)\vert<\varepsilon\end{displaymath}

i.e.

\begin{displaymath}n \geq N_{\alpha f}(\varepsilon) \mbox{$\hspace{1ex}\Longrigh...
...e{1ex}$}
\vert f(n)\vert<{\varepsilon\over {\vert\alpha\vert}}.\end{displaymath}

This suggests that I take $\displaystyle {N_{\alpha f}(\varepsilon)=N_f\left({\varepsilon\over
{\vert\alpha\vert}}\right)}$.


Scratchwork for $f+g$: I want to find $N_{f+g}$ so that

\begin{displaymath}n\geq
N_{f+g}(\varepsilon)\mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}\vert f(n)+g(n)\vert<\varepsilon.\end{displaymath}

Now $\vert f(n)+g(n)\vert\leq\vert f(n)\vert+\vert g(n)\vert$, and I can make $\vert f(n)\vert+\vert g(n)\vert<\varepsilon$ by making $\vert f(n)\vert<\varepsilon /2$ and $\vert g(n)\vert<\varepsilon /2$. Hence I want $N_{f+g}(\varepsilon)>N_f(\varepsilon/2)$ and $\displaystyle {N_{f+g}(\varepsilon)>N_g\left({\varepsilon\over 2}\right)}$. This suggests that I take $N_{f+g}(\varepsilon)=\max\left(N_f(\varepsilon /2),N_g(\varepsilon /2)\right)$.


Proof: Let $f,g$ be null sequences, and let $\alpha\in\mbox{{\bf C}}$. Define $N_{f+g}\colon\mbox{${\mbox{{\bf R}}}^{+}$}\to\mbox{{\bf N}}$ by

\begin{displaymath}N_{f+g}(\varepsilon)=\max\left(N_f(\varepsilon /2),N_g(\varepsilon/2)\right).\end{displaymath}

Then for all $n\in\mbox{{\bf N}}$,

\begin{eqnarray*}
n\geq N_{f+g}(\varepsilon)&\mbox{$\Longrightarrow$}&n\geq N_f(...
...2} \\
&\mbox{$\Longrightarrow$}&\vert(f+g)(n)\vert<\varepsilon.
\end{eqnarray*}



Hence, $N_{f+g}$ is a precision function for $f+g$, and $f+g$ is a null sequence.

If $\alpha=0$ then $\alpha f=\tilde 0$ is a null sequence. Suppose $\alpha\neq 0$, and define $N_{\alpha f}\colon\mbox{${\mbox{{\bf R}}}^{+}$}\to\mbox{{\bf N}}$ by

\begin{displaymath}N_{\alpha f}(\varepsilon)=N_f\left({\varepsilon\over {\vert\alpha\vert}}\right).\end{displaymath}

Then for all $n\in\mbox{{\bf Z}}$,

\begin{eqnarray*}
n\geq N_{\alpha f}&\mbox{$\Longrightarrow$}&n\geq N_f\left({\v...
...\mbox{$\Longrightarrow$}&\vert\alpha f(n)\vert\leq \varepsilon .
\end{eqnarray*}



Hence $N_{\alpha f}$ is a precision function for $\alpha
f$, and hence $\alpha
f$ is a null sequence. Since $f-g=f+(-1)g$ it follows that $f-g$ is a null sequence. $\mid\!\mid\!\mid$

7.28   Exercise (Product theorem for null sequences.) A Let $f,g$ be complex null sequences. Prove that $fg$ is a null sequence.


next up previous index
Next: 7.5 Theorems About Convergent Up: 7. Complex Sequences Previous: 7.3 Null Sequences   Index