next up previous index
Next: 4.2 Complex Conjugate. Up: 4. The Complexification of Previous: 4. The Complexification of   Index

4.1 Construction of $\mbox{{\bf C}}_F$.

Throughout this chapter, $F$ will represent a field in which $-1$ is not a square. For example, in an ordered field $-1$ is not a square, but in $\mbox{{\bf Z}}_5$, $(2)^2=4=-1$ so $-1$ is a square. In $\mbox{{\bf Z}}_3$,

\begin{displaymath}0^2=0,\;\; 1^2=1,\;\; 2^2=1, \; \mbox{ and } -1=2,\end{displaymath}

so $-1$ is not a square in $\mbox{{\bf Z}}_3$.

Let $F$ be a field in which $-1$ is not a square. I am going to construct a new field $\mbox{{\bf C}}_F$ which contains (a copy of) $F$ and a new element $i$ such that $i^2 = -1$. The elements of $\mbox{{\bf C}}_F$ will all have the form

\begin{displaymath}a+bi\end{displaymath}

where $a$ and $b$ are in $F$. I'll call $\mbox{{\bf C}}_F$ the complexification of $F$. Before I start my construction, note that if $a,b,c,d$ are in $F$ and $i^2 = -1$, then by the usual field axioms
\begin{displaymath}
(a+bi)+(c+di)=(a+c)+(b+d)i,
\end{displaymath} (4.1)

and
\begin{displaymath}
(a+bi)(c+di)=(ac-bd)+(ad+bc)i.
\end{displaymath} (4.2)

Let $F$ be a field in which $-1$ is not a square. Let $\mbox{{\bf C}}_F=F\times F$ denote the Cartesian product of $F$ with itself (Cf. definition 1.55). I define two binary operations $\oplus$ and $\odot$ $\mbox{{\bf C}}_F$ as follows (cf. (4.1) and (4.2)): for all $(a,b),(c,d)\in\mbox{{\bf C}}_F$,

\begin{displaymath}(a,b)\oplus (c,d)=(a+c,b+d)\end{displaymath}

and

\begin{displaymath}(a,b)\odot (c,d)=(ac-bd,ad+bc).\end{displaymath}

We will now show that $(\mbox{{\bf C}}_F,\oplus,\odot)$ is a field.

4.3   Theorem (Associativity of $\odot$.) The operation $\odot$ is associative on $\mbox{{\bf C}}_F$.

Proof: Let $(a,b),(c,d)$ and $(e,f)$ be elements in $\mbox{{\bf C}}_F$. Then

$\displaystyle { (a,b)\odot\left((c,d)\odot(e,f)\right)} \hspace{1cm}$
  $\textstyle =$ $\displaystyle (a,b)\cdot(ce-df,cf+de)$  
  $\textstyle =$ $\displaystyle \left(a(ce-df)-b(cf+de),
a(cf+de)+b(ce-df)\right)$  
  $\textstyle =$ $\displaystyle (ace-adf-bcf-bde,acf+ade+bce-bdf).$ (4.4)

Also,
$\displaystyle {((a,b) \odot (c,d))\odot(e,f)} \hspace{1cm}$
  $\textstyle =$ $\displaystyle (ac-bd,ad+bc)\odot(e,f)$  
  $\textstyle =$ $\displaystyle \left((ac-bd)e-(ad+bc)f, (ac-bd)f+(ad+bc)e\right)$  
  $\textstyle =$ $\displaystyle (ace-bde-adf-bcf, acf-bdf+ade+bce).$ (4.5)

Now by using the field properties of $F$, we see that the (4.4) and (4.5) are equal, and hence

\begin{displaymath}(a,b)\odot\left((c,d)\odot(e,f)\right)=\left((a,b)\odot(c,d)\right)\odot(e,f).\end{displaymath}

Hence, $\odot$ is associative on $\mbox{{\bf C}}_F$. $\mid\!\mid\!\mid$

I expect the multiplicative identity for $\mbox{{\bf C}}_F$ to be $1+0i=(1,0)$.

4.6   Theorem (Multiplicative identity for $\mbox{{\bf C}}_F$.)The element $(1,0)$ is an identity for $\odot$ on $\mbox{{\bf C}}_F$.

Proof: For all $(a,b)\in\mbox{{\bf C}}_F$, we have

\begin{displaymath}(1,0)\odot(a,b)=(1\cdot a-0\cdot b,1\cdot b+0\cdot a)=(a,b)\end{displaymath}

and

\begin{displaymath}(a,b)\odot(1,0)=(a\cdot 1-b\cdot 0,a\cdot 0+b\cdot 1)=(a,b).\mbox{ $\mid\!\mid\!\mid$}\end{displaymath}

4.7   Exercise.
a)
Show that $\oplus$ is associative on $\mbox{{\bf C}}_F$.
b)
Show that there is an identity for $\oplus$ on $\mbox{{\bf C}}_F$.
c)
Show that every element in $\mbox{{\bf C}}_F$ has an inverse for $\oplus$.
d)
Show that $\odot$ is commutative on $\mbox{{\bf C}}_F$.
e)
Show that the distributive law holds for $\mbox{{\bf C}}_F$.
f)
Show that the additive and multiplicative identities for $\mbox{{\bf C}}_F$ are different.

As a result of exercise 4.7 and the two previous theorems, we have verified that $(\mbox{{\bf C}}_F,\oplus,\odot)$ satisfies all of the field axioms except existence of multiplicative inverses. Note that up to this point we have never used the assumption that $-1$ is not a square in $F$.

4.8   Theorem (Existence of multiplicative inverses.)Let $F$ be a field in which $-1$ is not a square and let $(a,b)$ be an element in $\mbox{{\bf C}}_F\backslash\{(0,0)\}$. Then $(a,b)$ has an inverse for $\odot$.

Proof: Let $(a,b)\in\mbox{{\bf C}}_F\backslash\{(0,0\}$. I want to find a point $(x,y)\in\mbox{{\bf C}}_F$ such that

\begin{displaymath}(a,b)\odot (x,y)=(1,0).\end{displaymath}

Since multiplication is commutative, this shows that $(x,y)\odot(a,b)=(1,0)$ and hence that $(x,y)$ is a multiplicative inverse for $(a,b)$. I want

\begin{displaymath}(ax-by,ay+bx)=(1,0),\end{displaymath}

so I want
\begin{displaymath}
bx+ay=0
\end{displaymath} (4.9)

and
\begin{displaymath}
ax-by=1.
\end{displaymath} (4.10)

Multiply the first equation by $b$ and the second by $a$ to get

\begin{eqnarray*}
b^2 x+aby&=&0 \\
a^2 x-aby&=&a.
\end{eqnarray*}



If we add these equations, we get
\begin{displaymath}
(a^2+b^2)x=a.
\end{displaymath} (4.11)

In the next lemma I'll show that if $-1$ is not a square then $a^2+b^2\neq 0$ for all $(a,b)\in\mbox{{\bf C}}_F\backslash\{(0,0)\}$, so by (4.11), $\displaystyle {x={a\over {a^2+b^2}}}$. Now multiply (4.9) by $a$ and (4.10) by $-b$ to get

\begin{eqnarray*}
abx+a^2y&=&0 \\
-abx+b^2y&=&-b.
\end{eqnarray*}



If we add these equations, we get

\begin{displaymath}(a^2+b^2)y=-b\end{displaymath}

so

\begin{displaymath}y={{-b}\over {a^2+b^2}}.\end{displaymath}

I've shown that if $(a,b)\odot(x,y)=(1,0)$, then $\displaystyle {(x,y)=\left({a\over
{a^2+b^2}},{{-b}\over {a^2+b^2}}\right)}$. A direct calculation shows that this works:

\begin{displaymath}
(a,b)\odot\left( {a\over {a^2+b^2}},{{-b}\over {a^2+b^2}}\ri...
...ba}\over {a^2+b^2}}\right)
=(1,0).\mbox{ $\mid\!\mid\!\mid$}
\end{displaymath}

4.12   Remark. The above proof shows that for all $(a,b) \in\mbox{{\bf C}}\setminus\{(0,0)\}$,

\begin{displaymath}(a,b)^{-1} = \left( {a\over a^2+b^2},{-b\over a^2+b^2}\right).
\end{displaymath}

4.13   Lemma. Let $F$ be a field in which $-1$ is not a square. Let $(a,b)$ be an element in $\mbox{{\bf C}}_F\backslash\{(0,0)\}$. Then $a^2+b^2\neq 0$.

Proof: Since $(a,b)\neq(0,0)$, either $a\neq 0$ or $b\neq 0$.

Case 1:
Suppose $a\neq 0$, then $a^2\neq 0$, so

\begin{eqnarray*}
a^2+b^2=0&\mbox{$\Longrightarrow$}&a^2\left(1+\left({b\over a}...
...^2=0 \\
&\mbox{$\Longrightarrow$}&\left({b\over a}\right)^2=-1.
\end{eqnarray*}



Since $-1$ is not a square in $F$, $a^2+b^2\neq 0$.
Case 2:
Suppose $b\neq 0$. Repeat the argument of Case 1 with the roles of $a$ and $b$ interchanged. $\mid\!\mid\!\mid$
We now have verified all of the field axioms so we know that $\mbox{{\bf C}}_F$ is a field. Hence we can calculate in $\mbox{{\bf C}}_F$ using all of the algebraic results that have been proved to hold in all fields.

4.14   Notation ($i,\tilde a$) Let $F$ be a field in which $-1$ is not a square. We will denote the pair $(0,1)\in\mbox{{\bf C}}_F$ by $i$, and if $a\in F$ we will denote the pair $(a,0)\in\mbox{{\bf C}}_F$ by $\tilde a$.

We have $\tilde 0=(0,0)$ is the additive identity for $\mbox{{\bf C}}_F$, and $\tilde 1=(1,0)$ is the multiplicative identity for $\mbox{{\bf C}}_F$. If $a\in F$, then $-\tilde
a=-(a,0)=(-a,0)=\widetilde{-a}$. Also

\begin{displaymath}i^2=(0,1)\odot(0,1)=(0-1,0)=(-1,0)=-\tilde 1,\end{displaymath}

so $i$ is a square root of $-\tilde 1$.

If $a,b\in F$, then

\begin{eqnarray*}
\tilde a \oplus (\tilde b \odot i) &=&(a,0) \oplus ((b,0)\odot (0,1)) \\
&=&(a,0) \oplus (0,b)=(a,b),
\end{eqnarray*}



and hence every element $(a,b)\in\mbox{{\bf C}}_F$ can be written in the form $\tilde a \oplus (\tilde
b\odot i)$. We have

\begin{eqnarray*}
\tilde a\odot\tilde b&=&(a,0)\odot(b,0)=(ab,0)=\widetilde{ab} ...
...ilde a\oplus\tilde b&=&(a,0)\oplus(b,0)=(a+b,0)=\widetilde{a+b}.
\end{eqnarray*}



Hence $\mbox{{\bf C}}_F$ contains a `` copy of $F$". Each element $a$ in $F$ corresponds to a unique $\tilde a$ in $\mbox{{\bf C}}_F$ in such a way that addition in $\mbox{{\bf C}}_F$ corresponds to addition in $F$ and multiplication in $\mbox{{\bf C}}_F$ corresponds to multiplication in $F$. We will henceforth drop the tildes, and we'll denote $\oplus$ by $+$ and $\odot$ by $\cdot$ as is usual in fields. Then every element in $\mbox{{\bf C}}_F$ can be written uniquely as $a+bi$ where $a,b\in F$ and $i^2 = -1$.

We consider $F$ to be a subset of $\mbox{{\bf C}}_F$. An element $z=(a,b)=a+bi$ of $\mbox{{\bf C}}_F$ is in $F$ if and only if $b=0$. If $a,b,c,d\in F$, then

\begin{displaymath}a+bi=c+di\hspace{1ex}\Longleftrightarrow\hspace{1ex}(a,b)=(c,d)\hspace{1ex}\Longleftrightarrow\hspace{1ex}a=c \mbox{ and } b=d.\end{displaymath}

4.15   Examples. I will find the square roots of $2i$ in $\mbox{{\bf C}}_{\mathbf Q}$. Let $a,b\in\mbox{{\bf Q}}$. Then

\begin{eqnarray*}
(a+bi)^2=2i&\mbox{$\Longleftrightarrow$}&a^2-b^2+2abi=2i \\
&...
...$}&(a=b \mbox{ and } ab=1) \mbox{ or } (a=-b \mbox{ and } ab=1).
\end{eqnarray*}



Now

\begin{displaymath}(a=b \mbox{ and } ab=1)\hspace{1ex}\Longleftrightarrow\hspace...
... a^2=1)\hspace{1ex}\Longleftrightarrow\hspace{1ex}a+bi=\pm(1+i)\end{displaymath}

and

\begin{displaymath}(a=-b\mbox{ and } ab=1)\mbox{$\hspace{1ex}\Longrightarrow\hsp...
...}$}-b^2=1\mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}b^2=-1\end{displaymath}

which is impossible. The only possible square roots of $2i$ are $\pm (1+i)$. You can easily verify that these are square roots of $2i$.

4.16   Example. I can solve the quadratic equation
\begin{displaymath}
z^2-4z+4-{1\over 2}i=0
\end{displaymath} (4.17)

in $\mbox{{\bf C}}_{\mathbf Q}$ by using the quadratic formula for $Az^2+Bz+C=0$. $\displaystyle {B^2-4AC=16-4\left(4-{1\over 2}i\right)=2i=(1+i)^2}$ (by the previous example). Since $B^2-4AC$ is a square, the equation has the solution set

\begin{displaymath}\left\{ {{4+(1+i)}\over 2},{{4-(1+i)}\over 2}\right\}=\left\{ {5\over 2}+{1\over
2}i,{3\over 2}-{1\over 2}i\right\}.\end{displaymath}

4.18   Exercise. Check that $\displaystyle { {5\over 2}+{1\over 2}i}$ and $\displaystyle { {3\over 2}-{1\over 2}i}$ are solutions to (4.17).

4.19   Exercise. A
a)
Write $\displaystyle { {1\over {1-2i}}}$ in the form $a+bi$ where $a,b\in\mbox{{\bf Q}}$.
b)
Find all solutions to

\begin{displaymath}(1-2i)z^2-2z+1=0\end{displaymath}

in $\mbox{{\bf C}}_{\mathbf{Q}}$. (You may want to use the result of example 4.15.) Write your solutions in the form $a+bi$ where $a,b\in\mbox{{\bf Q}}$.

4.20   Entertainment. We noted earlier that $-1$ is not a square in $\mbox{{\bf Z}}_3$, so $\mbox{{\bf Z}}_3$ has a complexification, which is a field with 9 elements. Show that if $z=1+i$, then the 9 elements in $\mbox{{\bf C}}_{\mathbf{Z}_3}$ are

\begin{displaymath}\{0,z,z^2,z^3,z^4,z^5,z^6,z^7,z^8\}.\end{displaymath}

Can you figure out before you make any calculations which of these elements is $1$?


next up previous index
Next: 4.2 Complex Conjugate. Up: 4. The Complexification of Previous: 4. The Complexification of   Index