next up previous index
Next: 3. Induction and Integers Up: 2. Fields Previous: 2.6 Ordered Fields   Index

2.7 Absolute Value

2.130   Definition (Absolute value.) Let $F$ be an ordered field, and let $x\in F$. Then we define

\begin{displaymath}\vert x\vert=\cases{x &if $x>0$,\cr 0 &if $x=0$, \cr -x &if $x<0$.\cr}\end{displaymath}

2.131   Remark. It follows immediately from the definition that
  1. $\vert x\vert \geq 0$ for all $x\in F.$
  2. $\vert x\vert >0$ for all $x\in F\backslash\{0\}$.
  3. $(\vert x\vert=0)\hspace{1ex}\Longleftrightarrow\hspace{1ex}(x=0)$.

2.132   Theorem. Let $F$ be an ordered field. Then for all $x\in F$,
\begin{displaymath}
-\vert x\vert\leq x\leq \vert x\vert.\end{displaymath} (2.133)

Proof: If $x=0$ then (2.133) becomes $-0\leq 0\leq 0$, which is true. If $x>0$ then $-\vert x\vert<0<x=\vert x\vert$. If $x<0$ then $-\vert x\vert=-(-x)=x<0\leq \vert x\vert$. Hence (2.133) holds in all cases. $\mid\!\mid\!\mid$

2.134   Exercise. Let $F$ be an ordered field. Prove that $\vert x\vert=\vert-x\vert$ for all $x\in F$ and $\vert x\vert^2=x^2$ for all $x\in F$.

2.135   Exercise (Product formula for absolute value.) A Prove that for all $x,y\in F$,

\begin{displaymath}\vert xy\vert=\vert x\vert \vert y\vert.\end{displaymath}

2.136   Theorem. Let $F$ be an ordered field, let $x\in F$, and let $p\in F$ with $p\geq 0$. Then
\begin{displaymath}
(\vert x\vert\leq p)\hspace{1ex}\Longleftrightarrow\hspace{1ex}(-p\leq x\leq p)
\end{displaymath} (2.137)

and
\begin{displaymath}
(\vert x\vert>p)\hspace{1ex}\Longleftrightarrow\hspace{1ex}\left((x<-p) \mbox{ or } (x>p)\right).
\end{displaymath} (2.138)

Proof: We first show that

\begin{displaymath}
(\vert x\vert\leq p)\mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}(-p\leq x\leq p).
\end{displaymath} (2.139)

Case 1.
If $x>0$, then

\begin{displaymath}\vert x\vert\leq p\mbox{$\hspace{1ex}\Longrightarrow\hspace{1...
...$\hspace{1ex}\Longrightarrow\hspace{1ex}$}-p\leq 0\leq x\leq p.\end{displaymath}

Case 2.
If $x<0$, then

\begin{displaymath}\vert x\vert\leq p\mbox{$\hspace{1ex}\Longrightarrow\hspace{1...
...box{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}-p\leq x<0\leq p.\end{displaymath}

Case 3.
If $x=0$, then $-p\leq x\leq p$ is true, so (2.139) is true. Hence (2.139) is valid in all cases.

Next we show that

\begin{displaymath}
(-p\leq x\leq p)\mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}(\vert x\vert\leq p).
\end{displaymath} (2.140)

Case 1.
If $x>0$, then

\begin{displaymath}-p\leq x\leq p\mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$...
...x{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}\vert x\vert\leq p.\end{displaymath}

Case 2.
If $x<0$, then

\begin{displaymath}-p\leq x\leq p\mbox{$\hspace{1ex}\Longrightarrow\hspace{1ex}$...
...x{$\hspace{1ex}\Longrightarrow\hspace{1ex}$}\vert x\vert\leq p.\end{displaymath}

Case 3.
If $x=0$ then $x\leq p$ is true, so (2.140) is true. Hence (2.140) is true in all cases.
We have proved (2.137).

Since $P\mbox{$\Longleftrightarrow$}Q$ is true if and only if $\left((\mbox{ not } P)\mbox{$\Longleftrightarrow$}(\mbox{ not }
Q)\right)$ is true,

\begin{displaymath}\mbox{ not } (\vert x\vert\leq p)\hspace{1ex}\Longleftrightar...
...1ex}\mbox{ not } \left((-p\leq x)\mbox{ and } (x\leq p)\right);\end{displaymath}

i.e.,

\begin{eqnarray*}
\vert x\vert>p &\mbox{$\Longleftrightarrow$}& \left(\mbox{ not...
... } x>p, \\
&\mbox{$\Longleftrightarrow$}& x<-p \mbox{ or } x>p.
\end{eqnarray*}



This is 2.138. $\mid\!\mid\!\mid$

2.141   Remark. I leave it to you to check that (2.137) holds when $\leq$ is replaced by $<$, and (2.138) holds when $>$ and $<$ are replaced by $\geq$ and $\leq$, respectively.

2.142   Theorem (Triangle inequality.)Let $F$ be an ordered field. Then
\begin{displaymath}
\mbox{ for all } x,y\in F,\qquad \vert x+y\vert\leq \vert x\vert+\vert y\vert.
\end{displaymath} (2.143)

Proof: The obvious way to prove this is by cases. But there are many cases to consider, e.g. ($x<0$ and $y>0$ and $x+y<0$). I will use an ingenious trick to avoid the cases. For all $x,y\in F$, we have

\begin{displaymath}-\vert x\vert\leq x\leq \vert x\vert,\end{displaymath}

and

\begin{displaymath}-\vert y\vert\leq y\leq \vert y\vert.\end{displaymath}

By adding the inequalities, we get

\begin{displaymath}-(\vert x\vert+\vert y\vert)\leq x+y\leq (\vert x\vert+\vert y\vert).\end{displaymath}

By theorem 2.136 it follows that $\vert x+y\vert\leq \vert x\vert+\vert y\vert$. $\mid\!\mid\!\mid$

2.144   Exercise. A Let $F$ be an ordered field. For each statement below, either prove the statement, or explain why it is not true.
a)
for all $x,y\in F$, $\vert x-y\vert\leq \vert x\vert+\vert y\vert$.
b)
for all $x,y\in F$, $\vert x-y\vert\leq \vert x\vert-\vert y\vert$.

2.145   Exercise (Quotient formula for absolute value.) A Let $F$ be an ordered field. Let $a,b\in F$ with $a\neq 0$. Show that
a)
$\displaystyle { \left\vert{1\over a}\right\vert={1\over {\vert a\vert}}}$,
b)
$\displaystyle { \left\vert{b\over a}\right\vert={{\vert b\vert}\over {\vert a\vert}}}$.

2.146   Definition (Distance.) Let $F$ be an ordered field, and let $a,b\in F$. We define the distance from $a$ to $b$ to be $\vert b-a\vert$.

2.147   Remark. If $F$ is the ordered field of real or rational numbers, $\vert b-a\vert$ represents the familiar notion of distance between the points $a,b$ on the real line (or the rational line).

2.148   Exercise. Let $F$ be an ordered field. Let $x,a,p\in F$ with $p\geq 0$. Show that
\begin{displaymath}
(\vert x-a\vert\leq p)\hspace{1ex}\Longleftrightarrow\hspace{1ex}(a-p\leq x\leq a+p).
\end{displaymath} (2.149)

HINT: Use theorem 2.136. Do not reprove theorem 2.136.

2.150   Remark. We can state the result of exercise 2.148 as follows. Let $a\in F$, and let $p\in F^+$. Then the set of points whose distance from $x$ is smaller than $p$, is the set of points between $a-p$ and $a+p$.


\begin{picture}(3,.8)(0,-.8)
\put(0,-.4){\line(1,0){3.0}}
\put(1.5,-.4){\circle*...
...(.9,-.6){\vector(-1,0){.4}}
\put(.95,-.6){$p$}
\put(1.95,-.6){$p$}
\end{picture}

2.151   Definition (Intervals and endpoints.) Let $F$ be an ordered field. Let $a,b\in F$ with $a\leq b$. Then we define

\begin{eqnarray*}
(a,b) &=& \{x\in F\colon a<x<b\} \\
(a,b{]} &=& \{x\in F\colo...
...\infty) &=& \{x\in F\colon x\geq a\} \\
(-\infty,\infty) &=& F.
\end{eqnarray*}



A set that is equal to a set of any of these nine types is called an interval. Note that $[a,a)=(a,a]=(a,a)=\emptyset$ and $[a,a]=\{a\}$, so the empty set is an interval and so is a set containing just one point. Sets of the first four types have endpoints $a$ and $b$, except that $(a,a)$ has no endpoints. Sets of the second four types have just one endpoint, namely $a$. The interval $(-\infty,\infty)$ has no endpoints.

2.152   Examples. Let $F$ be an ordered field. By exercise 2.148 the set of solutions to $\vert x-3\vert\leq 4$ is

\begin{displaymath}\{x\in F\colon 3-4\leq x\leq 3+4\}=\{x\in F\colon -1\leq x\leq 7\}=[-1,7].\end{displaymath}


\begin{picture}(3,.5)(0,0)
\put(0,.4){\line(1,0){3.0}}
\put(.5,.35){\line(0,1){....
...1){.1}}
\put(.4,.25){$-1$}
\put(1.45,.25){$3$}
\put(2.45,.25){$7$}
\end{picture}

I can read this result from the figure by counting 4 units to the left and right of 3. This method is just a way of remembering the result of theorem 2.148.

Now suppose I want to find the solutions in $F$ to

\begin{displaymath}
\vert x-2\vert<\vert x-5\vert
\end{displaymath} (2.153)


\begin{picture}(3,.5)(0,0)
\put(0,.4){\line(1,0){3.0}}
\put(.5,.35){\line(0,1){....
...\put(1.2,.2){${7\over 2}$}
\put(1.45,.25){$4$}
\put(1.95,.25){$5$}
\end{picture}
Here, thinking of $\vert a-b\vert$ as the distance from $a$ to $b$, I want to find all elements that are nearer to 2 than to 5. From the picture I expect the answer to be $\displaystyle {(-\infty,{7\over 2})}$. Although this picture method is totally unjustified by anything I've done, it is the method I would use to solve the inequality in practice. If I had to use results we've proved to solve (2.153), I'd say (since $\vert x-2\vert\geq 0$)

\begin{eqnarray*}
\vert x-2\vert<\vert x-5\vert &\mbox{$\Longleftrightarrow$}& \...
...2} \\
&\mbox{$\Longleftrightarrow$}& x\in (-\infty, {7\over 2})
\end{eqnarray*}



which agrees with my answer by picture.

2.154   Exercise. A Let $F$ be an ordered field, let $x,a,p\in F$ with $p>0$. Show that

\begin{displaymath}\vert x-a\vert>p\hspace{1ex}\Longleftrightarrow\hspace{1ex}x\in (-\infty,a-p)\cup (a+p,\infty).\end{displaymath}

Interpret the result geometrically on a number line.

2.155   Exercise. Let $F$ be an ordered field. Express each of the following subsets of $F$ as an interval, or a union of intervals. Sketch the sets on a number line.
a)
$A=\{x\in F \colon \vert x-3\vert<2\}$
b)
$B=\{x\in F \colon \vert x+2\vert<3\}$
c)
$C=\{x\in F \colon \vert x-1\vert>1\}$
d)
$D=\{x\in F \colon \vert x+1\vert\geq 1\}$

2.156   Note. Girolamo Cardano (1501-1576), in an attempt to make sense of the square root of a negative number, proposed an alternate law of signs in which the product of two numbers is negative if at least one factor is negative. He concluded that ``plus divided by plus gives plus'', and ``minus divided by plus gives minus'', but ``plus divided by minus gives nothing'' (i.e. zero), since both of the assertions ``plus divided by minus gives plus'' and ``plus divided by minus gives minus'' are contradictory.[40, p 25]


I believe that our axioms for an ordered field are due to Artin and Schreier in 1926 [6, page 259].


Systems satisfying various combinations of algebraic and order axioms were considered by Huntington [28] in 1903.


The notation $\vert x\vert$ for absolute value was introduced by Weierstrass in 1841[15, vol.2, page 123]. It was first introduced for complex numbers rather than real numbers.


next up previous index
Next: 3. Induction and Integers Up: 2. Fields Previous: 2.6 Ordered Fields   Index