next up previous
Next: Order Laws Up: C. Prerequisites Previous: C. Prerequisites

Algebraic Laws

Commutative laws for addition and multiplication: If $a$ and $b$ are arbitrary real numbers then
$\displaystyle a+b$ $\textstyle =$ $\displaystyle b+a,$ (C.1)
$\displaystyle ab$ $\textstyle =$ $\displaystyle ba.$ (C.2)

Associative laws for addition and multiplication: If $a,b,$ and $c$ are arbitrary real numbers then

$\displaystyle (a + b) + c$ $\textstyle =$ $\displaystyle a + (b + c),$ (C.3)
$\displaystyle (ab)c$ $\textstyle =$ $\displaystyle a(bc).$ (C.4)

As a consequence of equations C.3 and C.4 we usually omit the parentheses in triple sums or products, and write $a+b+c$ or $abc.$ We know that all meaningful ways of inserting parentheses yield the same result.


Distributive laws: If $a,b$ and $c$ are arbitrary real numbers, and $d$ is an arbitrary non-zero real number then

$\displaystyle c(a + b)$ $\textstyle =$ $\displaystyle ca + cb,$ (C.5)
$\displaystyle c(a - b)$ $\textstyle =$ $\displaystyle ca - cb,$ (C.6)
$\displaystyle (a + b)c$ $\textstyle =$ $\displaystyle ac + bc,$ (C.7)
$\displaystyle (a - b)c$ $\textstyle =$ $\displaystyle ac - bc,$ (C.8)
$\displaystyle (a + b)/d$ $\textstyle =$ $\displaystyle a/d + b/d ,$ (C.9)
$\displaystyle (a-b )/d$ $\textstyle =$ $\displaystyle a/d - b/d.$ (C.10)

Properties of zero and one: The rational numbers $0$ and $1$, have the property that for all real numbers $a$

$\displaystyle a + 0$ $\textstyle =$ $\displaystyle a,$ (C.11)
$\displaystyle 0 + a$ $\textstyle =$ $\displaystyle a,$ (C.12)
$\displaystyle a \cdot 1$ $\textstyle =$ $\displaystyle a,$ (C.13)
$\displaystyle 1 \cdot a$ $\textstyle =$ $\displaystyle a,$ (C.14)
$\displaystyle 0 \cdot a$ $\textstyle =$ $\displaystyle 0,$ (C.15)
$\displaystyle a \cdot 0$ $\textstyle =$ $\displaystyle 0.$ (C.16)

Moreover
\begin{displaymath}
0 \not= 1,
\end{displaymath} (C.17)

and
\begin{displaymath}
\mbox{ if }\ ab = 0 \mbox{ then }\ a = 0 \mbox{ or }\ b=0 \mbox{ (or both)}.
\end{displaymath} (C.18)

Additive and multiplicative inverses: For each real number $a$ there is a real number $-a$ (called the additive inverse of $a$ ) and for each non-zero real number $b$ there is a real number $b^{-1}$ (called the multiplicative inverse of $b$) such that

$\displaystyle a + (-a)$ $\textstyle =$ $\displaystyle 0,$ (C.19)
$\displaystyle (-a) + a$ $\textstyle =$ $\displaystyle 0,$ (C.20)
$\displaystyle b \cdot b^{-1}$ $\textstyle =$ $\displaystyle 1,$ (C.21)
$\displaystyle b^{-1} \cdot b$ $\textstyle =$ $\displaystyle 1,$ (C.22)
$\displaystyle -0$ $\textstyle =$ $\displaystyle 0,$ (C.23)
$\displaystyle 1^{-1}$ $\textstyle =$ $\displaystyle 1.$ (C.24)

Moreover for all real numbers $a,c$ and all non-zero real numbers $b$
$\displaystyle -(-a)$ $\textstyle =$ $\displaystyle a,$ (C.25)
$\displaystyle a - c$ $\textstyle =$ $\displaystyle a + (-c),$ (C.26)
$\displaystyle a/b$ $\textstyle =$ $\displaystyle a \cdot b^{-1},$ (C.27)
$\displaystyle b^{-1}$ $\textstyle =$ $\displaystyle 1/b ,$ (C.28)
$\displaystyle (ab)^{-1}$ $\textstyle =$ $\displaystyle a^{-1}b^{-1}$ (C.29)
$\displaystyle -a$ $\textstyle =$ $\displaystyle (-1) \cdot a,$ (C.30)
$\displaystyle (b^{-1})^{-1}$ $\textstyle =$ $\displaystyle b,$ (C.31)
$\displaystyle (-a)(-c)$ $\textstyle =$ $\displaystyle ac,$ (C.32)
$\displaystyle (-a)c$ $\textstyle =$ $\displaystyle a(-c) = -(ac),$ (C.33)
$\displaystyle -(\frac{a}{b} )$ $\textstyle =$ $\displaystyle \frac{-a}{b} = \frac{a}{-b}.$ (C.34)

Note that by equation C.33, the expression $-xy$ without parentheses is unambiguous, i.e. no matter how parentheses are put in the result remains the same.

Cancellation laws: Let $a,b,c$ be real numbers. Then

$\displaystyle \mbox{if } a+b = a+c,$ $\textstyle \mbox{ then }\ $ $\displaystyle b = c.$ (C.35)
$\displaystyle \mbox{if } b+a = c+a,$ $\textstyle \mbox{ then }\ $ $\displaystyle b = c.$ (C.36)
$\displaystyle \mbox{if } ab = ac \mbox{ and $a \not= 0$}$ $\textstyle \mbox{ then }\ $ $\displaystyle b = c.$ (C.37)
$\displaystyle \mbox{if } ba = ca \mbox{ and $a \not= 0$}$ $\textstyle \mbox{ then }\ $ $\displaystyle b = c.$ (C.38)

Some miscellaneous identities: For all real numbers $a,b,c,d,x$

$\displaystyle a^2 - b^2$ $\textstyle =$ $\displaystyle (a-b)(a+b),$ (C.39)
$\displaystyle (a + b)^2$ $\textstyle =$ $\displaystyle a^2 + 2ab + b^2,$ (C.40)
$\displaystyle (a - b)^2$ $\textstyle =$ $\displaystyle a^2 - 2ab + b^2,$ (C.41)
$\displaystyle (x + a)(x+b)$ $\textstyle =$ $\displaystyle x^2 +(a+b)x + ab,$ (C.42)
$\displaystyle (a+b)(c+d)$ $\textstyle =$ $\displaystyle ac + ad + bc + db.$ (C.43)

Moreover, if $b \not= 0$ and $d \not= 0$ then
$\displaystyle \frac{a}{b} \cdot \frac{c}{d}$ $\textstyle =$ $\displaystyle \frac{ac}{bd}.$ (C.44)
$\displaystyle \frac{a}{b} + \frac{c}{d}$ $\textstyle =$ $\displaystyle \frac{ad+bc}{bd}.$ (C.45)
$\displaystyle \frac{a}{b} - \frac{c}{d}$ $\textstyle =$ $\displaystyle \frac{ad-bc}{bd}.$ (C.46)

If $w,x,y,z$ are real numbers, then
\begin{displaymath}
w-x-y+z+y \mbox{ means } w+((-x) + ((-y) + (z+y)))
\end{displaymath} (C.47)

i.e. the terms of the sum are associated from right to left. It is in fact true that all meaningful ways of introducing parentheses into a long sum yield the same result, and we will assume this. I will often make statements like
\begin{displaymath}
w-x-y+z+y = w+z-x
\end{displaymath} (C.48)

without explanation. Equation C.48 can be proved from our assumptions, as is shown below, but we will usually take such results for granted.

Proof of equation C.48. Let $w,x,y,z$ be real numbers. Then

$\displaystyle w-x-y+z+y$ $\textstyle =$ % latex2html id marker 2420
$\displaystyle w +( (-x) + ((-y)+(z+y))) \mbox{ by \ref{lrassoc}}$  
  $\textstyle =$ % latex2html id marker 2422
$\displaystyle w + ( (-x) + ((-y)+(y + z))) \mbox{ by \ref{comlaw}}$  
  $\textstyle =$ % latex2html id marker 2424
$\displaystyle w + ( (-x) + (( (-y) + y)+ z)) \mbox{ by \ref{ass1}}$  
  $\textstyle =$ % latex2html id marker 2426
$\displaystyle w + ( (-x) + ( 0 + z))\mbox{ by \ref{mapa2}}$  
  $\textstyle =$ % latex2html id marker 2428
$\displaystyle w + ( (-x) + z) \mbox{ by \ref{zprop}}$  
  $\textstyle =$ % latex2html id marker 2430
$\displaystyle w + ( z + (-x)) \mbox{ by \ref{comlaw}}$  
  $\textstyle =$ % latex2html id marker 2432
$\displaystyle w + z - x \mbox{ by \ref{lrassoc}}.$  


next up previous
Next: Order Laws Up: C.1 Prerequisites Previous: C.1 Prerequisites
Ray Mayer 2007-08-31