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1. What is the partition algebra?

These are notes from a talk I gave in Melbourne for a group of undergraduates, Nov. 20, 2014. In
particular, there are examples of how to use TikZ for graphs.

1.1. Graphs and equivalence relations. A graph is a set of (labeled) vertices with adjacency
relations indicated by edges. For example, one graph on 7 vertices is

(1)

1 2

3 4

5

6

7

.

An equivalence relation is a binary relation ∼ on a set X that is

reflexive, (x ∼ x)
symmetric, and (x ∼ y implies y ∼ x)
transitive. (x ∼ y and y ∼ z implies x ∼ z)

An equivalence class is a maximal set of pairwise equivalent elements. Given an equivalence relation
on a set X, the equivalence classes partition the set X (meaning that every element of X is in exactly
one class).

Example 1.1. Let V be the set of vertices of a graph G. Then for u, v ∈ V ,

u ∼ v if and only if there is a walk along edges from u to v

is an equivalence relation on V . The equivalence classes are the sets of vertices in the same con-
nected components.

For example, in the graph (1), V = {1, 2, 3, 4, 5, 6, 7} and the equivalence classes are {1, 2, 3, 4},
{5, 7}, and {6}.
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Example 1.2. Let G be the set of graphs with vertices V . Then for G,H ∈ G,

G ∼ H if and only if G and H have the same connected components

is an equivalence relation on G. The equivalence classes are indexed by set partitions of V .
For example, in the graph (1) is equivalent to

1 2

3 4

5

6

7

, but not to

1 2

3 4

5

6

7

.

1.2. Diagrams and their compositions. Define a (k-)diagram as an equivalence class of graphs
on vertices Vk = {1, 2, . . . , k,−1,−2, . . . ,−k}. For example, if k = 5,

1

1′

2

2′

3

3′

4

4′

5

5′

=

1

1′

2

2′

3

3′

4

4′

5

5′

is the 5-diagram indexed by the partition
{1, 2′}, {2, 1′, 3′}, {3}, {4, 5}, {4′, 5′}.

Let Dk = {k-diagrams}.
Define a multiplication

◦ : Dk ×Dk → Dk

(d1, d2) 7→ d1 ◦ d2
by “stack d1 on top of d2 and resolve connections.”

Example 1.3. For example, let k = 3, and let

d1 =

1

1′

2

2′

3

3′

, d2 =

1

1′

2

2′

3

3′

, and d3 =

1

1′

2

2′

3

3′

.

Then

d1 ◦ d2 =

1

1′

2

2′

3

3′

=

1

1′

2

2′

3

3′

and d1 ◦ d3 =

1

1′

2

2′

3

3′

=

1

1′

2

2′

3

3′

.

Things we might hope for in a multiplication:

(1) Well-defined?
(Is the multiplication independent of the choice of graph representing the diagram? Yes:
Check using equivalence relation features.)

(2) Associative?
(Is d1 ◦ (d2 ◦ d3) = (d1 ◦ d2) ◦ d3? Yes: Draw some pictures, and use transitivity.)

(3) Commutative?
(No: Draw some pictures and decide)
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(4) Identity?
(Yes: what is it?)

(5) Inverses?
(No: draw some pictures.)

1.3. The partition algebra. Let n(d1, d2) be the number of connected components lost after
resolving d1 on top of d2 down to d1 ◦ d2. For example, with d1, d2, d3 as in Example 1.3,

n(d1, d2) = 0 and n(d1, d3) = 1.

Let CDk be the vector space with basis Dk. For example, there are two 1-diagrams, so CD1
∼= C2.

Fix x ∈ C. Define another multiplication, this time using n, by

· : Dk ×Dk → CDk

(d1, d2) 7→ xn(d1,d2)d1 ◦ d2,(2)

and extend linearly to CDk (i.e. use distributivity and linear scaling). For example, with d1, d2, d3
as in Example 1.3,

d1 · d2 = x0(d1 ◦ d2) =

1

1′

2

2′

3

3′

and d1 · d3 = x1(d1 ◦ d3) = x

1

1′

2

2′

3

3′

.

Exercise 1.4. Show3

1

1′

2

2′

+
√

2

1

1′

2

2′

·
π

1

1′

2

2′

− 5

1

1′

2

2′

 = π
√
−2

1

1′

2

2′

+
(
3πx2 − 15x− 5

√
−2
) 1

1′

2

2′

.

An algebra is a vector space equipped with a multiplication. The partition algebra is

Pk(x) = CDk with the multiplication in (2).
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2. Combinatorial representation theory: the symmetric group

This section is taken from some notes I made for a graduate course on combinatorial representation
theory. You can see examples of how to do partitions, and how to make new commands.

Combinatorial representation theory is the study of representations of algebraic objects, using
combinatorics to keep track of the relevant information. To see what I mean, let’s take a look at
the symmetric group.

2.1. The symmetric group. Let F be your favorite field of characteristic 0. Recall that an
algebra A over F is a vector space over F with an associative multiplication

A⊗A→ A

Here, the tensor product is over F , and just means that the multiplication is bilinear. Our favorite
examples for a while will be

(1) Group algebras (today)
(2) Enveloping algebras of Lie algebras (later)

And our favorite field is F = C.
The symmetric group Sk is the group of permutations of {1, . . . , k}. The group algebra CSk is

the vector space

CSk =

∑
σ∈Sk

cσσ | cσ ∈ C


with multiplication linear and associative by definition:∑

σ∈Sk

cσσ

∑
π∈Sk

dππ

 =
∑
σ,π∈G

(cσdπ)(σπ).

Example 2.1. When k = 3,

S3 = {1, (12), (23), (123), (132), (13)} = 〈s1 = (12), s2 = (23) | s21 = s22 = 1, s1s2s1 = s2s1s2〉.
So

CS3 = {c1 + c2(12) + c3(23) + c4(123) + c5(132) + c6(13) | ci ∈ C}
and, for example,

(2 + (12))(5(123)− (23)) = 10(123)− 2(23) + 5(12)(123)− (12)(23)

= 10(123)− 2(23) + 5(23)− (123) = 3(23) + 9(123) .

2.2. Some representations. A homomorphism is a structure-preserving map. A representation
of an F -algebra A is a vector space V over F , together with a homomorphism

ρ : A→ End(V ) = { F -linear maps V → V }.
The map (equipped with the vector space) is the representation; the vector space (equipped with
the map) is called an A-module.

Example 2.2. Favorite representation of Sn is the permutation representation: Let V = Ck =
C{v1, . . . , vk}. Define

ρ : Sk → GLk(C) by ρ(σ)vi = vσ(i)
k = 2:
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1 7→
(

1 0
0 1

)
(12) 7→

(
0 1
1 0

)

ρ(CS2) =

{(
a b
b a

) ∣∣ a, b ∈ C
}
⊂ End(C2)

k = 3:

1 7→

1 0 0
0 1 0
0 0 1

 (12) 7→

0 1 0
1 0 0
0 0 1

 (23) 7→

1 0 0
0 0 1
0 1 0



(123) 7→

0 0 1
1 0 0
0 1 0

 (132) 7→

0 1 0
0 0 1
1 0 0

 (13) 7→

0 0 1
0 1 0
1 0 0



ρ(CS3) =


a+ c b+ e d+ f
b+ d a+ f c+ e
e+ f c+ d a+ b

 ∣∣∣ a, b, c, d, e, f ∈ C

 ⊂ End(C3)

A representation/module V is simple or irreducible if V has no invariant subspaces.

Example 2.3. The permutation representation is not simple since v1 + · · · + vk = (1, . . . , 1) is
invariant, and so T = C{(1, . . . , 1)} is a submodule (called the trivial representation). However, the
trivial representation is one-dimensional, and so is clearly simple. Also, the orthogonal compliment
of T , given by

S = C{v2 − v1, v3 − v1, . . . , vk − v1}

is also simple (called the standard representation). So V decomposes as

(3) V = T ⊕ S

by the change of basis

{v1, . . . , vk} → {v, w2, . . . , wk} where v = v1 + · · ·+ vk and wi = vi − v1.

New representation looks like

ρ(σ)v = v, ρ(σ)wi = wσ(i) − wσ(1) where w1 = 0.

For example, when k = 3,

1 7→

 1 0 0

0 1 0

0 0 1

 (12) 7→

 1 0 0

0 −1−1

0 0 1

 (23) 7→

 1 0 0

0 0 1

0 1 0



(123) 7→

 1 0 0

0 −1−1

0 1 0

 (132) 7→

 1 0 0

0 0 1

0 −1−1

 (13) 7→

 1 0 0

0 1 0

0 −1−1
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Notice, the vector space End(C2) is four-dimensional, and the four matrices

ρS(1) =

(
1 0

0 1

)
, ρS((12)) =

(
−1−1

0 1

)
,

ρS((23)) =

(
0 1

1 0

)
, and ρS((132)) =

(
0 1

−1−1

)
are linearly independent, so ρS(CS3) = End(C2), and so (at least for k = 3) S is also simple! So
the decomposition in (3) is complete.

An algebra is semisimple if all of its modules decompose into the sum of simple modules.

Example 2.4. The group algebra of a group G over a field F is semisimple iff char(F ) does not
divide |G|. So group algebras over C are all semisimple.

We like semisimple algebras because they are isomorphic to a direct sum over their simple
modules of the ring of endomorphisms of those module (Artin-Wedderburn theorem).

A ∼=
⊕
V ∈Â

End(V )

where Â is the set of representative of A-modules. So studying a semisimple algebra is “the same”
as studying its simple modules.

2.3. How combinatorics fits in.

Theorem 2.5. For a finite group G, the irreducible representations of G are in bijection with its
conjugacy classes.
Proof.

(A) Show
(1) the class sums of G, given by{∑

h∈K
h | K is a conjugacy class of G

}
form a basis for Z(FG);
Example: G = S3. The class sums are

1, (12) + (23) + (13), and (123) + (132)

(2) and dim(Z(FG)) = |Ĝ| where Ĝ is an indexing set of the irreducible representations of G.
(B) Use character theory. A character χ of a group G corresponding to a representation ρ is a

linear map
χρ : G→ C defined by χρ : g → tr(ρ(g)).

Nice facts about characters:
(1) They’re class functions since

χρ(hgh
−1) = tr(ρ(hgh−1)) = tr(ρ(h)ρ(g)ρ(h)−1) = tr(ρ(g)) = χρ(g).

Example: The character associated to the trivial representation of any group G is χ1 = 1.

Example: Let χ be the character associate to the standard representation of S3. Then

χ(1) = 2, χ((12)) = χ((23)) = χ((13)) = 0, χ((123)) = χ(132) = −1.
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(2) They satisfy nice relations like

χρ⊕ψ = χρ + χψ

χρ⊗ψ = χρχψ

(3) The characters associated to the irreducible representations form an orthonormal basis for
the class functions on G. (This gives the bijection)

Studying the representation theory of a group is “the same” as studying the character theory
of that group.

This is not a particularly satisfying bijection, either way. It doesn’t say “given representation
X, here’s conjugacy class Y , and vice versa.” �

Conjugacy classes of the symmetric group are given by cycle type. For example the conjugacy
classes of S4 are

{1} = {(a)(b)(c)(d)}
{(12), (13), (14), (23), (24), (34)} = {(ab)(c)(d)}
{(12)(34), (13)(24), (14)(23)} = {(ab)(cd)}
{(123), (124), (132), (134), (142), (143), (234), (243)} = {(abc)(d)}
{(1234), (1243), (1324), (1342), (1423), (1432)} = {(abcd)}.

Cycle types of permutations of k are in bijection with partitions λ ` k:

λ = (λ1, λ2, . . . ) with λ1 ≥ λ2 ≥ . . . , λi ∈ Z≥0, λ1 + λ2 + · · · = k.

The cycle types and their corresponding partitions of 4 are

(a)(b)(c)(d) (ab)(c)(d) (ab)(cd) (abc)(d) (abcd)

(1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

where the picture is an up-left justified arrangement of boxes with λi boxes in the ith row.
The combinatorics goes way deep! Young’s Lattice is an infinite leveled labeled graph with

vertices and edges as follows.

Vertices: Label vertices in label vertices on level k with partitions of k.
Edges: Draw and edge from a partition of k to a partition of k + 1 if they differ by a box.

See Figure 1.

Some combinatorial facts: (without proof)

(1) The representations of Sk are indexed by the partitions on level k.
(2) The basis for the module corresponding to a partition λ is indexed by downward-moving paths

from ∅ to λ.
(3) The representation is encoded combinatorially as well. Define the content of a box b in row i

and column j of a partition as

c(b) = j − i, the diagonal number of b.
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Figure 1. Young’s lattice, levels 0–5.

Ŝ0:

Ŝ1:

Ŝ2:

Ŝ3:

Ŝ4:

Ŝ5:

0

1 -1

2 -1 1 -2

3 -1 2 0 -2 1 -3

4 -1 3 0

-2 2 -2 2

0 -3 1 -4

∅

Label each edge in the diagram by the content of the box added. The matrix entries for the
transposition (i i+ 1) are functions of the values on the edges between levels i− 1, i, and i+ 1.

(4) If Sλ is the module indexed by λ, then

Ind
Sk+1

Sk
(Sλ) =

⊕
µ`k+1
λ−µ

Sµ and ResSkSk−1
(Sλ) =

⊕
µ`k−1
µ−λ

Sµ

(where ResSkSk−1
(Sλ) means forget the action of elements not in Sk−1, and Ind

Sk+1

Sk
(Sλ) =

CSk1 ⊗CSk S
λ).
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