Classification of 2 dimensional first order homogeneous linear systems
To solve i
y

A

dt y?
first find eigenvalues Aj, A2 (sometimes A\; = \y), and then find the associated v and vy (sometimes
if Ay = A2, then might only be one dimension worth of them). For each of the cases below, sketch
an example and classify the equilibrium solution. I've done an example for you.
Case 1: There are two distinct eigenvalues, A1 # As.
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Comp.lex eigenvalues A\ =a+ib and Ay =a —ib
Solve just for vi. Then use e = cos(f) + isin(f) to get your real solutions.
a+if

Every time, if vi = (7 +is

), your calculation should look like:

My = ety = e (cos(bt) + i sin(bt)) <:;0)
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So the general solution is y = e™(ciu; + cous),

where u; = cos(bt) <j> _ sin(bt) (?) and  uy = sin(bt) (?Y‘) + cos(bt) <§>
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Case 2: There is one repeated eigenvalue A = A\ = .
If we still get two eigenvectors, then the general solution still looks like y = ¢jeMvy + coeMva, but
since the e factors out of both terms, we get, simply
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If there’s only one eigenvector v, though, we change out strategy, and get

y = eM(vg + tvi), where v is free and vi = (A — AI)vy = cv.
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