Classification of 2 dimensional first order homogeneous linear systems

To solve

$$
\frac{d \mathbf{y}}{d t}=A \mathbf{y}
$$

first find eigenvalues λ_{1}, λ_{2} (sometimes $\lambda_{1}=\lambda_{2}$), and then find the associated \mathbf{v}_{1} and \mathbf{v}_{2} (sometimes if $\lambda_{1}=\lambda_{2}$, then might only be one dimension worth of them). For each of the cases below, sketch an example and classify the equilibrium solution. I've done an example for you.
Case 1: There are two distinct eigenvalues, $\lambda_{1} \neq \lambda_{2}$.

Real eigenvalues

The equilibrium solution (0,0) The equilibrium solution (0,0) The equilibrium solution (0,0)
is a \qquad source! is a \qquad is a \qquad

The equilibrium solutions are
(equations)
and they are all \qquad

The equilibrium solutions are
$\overline{(\text { equations })}$ and they are all \qquad (classification)

Complex eigenvalues $\lambda_{1}=a+i b$ and $\lambda_{2}=a-i b$
Solve just for \mathbf{v}_{1}. Then use $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ to get your real solutions.
Every time, if $\mathbf{v}_{1}=\binom{\alpha+i \beta}{\gamma+i \delta}$, your calculation should look like:

$$
\begin{aligned}
e^{\lambda t} \mathbf{v}_{1} & =e^{a t+i b t} \mathbf{v}_{1}=e^{a t}(\cos (b t)+i \sin (b t))\binom{x_{0}}{y_{0}} \\
& =e^{a t}\binom{\alpha \cos (b t)+i \alpha \sin (b t)+i \beta \cos (b t)+i^{2} \beta \sin (b t)}{\gamma \cos (b t)+i \gamma \sin (b t)+i \delta \cos (b t)+i^{2} \delta \sin (b t)} \\
& =e^{a t}\left(\binom{\alpha \cos (b t)-\beta \sin (b t)}{\gamma \cos (b t)-\delta \sin (b t)}+i\binom{\alpha \sin (b t)+\beta \cos (b t)}{\gamma \sin (b t)+\delta \cos (b t)}\right)
\end{aligned}
$$

So the general solution is $y=e^{a t}\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}\right)$,

$$
\text { where } \mathbf{u}_{1}=\underbrace{\cos (b t)\binom{\alpha}{\gamma}-\sin (b t)\binom{\beta}{\delta}}_{\begin{array}{c}
\text { periodic } \\
\text { parametric curve }
\end{array}} \quad \text { and } \quad \mathbf{u}_{2}=\underbrace{\sin (b t)\binom{\alpha}{\gamma}+\cos (b t)\binom{\beta}{\delta}}_{\begin{array}{c}
\text { periodic } \\
\text { parametric curve }
\end{array}}
$$

The equilibrium solution $(0,0)$ is a \qquad is a \qquad is a \qquad
The equilibrium solution (0,0)

Case 2: There is one repeated eigenvalue $\lambda=\lambda_{1}=\lambda_{2}$.
If we still get two eigenvectors, then the general solution still looks like $\mathbf{y}=c_{1} e^{\lambda t} \mathbf{v}_{1}+c_{2} e^{\lambda t} \mathbf{v}_{2}$, but since the $e^{\lambda t}$ factors out of both terms, we get, simply

$$
\mathbf{y}=e^{\lambda t}\binom{x_{0}}{y_{0}}
$$

$\lambda>0$
has two linearly independent
eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}

The equilibrium solution $(0,0)$ is a \qquad

The equilibrium solution $(0,0)$ is a \qquad

The equilibrium solutions are \qquad

If there's only one eigenvector \mathbf{v}, though, we change out strategy, and get

$$
\mathbf{y}=e^{\lambda t}\left(\mathbf{v}_{0}+t \mathbf{v}_{1}\right), \quad \text { where } \mathbf{v}_{0} \text { is free and } \mathbf{v}_{1}=(A-\lambda I) \mathbf{v}_{0}=c \mathbf{v}
$$

$\lambda>0$
has one linearly independent
eigenvector \mathbf{v}

$\lambda=0$
has one linearly independent
eigenvector \mathbf{v}

The equilibrium solution $(0,0)$ is a \qquad

The equilibrium solution (0,0) is a \qquad

The equilibrium solutions
are \qquad

