
Classification of 2 dimensional first order homogeneous linear systems

To solve

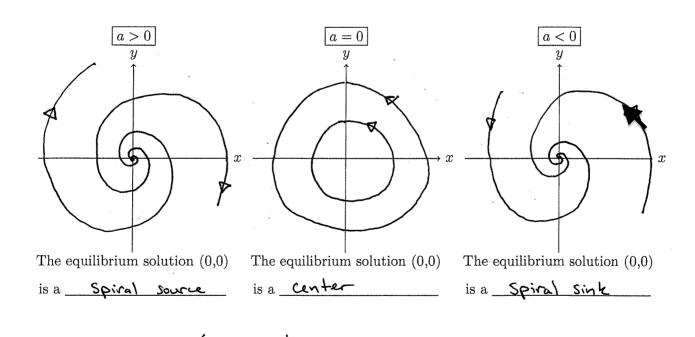
$$\frac{d\mathbf{y}}{dt} = A\mathbf{y},$$

first find eigenvalues λ_1, λ_2 (sometimes $\lambda_1 = \lambda_2$), and then find the associated \mathbf{v}_1 and \mathbf{v}_2 (sometimes if $\lambda_1 = \lambda_2$, then might only be one dimension worth of them). For each of the cases below, sketch an example and classify the equilibrium solution. I've done an example for you.

Case 1: There are two distinct eigenvalues, $\lambda_1 \neq \lambda_2$.

Complex eigenvalues $\lambda_1 = a + ib$ and $\lambda_2 = a - ib$ Solve just for \mathbf{v}_1 . Then use $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ to get your real solutions.

Every time, if $\mathbf{v}_1 = \begin{pmatrix} \alpha + i\beta \\ \gamma + i\delta \end{pmatrix}$, your calculation should look like:


$$e^{\lambda t} \mathbf{v}_{1} = e^{at + ibt} \mathbf{v}_{1} = e^{at} (\cos(bt) + i\sin(bt)) \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix}$$

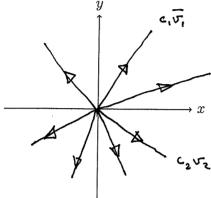
$$= e^{at} \begin{pmatrix} \alpha \cos(bt) + i\alpha \sin(bt) + i\beta \cos(bt) + i^{2}\beta \sin(bt) \\ \gamma \cos(bt) + i\gamma \sin(bt) + i\delta \cos(bt) + i^{2}\delta \sin(bt) \end{pmatrix}$$

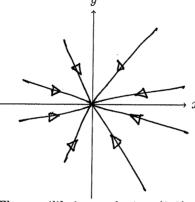
$$= e^{at} \begin{pmatrix} \alpha \cos(bt) - \beta \sin(bt) \\ \gamma \cos(bt) - \delta \sin(bt) \end{pmatrix} + i \begin{pmatrix} \alpha \sin(bt) + \beta \cos(bt) \\ \gamma \sin(bt) + \delta \cos(bt) \end{pmatrix}$$

So the general solution is $y = e^{at}(c_1\mathbf{u}_1 + c_2\mathbf{u}_2)$,

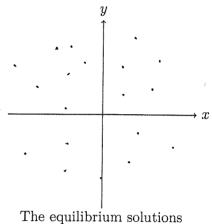
where
$$\mathbf{u}_1 = \underbrace{\cos(bt) \begin{pmatrix} \alpha \\ \gamma \end{pmatrix} - \sin(bt) \begin{pmatrix} \beta \\ \delta \end{pmatrix}}_{\text{periodic}}$$
 and $\mathbf{u}_2 = \underbrace{\sin(bt) \begin{pmatrix} \alpha \\ \gamma \end{pmatrix} + \cos(bt) \begin{pmatrix} \beta \\ \delta \end{pmatrix}}_{\text{periodic}}$

Case 2: There is one repeated eigenvalue $\lambda = \lambda_1 = \lambda_2$.


If we still get two eigenvectors, then the general solution still looks like $\mathbf{y} = c_1 e^{\lambda t} \mathbf{v}_1 + c_2 e^{\lambda t} \mathbf{v}_2$, but since the $e^{\lambda t}$ factors out of both terms, we get, simply


$$\mathbf{y} = e^{\lambda t} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}.$$

 $\lambda > 0$ has two linearly independent eigenvectors v_1 and v_2


 $\lambda < 0$ has two linearly independent eigenvectors v_1 and v_2

 $\lambda = 0$ has two linearly independent eigenvectors v_1 and v_2

The equilibrium solution (0,0)

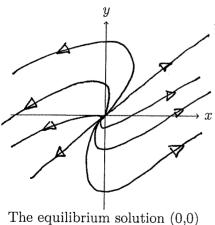
are all plo on x-y plane

The equilibrium solution (0,0)

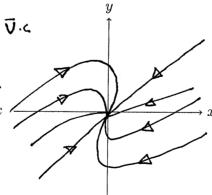
is a _ Source

is a Smk

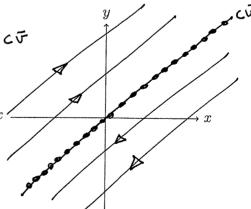
If there's only one eigenvector \mathbf{v} , though, we change out strategy, and get


$$\mathbf{y} = e^{\lambda t}(\mathbf{v}_0 + t\mathbf{v}_1),$$

where \mathbf{v}_0 is free and $\mathbf{v}_1 = (A - \lambda I)\mathbf{v}_0 = c\mathbf{v}$.


 $\lambda > 0$ has one linearly independent eigenvector v

 $\lambda < 0$ has one linearly independent eigenvector \mathbf{v}


 $\lambda = 0$ has one linearly independent eigenvector v

is a Sorce

The equilibrium solution (0,0)is a ____Sink

The equilibrium solutions

are all pls on co

(Can spiral course)

(top goes op direction from bottom)