Classification of 2 dimensional first order homogeneous linear systems

To solve y
Y
A
dt Y
first find eigenvalues A1, Ay (sometimes A; = )\;), and then find the associated v and vy (sometimes
it A1 = Ag, then might only be one dimension worth of them). For each of the cases below, sketch
an example and classify the equilibrium solution. I've done an example for you.

Case 1: There are two distinct eigenvalues, A; # \,.
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Complex eigenvalues \; = a+ib and Ay =a —ib
Solve just for vi. Then use ¥ = cos() + isin(f) to get your real solutions.
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Every time, if vi = <7 s

), your calculation should look like:
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So the general solution is y = e*(ciuy + cauy),

where u; = cos(bt) <:> ~ sin(bt) <§> and  uy = sin(bt) <:> + cos(bt) (g)
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Case 2: There is one repeated eigenvalue A = \; = \,.
If we still get two eigenvectors, then the general solution still looks like y = creMvy + coeMvy, but
since the e factors out of both terms, we get, simply
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If there’s only one eigenvector v, though, we change out strategy, and get

y = e’\t(vo +tvy), where vq is free and v = (A — Al)vg = cv.
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