Math A68 - Quiz 3 - Tuesday 11/17/15
SOLUTIONS
Instructions: justify your answers where appropriate. Leave numerical answers unsimplified.

1. Give two permutation patterns of length 4 in the permutation $w=7213564$.

Solution: $\underline{7213564: ~ 4213, ~} \quad \underline{213564:} 4213, \quad \underline{7213564}: 4123, \quad 7213564: 1342, \ldots$
2. Give the dot diagram and the permutation matrix for the permutation $w=1423$.

Solution:

3. Explain why there exist no graphs, simple or otherwise, with degree sequence $4,4,3,1,1,0,0$.

Solution: By the handshake lemma, every graph has an even number of odd-degree vertices, but this sequence has an odd number of odd values.
4. Explain why, for a graph with at least three vertices, if every pair of vertices is contained in a common cycle, then the graph has vertex connectivity at least 2 .

Solution: Let $u, v \in V$. Since $u$ and $v$ are contained in a common cycle, there are two internally disjoint paths $P_{1}$ and $P_{2}$ between them. So $G$ is connected. Moreover, for any third vertex $w \in V$, either $w$ is in $P_{1}$ or $P_{2}$ or neither, but not both, so $u$ and $v$ are also connected in $G-w$. So $\kappa(G) \geq 2$.
5. Consider

(a) Give an example of a maximal length path in $G$.

Solution: For example, $d, b, a, c, e$.
(b) What is the edge connectivity number $\lambda(G)$ ?

Solution: Since there are no cut-edges, but $\{a b, c e\}$ is an edge-cut, $\lambda(G)=2$.
(c) Is $G$ bipartite? Either show that it is or explain why it's not.

Solution: No, because it contains the odd cycle $b, d, e, b$.
(d) Give an example of a spanning tree for $G$.

Solution:

(e) Give an example of a graph which has the same degree sequence as $G$ but is not isomorphic to $G$.
Solution:


Both have the degree sequence $3,3,2,2,2$.

