Exam \#1 Math A68 - Daugherty

October 20, 2015

Name (Print): \qquad

$$
\text { First } \quad \text { Last }
$$

Instructions: You are not allowed to use calculators, books, or notes of any kind in aid of completing this exam. Justify/explain all of your answers; answers without justification will not receive full credit. If you are asked to explain, use words. If you need more space, there is an extra page at the end; if you need even more, please ask for additional paper. If you get stuck, you may ask for hints, put you may lose points; if you need an answer to an earlier part to finish a problem, but are unable to complete that earlier part, I can provide you with the answer for the price of those points. Feel free to leave answers unsimplified when appropriate, e.g. $2 * 3$! or $\binom{3}{1,1,1}$.

Please sign indicating you have read these instructions.

Signature: \qquad

Problem \#	Out of	Score
$\mathbf{1}$	12	
$\mathbf{2}$	13	
$\mathbf{3}$	27	
$\mathbf{4}$	13	
$\mathbf{5}$	10	
$\mathbf{6}$	10	
$\mathbf{7}$	15	
total	100	

1. (a) How many subsets of [6] contain at least one even integer?
(b) How many ways can you choose 6 bagels to buy from a bakery that stocks plain, raisin, and onion?
(c) How many ways can you deal out a 52 -card deck so that each person gets exactly 13 cards?
(d) How many ways are there to walk to the point $(7,2,5,1)$ from the origin $(0,0,0,0)$ if you are allowed to take elementary unit steps (i.e. steps in the direction $e_{1}=(1,0,0,0), e_{2}=$ $(0,1,0,0), e_{3}=(0,0,1,0)$, and $\left.e_{4}=(0,0,0,1)\right)$?
2. Let $w=52134$.
(a) Write w in standard cycle notation.
(b) What is the descent set $D(w)$?
(c) What is the major index $\operatorname{maj}(w)$?
(d) What is the cycle type type (w) ?
(Still, $w=52134$)
(e) What is the inversion table $I(w)$?
(f) Check your answer to part (2e) by recursively constructing w from its inversion table. (Recall: go in decreasing order, inserting i so that it loses in a_{i} inversions.)
3. (a) Give the formula for the number of permutations of $[n]$ that have cycle type $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$, given that $\sum_{i} i c_{i}=n$.
(b) List the 5 possible cycle types of permutations of \mathcal{S}_{4}. Then use elementary counting methods (product, sum, division rules, binomial coefficients) to count the number of permutations of [4] with each cycle type; justify your numerical answers. Finally, check your answer using the formula in part (a). Type $(4,0,0,0)$ is given as an example.
type 1: $(4,0,0,0)$
number of permutations of type 1 (elementary methods): check:

$$
\frac{\#\{\text { ways to choose the four } 1 \text {-cycles }\}}{\#\{\text { permutations of the } 1 \text {-cycles }\}}=4!/ 4!=1
$$

$$
4!/ 1^{4} 4!=1
$$

type 2:
number of permutations of type 2 (elementary methods):
check:
type 3 :
number of permutations of type 3 (elementary methods): check:
(3(b) continued from last page)
type 4:
number of permutations of type 4 (elementary methods):
check:
type 5:
number of permutations of type 5 (elementary methods):
check:
(c) Use your answers in part (b) to
(i) give the cycle indicator function Z_{4} (the generating function related to cycle type);
(ii) give the generating function for the signless Stirling numbers of the first kind $c(n, k)$ for $n=4$ (the generating function related to the number of cycles).
(d) Explain why, for general n, the generating function for $c(n, k)$ is the same as $n!Z_{n}(t, t, \ldots, t)$.
4. (a) Define a composition of n with ℓ parts.
(b) Explain how to use stars and bars pictures to represent compositions and then to represent weak compositions.
(c) Use stars and bars to explain why there are 2^{n-1} compositions of n.
(d) Use stars and bars to explain why there are $\binom{n+\ell-1}{\ell-1}$ weak compositions of n with ℓ parts.
5. Let $w \in \mathcal{S}_{n}$. Prove that if $w=\hat{w}$, then, when written in standard cycle notation, the first cycle of w is either (1) or (21).
6. Prove by induction that, for $n \in \mathbb{N}$ and $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$,

$$
\prod_{x_{i} \in S}\left(1+x_{i}\right)=\sum_{T \subseteq S} \prod_{x_{i} \in T} x_{i} .
$$

7. Consider the identity

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0, \quad n \in \mathbb{N} . \tag{*}
\end{equation*}
$$

(a) Give a combinatorial proof of (*).
[Hint: move all the negative terms to the right.]
(b) Prove **) (previous page) using the binomial theorem.
(extra space)

