Exercise 39. (a) Compute the following.
(i) $\mathrm{S}(3,0)$, (ii) $\mathrm{S}(3,1)$, (iii) $\mathrm{S}(3,2)$, (iv) $\mathrm{S}(3,3)$,
(v) $S(n, 0)$, (vi) $S(n, 1)$, (vii) $S(n, n-1)$, (viii) $S(n, n)$.
(b) Give a combinatorial proof that the Sterling numbers of the second kind satisfy the recurrence relation

$$
S(n, k)=k S(n-1, k)+S(n-1, k-1) .
$$

(c) Verify the identity

$$
\sum_{k \geq 0} S(n, k) s(k, m)=\delta_{m, n}
$$

for $n=3$ and $m=3$ and $m=1$. (Recall $s(a, b)=(-1)^{a-b} c(a, b)$ is the Stirling number of the first kind.)
(d) Lunch box examples. Ok to give your answers in terms of $\binom{n}{m}$ or $S(n, m)$ where appropriate.
(i) How many ways are there to distribute 6 distinct candy bars into 4 identical lunch boxes so that every lunch box gets at least one candy bar?
(ii) How many ways are there to distribute 6 distinct pieces of fruit into 4 identical lunch boxes? (you might leave some empty)
(iii) How many ways are there to distribute 6 identical juice boxes into 4 identical lunch boxes? (you might leave some empty)
(iv) How many ways are there to distribute 6 identical sandwiches into 4 identical lunch boxes so that every box gets at least one sandwich?
(v) How many ways are there to distribute 6 identical carrots into 4 distinct lunch boxes so that every box gets at least one carrot?
(vi) How many ways are there to distribute 6 identical bottles of water into 4 distinct lunch boxes? (you might leave some empty)
(vii) How many ways are there to distribute 6 distinct cookies into 4 distinct lunch boxes? (you might leave some empty)
(viii) How many ways are there to distribute 6 distinct pieces of cheese into 4 distinct lunch boxes so that every box gets a piece of cheese?

Exercise 40. The following argument is very similar to the one that we used to compute $S(n, m)$, and seems to be an easier approach to computing the number of ways of putting n distinguishable balls into m indistinguishable boxes. However, it results in the claim that there are $\mathrm{m}^{n} / \mathrm{m}$! such ways, which cannot possibly be true, since m^{n} / m ! is not always an integer (e.g. let $n=2$ and $m=3$). Find and explain the flaw in this argument.

To count the ways of putting n distinguishable balls into m indistinguishable boxes, first choose an ordering of the m boxes (so that they're now distinguishable). Then an assignment of n distinguishable balls into those m boxes determines a function $\phi:[n] \rightarrow[m]$. Since there are m^{n} such functions, and m ! permutations of the m boxes, there are m^{n} / m ! ways of putting n distinguishable balls into m indistinguishable boxes.
Exhibit the flaw for $n=2$ and $m=3$. [Hint: consider the empty boxes. If $n=2$ and $m=3$ doesn't make it clear to you, try other examples, but note that you need $m \geq 3$ to see what goes wrong. If you try bigger examples, focus on maps where the image has size $|f([n])| \leq m-2$.]
Exercise 41. Read and summarize Example 2.2.4 (up to equation (2.15)), taking time to read the first page of Section 1.4.

