Combinatorial Analysis - 12/01/15

Exercise 38. (a) Derangements. Recall that a derangement of n is a permutation of n with no fixed-points, and that the number of derangements of n is given by

$$
D(n)=n!\sum_{i=0}^{n}(-1)^{i} / i!
$$

(i) Verify this formula for $D(n)$ for $n=3$.
(ii) Verify the recursive formula $D(n)=n D(n-1)+(-1)^{n}$ using the above formula for $D(n)$.
(iii) Give a combinatorial proof for the recursive formula $D(n)=(n-1)(D(n-1)+D(n-2))$.
(b) Fixed-point free functions Consider the set of functions $\varphi:[n] \rightarrow[n]$. Note that this differs from our work on derangements, since φ is not necessarily bijective.
(i) Let S be the set of conditions " $\varphi(i)=i$ " (so that $|S|=n$, one condition for each element of $[n]$.) For $T \subseteq S$, describe $f_{=}(T)$ and $f_{\geq}(T)$ using set notation.
(ii) How many functions $\varphi:[n] \rightarrow[n]$ have no fixed points?
(iii) Let $E(n)$ be the number of fixed-point free functions $\varphi:[n] \rightarrow[n]$. Show that

$$
\lim _{n \rightarrow \infty} E(n) / n^{n}=1 / e
$$

(c) How many permutations of $[n]$ have no cycle of length k ? If $f_{k}(n)$ denotes this number, then compute $\lim _{n \rightarrow \infty} f_{k}(n) / n$!.
[Hint: for a subset $S \subseteq[n]$ of size k, let A_{S} be the set of permutations in which there is a k-cycle whose entries are the elements of S. It may or may not be useful to note that A_{S} and A_{T} are disjoint exactly when S and T are not disjoint.]

