Exercise 38. (a) *Derangements.* Recall that a derangement of n is a permutation of n with no fixed-points, and that the number of derangements of n is given by

$$D(n) = n! \sum_{i=0}^{n} (-1)^{i} / i!.$$

- (i) Verify this formula for D(n) for n = 3.
- (ii) Verify the recursive formula $D(n) = nD(n-1) + (-1)^n$ using the above formula for D(n).
- (iii) Give a combinatorial proof for the recursive formula D(n) = (n-1)(D(n-1) + D(n-2)).
- (b) Fixed-point free functions Consider the set of functions $\varphi : [n] \to [n]$. Note that this differs from our work on derangements, since φ is not necessarily bijective.
 - (i) Let S be the set of conditions " $\varphi(i) = i$ " (so that |S| = n, one condition for each element of [n].) For $T \subseteq S$, describe $f_{=}(T)$ and $f_{\geq}(T)$ using set notation.
 - (ii) How many functions $\varphi : [n] \to [n]$ have no fixed points?
 - (iii) Let E(n) be the number of fixed-point free functions $\varphi: [n] \to [n]$. Show that

$$\lim_{n \to \infty} E(n)/n^n = 1/e$$

(c) How many permutations of [n] have no cycle of length k? If $f_k(n)$ denotes this number, then compute $\lim_{n\to\infty} f_k(n)/n!$.

[Hint: for a subset $S \subseteq [n]$ of size k, let A_S be the set of permutations in which there is a k-cycle whose entries are the elements of S. It may or may not be useful to note that A_S and A_T are disjoint exactly when S and T are not disjoint.]