Exercise 31.

(a) Draw the isomorphism classes of connected graphs on 4 vertices, and give the vertex and edge connectivity number for each.
(b) Show that if v is a vertex of odd degree, then there is a path from v to another vertex of odd degree.
(c) Prove that for every simple graph, either G is connected, or \bar{G} is connected.
(d) Recall that $\kappa(G)$ is the vertex connectivity of G and $\lambda(G)$ is the edge connectivity of G. Give examples of graphs for which each of the following are satisfied.
(i) $\kappa(G)=\lambda(G)<\min _{v \in V} \operatorname{deg}(v)$
(ii) $\kappa(G)<\lambda(G)=\min _{v \in V} \operatorname{deg}(v)$
(iii) $\kappa(G)<\lambda(G)<\min _{v \in V} \operatorname{deg}(v)$
(iv) $\kappa(G)=\lambda(G)=\min _{v \in V} \operatorname{deg}(v)$
(e) For the following theorem, pick any of parts (ii)-(iv) and show (carefully!) that it's equivalent to part (i).

Theorem: For a simple graph with at least 3 vertices, the following are equivalent.
(i) G is connected and contains no cut vertex.
(ii) Every two vertices in V are contained in some cycle.
(iii) Every two edges in E are contained in some cycle, and G contains no isolated vertices.
(iv) For any three vertices $u, v, w \in V$, there is a path from u to v containing w.

