Exercise 24.

(a) Eulerian numbers.
(i) Verify that $A_{3}=x+4 x^{2}+x^{3}$ and $A_{4}=x+11 x^{2}+11 x^{3}+x^{4}$.
(ii) In general, for $d>0$, what are $A(d, 1)$ and $A(d, d)$?
(iii) What is $A_{d}(1)$?
(b) Excedances.
(i) Show that $w=w_{1} w_{2} \cdots w_{d}$ has k weak excedances if and only if $u=u_{1} u_{2} \cdots u_{d}$, defined by $u_{i}=d+1-w_{d-i+1}$, has $d-k$ excedances.
(ii) Show w has $d-1-j$ descents if and only if $w_{d} w_{d-1} \cdots w_{1}$ has j descents.
(iii) Show that

$$
A(d, k+1)=\mid\left\{w \in \mathcal{S}_{d} \mid w \text { has } k \text { excedances }\right\} \mid
$$

and

$$
A(d, k+1)=\mid\left\{w \in \mathcal{S}_{d} \mid w \text { has } k+1 \text { weak excedances }\right\} \mid .
$$

(c) Complete the proof of Prop. 1.4.6 by proving that $\operatorname{inv}\left(\gamma_{k}\right)=\operatorname{maj}\left(\eta_{k}\right) \operatorname{implies} \operatorname{inv}\left(\gamma_{k+1}\right)=$ $\operatorname{maj}\left(\eta_{k+1}\right)$ in the case where the last letter w_{k} of γ_{k} is smaller than w_{k+1}.

