Exercise 19.

- (a) For $Z_n = \frac{1}{n!} \sum_{w \in S_n} t^{\text{type}(w)}$, calculate Z_1, Z_2, Z_3 , and Z_4 explicitly (verifying the formulas between (1.25) and (1.26) in EC1).
- (b) For $E_k(n) = \frac{1}{n!} \sum_{w \in S_n} c_k(w)$, verify that

$$E_k(n) = \frac{\partial}{\partial t_k} Z_n(t_1, t_2, \dots, t_n) \Big|_{\substack{t_i=1,\dots,n\\i=1,\dots,n}},$$

(c) Give a combinatorial proof of $E_k(n) = 1/k$ by (i) explaining why there are $\binom{n}{k}(k-1)!$ k-cycles, (ii) explaining why each k-cycle appears in (n-k)! permutations, and (iii) computing $E_k(n)$ using these two values.

Exercise 20. (Alternate)

- (a) Compute the signless Stirling numbers of the first kind c(n,k) for n = 1, 2, 3, 4 and $k = 1, \ldots, n$ (i) directly, and (ii) using the recursion. Then give the Stirling numbers of the first kind s(n,k) for n = 1, 2, 3, 4 and $k = 1, \ldots, n$.
- (b) Verify $\sum_{k=0}^{n} c(n,k)t^k = t(t+1)(t+2)\cdots(t+n-1)$ for n = 0, 1, 2, 3, 4.

Exercise 21. (Proving Proposition 1.3.7)

- (a) Verify that $\sum_{k=0}^{n} c(n,k)t^{k} = n!Z_{n}(t,t,\ldots,t)$ for n = 1, 2, 3, and then explain why this identity holds in general.
- (b) Cary out another example for the third proof of Proposition 1.3.7, again for n = 9 and k = 4.
- (c) Walk through and complete the third proof of Proposition 1.3.7.
- (d) Read the fourth proof and example 1.3.9. Cary out another example for n = 9 and k = 4 for a sequence (a_1, \ldots, a_n) of your choice.

Exercise 22. Using only the combinatorial definitions of the signless Stirling numbers c(n, k), give formulas for c(n, 1), c(n, n), c(n, n-1), and c(n, n-2).