Exercise 19.

(a) For $Z_{n}=\frac{1}{n!} \sum_{w \in \mathcal{S}_{n}} t^{\text {type }(w)}$, calculate Z_{1}, Z_{2}, Z_{3}, and Z_{4} explicitly (verifying the formulas between (1.25) and (1.26) in EC1).
(b) For $E_{k}(n)=\frac{1}{n!} \sum_{w \in \mathcal{S}_{n}} c_{k}(w)$, verify that

$$
E_{k}(n)=\left.\frac{\partial}{\partial t_{k}} Z_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right|_{\substack{t_{i}=1 \\ i=1, \ldots, n}} ^{\substack{1}}
$$

(c) Give a combinatorial proof of $E_{k}(n)=1 / k$ by (i) explaining why there are $\binom{n}{k}(k-1)$! k-cycles, (ii) explaining why each k-cycle appears in $(n-k)$! permutations, and (iii) computing $E_{k}(n)$ using these two values.

Exercise 20. (a) Compute the signless Stirling numbers of the first kind $c(n, k)$ for $n=1,2,3,4$ and $k=1, \ldots, n$ (i) directly, and (ii) using the recursion. Then give the Stirling numbers of the first kind $s(n, k)$ for $n=1,2,3,4$ and $k=1, \ldots, n$.
(b) Verify $\sum_{k=0}^{n} c(n, k) t^{k}=t(t+1)(t+2) \cdots(t+n-1)$ for $n=0,1,2,3,4$.

Exercise 21. (Proving Proposition 1.3.7)
(a) Verify that $\sum_{k=0}^{n} c(n, k) t^{k}=n!Z_{n}(t, t, \ldots, t)$ for $n=1,2,3$, and then explain why this identity holds in general.
(b) Cary out another example for the third proof of Proposition 1.3.7, again for $n=9$ and $k=4$.
(c) Walk through and complete the third proof of Proposition 1.3.7.
(d) Read the fourth proof and example 1.3.9. Cary out another example for $n=9$ and $k=4$ for a sequence $\left(a_{1}, \ldots, a_{n}\right)$ of your choice.

