Exercise 16. For each of the following permutations of [9], give whichever of the following is not already given.

- (i) The function representation.
- (ii) The word representation.
- (iii) The standard cycle representation.
- (iv) The digraph representation.
- (v) The word given by the fundamental bijection (the `word).
- (vi) The diagrammatic representation.
- (a) $w: [9] \to [9]$, the permutation given by

 $1 \mapsto 8, \quad 2 \mapsto 9, \quad 3 \mapsto 7, \quad 4 \mapsto 4, \quad 5 \mapsto 6, \quad 6 \mapsto 5, \quad 7 \mapsto 1, \quad 8 \mapsto 3, \quad 9 \mapsto 2.$

- (b) v = (6325)(1)(9478).
- (c) The permutation u determined by $\hat{u} = 123456798$.

Exercise 17. For each of the permutations in 16, give the cycle type, and the number of permutations of [9] that have the same cycle type. Additionally, give the following.

- (a) For w in 16(a), verify the equation $n = \sum_{i} ic_{i}$.
- (b) For v in 16(b), verify that v has the same number of cycles as \hat{v} has left-to-right maxima (be sure to identify the left-to-right maxima).
- (c) For u in 16(c), what is $t^{\text{type}(u)}$?

Exercise 18. Show that the number of permutations $w \in S_n$ fixed by the fundamental bijection $\hat{S}_n \to S_n$ (i.e. $|\{w \in S_n \mid \hat{w} = w\}|$) is the Fibonacci number F_{n+1} .

Exercise 19.

- (a) For $Z_n = \frac{1}{n!} \sum_{w \in S_n} t^{\text{type}(w)}$, calculate Z_1, Z_2, Z_3 , and Z_4 explicitly (verifying the formulas between (1.25) and (1.26) in EC1).
- (b) For $E_k(n) = \frac{1}{n!} \sum_{w \in S_n} c_k(w)$, verify that

$$E_k(n) = \frac{\partial}{\partial t_k} Z_n(t_1, t_2, \dots, t_n) \Big|_{\substack{t_i=1,\dots,n\\i=1,\dots,n}}.$$

(c) Give a combinatorial proof of $E_k(n) = 1/k$ by (i) explaining why there are $\binom{n}{k}(k-1)!$ k-cycles, (ii) explaining why each k-cycle appears in (n-k)! permutations, and (iii) computing $E_k(n)$ using these two values.