**See Exercise 13 from last time.

Exercise 14.

(a) Deriving multinomial coefficients algebraically. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ be a composition of n. Use the formula $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ to compute $\binom{n}{\alpha_{1}, . ., \alpha_{\ell}}$, noting that you can first choose the α_{1} items from n, then α_{2} from $n-\alpha_{1}$, then α_{3} from $n-\left(\alpha_{1}+\alpha_{2}\right)$, and so on.
(b) Multinomial theorem. Following our proof of the binomial theorem, show that

$$
\left(x_{1}+x_{2}+\cdots+x_{\ell}\right)^{n}=\sum_{\substack{\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \in \mathbb{N} \ell \\ \alpha_{1}+\cdots+\alpha_{\ell}=n}}\binom{n}{\alpha_{1}, \ldots, \alpha_{\ell}} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}} .
$$

[Hint: Recall that the key computation for the binomial theorem was that, for $S=\left\{x^{(1)}, \ldots, x^{(n)}\right\}$,

$$
\prod_{x^{(i)} \in S}\left(1+x^{(i)}\right)=\sum_{T \subseteq S} \prod_{x^{(i)} \in T} x^{(i)}, \quad \text { so that } \quad(1+x)^{n}=\sum_{T \subseteq S} \prod_{x^{(i)} \in T} x=\sum_{T \subseteq S} x^{|T|} .
$$

The former we had to prove by induction on n. Now fix ℓ, and let $S=\left\{x_{i}^{(j)} \mid 1 \leq i \leq \ell, 1 \leq\right.$ $j \leq n\}$ (so that there are n distinct variables associated to each x_{i}), and walk through a similar proof.]
(c) Lattice paths. Proposition 1.2.1 in EC1 says the following. Let $v=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}$, and let e_{i} denote the i th unit coordinate vector in \mathbb{Z}^{d}. The number of lattice paths in \mathbb{Z}^{d} from the origin $(0,0, \ldots, 0)$ to v with steps in $\left\{e_{1}, \ldots, e_{d}\right\}$ is given by the multinomial coefficient $\binom{a_{1}+\cdots+a_{d}}{a_{1}, \ldots, a_{d}}$.
(i) Check this proposition for $d=2$ with the point $v=(2,3)$.
(ii) Check this proposition for $d=3$ with the point $v=(1,1,2)$.
(iii) Prove this theorem (spell out the book's proof with more details).
(d) Integer partitions. An (integer) partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of n is a composition of n satisfying $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$. We draw partitions as n boxes piled up and to the left into a corner, with λ_{1} boxes in the first row, λ_{2} boxes in the second row, and so on. For example,

$$
\begin{gathered}
\lambda=(3,3,2,1,1,1)=母 \text { is a partition of } 11, \\
\lambda=(5,4,3)=\square \text { is a partition of } 12, \\
\lambda=(5)=\square \text { is a partition of } 5, \text { and } \\
\lambda=\emptyset \text { is a partition of } 0 .
\end{gathered}
$$

The six partitions to fit in a 2×2 square are
$\emptyset={ }^{\circ}$
$(1)=\begin{aligned} & \square \\ & \square \\ & \vdots\end{aligned}$
$(2)=\stackrel{\square}{\square}$,
$(1,1)=\square$
$(2,1)=\square$
and
$(2,2)=\square$.

Use lattice paths to count the number of integer partitions fitting into a $m \times n$ rectangle.

