Combinatorial Analysis - 9/8/15

Warmup. Recall the binomial theorem says

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} .
$$

We showed on HW1 that

$$
\begin{equation*}
\binom{a+b}{n}=\sum_{k=0}^{n}\binom{a}{k}\binom{b}{n-k} \tag{*}
\end{equation*}
$$

by a combinatorial proof ("Let A and B be disjoint sets satisfying $|A|=a$ and $|B|=b$, and count the size-n subsets of $A \sqcup B$ in two ways...").
Now use the binomial theorem and the multiplication rule

$$
\left(\sum_{i} a_{i} x^{i}\right)\left(\sum_{j} b_{j} x^{j}\right)=\sum_{k}\left(\sum_{\ell=0}^{k} a_{\ell} b_{k-\ell}\right) x^{k}
$$

to give a generating function proof of (*).

Exercise 7. Use $\frac{1}{1-x}=\sum_{n \in \mathbb{N}} x^{n}$ and $e^{x}=\sum_{n \in \mathbb{N}} \frac{x^{n}}{n!}$ as definitions of $\frac{1}{1-x}$ and e^{x}, i.e.

$$
\frac{1}{1-e^{x}} \text { is short-hand for } F(G(x)), \text { where } \begin{aligned}
& F(x)=\sum_{n \in \mathbb{N}} x^{n}, \text { and } \\
& G(x)=\sum_{n \in \mathbb{N}} \frac{x^{n}}{n!} .
\end{aligned}
$$

Which of the following expressions are well-defined formal power series? Why? For those expressions that are well-defined, give their first few terms.
(i) e^{x+1}
(ii) $e^{x+3 x^{2}}$
(iii) $e^{e^{x}}$
(iv) $e^{e^{x}-1}$
(v) $\frac{1}{1-x e^{x}}$
(vi) $\frac{1}{x e^{x}}$

Exercise 8. (EC1, exercise 1.8)
(a) Use the generalized binomial theorem to expand $\frac{1}{\sqrt{1-4 x}}$ in series form.
(b) Calculate $\frac{(2 n)!}{n!}$ for $n=1,2,3$. What is $\frac{(2 n)!}{n!}$ in general?
(c) Calculate $\binom{1 / 2}{k}$ for $k=1,2,3$ What is $\binom{1 / 2}{k}$ in general? [Note that you can factor $\frac{1}{2}$ from every term in the numerator. Then use part (b).]
(d) Conclude

$$
\frac{1}{\sqrt{1-4 x}}=\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n}
$$

(e) Give a combinatorial proof of the identity $2\binom{2 n-1}{n}=\binom{2 n}{n}$.
(f) Find $\sum_{n=0}^{\infty}\binom{2 n-1}{n} x^{n}$.

