
Combinatorial Analysis – 9/3/15
Recall

1

1− x
= 1 + x+ x2 + x3 + · · · =

∞∑
n=0

xn, and ex = 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
n=0

xn

n!
.

Warmup. Last time, we showed

1

(1− x)2
=

d

dx

∞∑
`=0

x` =

∞∑
n=0

(n+ 1)xn. (∗)

Working from the lowest degree terms, verify (∗) by expanding the first few terms of

1

(1− x)2
= (1 + x+ x2 + x3 + · · · )(1 + x+ x2 + x3 + · · · ).

In other words, the constant term is 1 ∗ 1 = 1; the degree 1 term is 1 ∗ x + x ∗ 1 = 2x; and so on.
Similarly, we can use substitution to show

e2x =
∞∑
n=0

(2x)n

n!
=
∞∑
n=0

2n
xn

n!
. (∗∗)

Verify (∗∗) by expanding the first few terms of

e2x = (ex)2 =

(
1 + x+

x2

2!
+
x3

3!
+ · · ·

)(
1 + x+

x2

2!
+
x3

3!
+ · · ·

)
.

Exercise 4. (a) Give both the generating and exponential generating functions for

f(n) = 3n; g(n) = 3; ϕ(n) = 3n; and ψ(n) = n!3n; for n ∈ N.

For each, give your answer in series form. Whenever possible, also give your answer in closed
form.

(b) Verify the rule for multiplying basic and exponential formal series for I = N, for the first 4
coefficients. In other words, calculate cn for n = 0, 1, 2, 3 by multiplying out the left hand side
of

(a0 + a1x+ a2x
2 + a3x

3 + · · · )(b0 + b1x+ b2x
2 + b3x

3 + · · · ) = c0 + c1x+ c2x
2 + c3x

3 + · · · ,

and comparing coefficients (and similarly for the exponential case).
(c) Verify that

1

1− x
=
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·

by solving for bn in the equation( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

cnx
n,

where

a0 = a1 = c0 = 1, and an, cn = 0 otherwise,

i.e.,
∑∞

n=0 anx
n = 1 + x and

∑∞
n=0 cnx

n = 0. [See EC1, Example 1.1.5; but be more explicit.]



Exercise 5. For each of the following identities,

(i) check by hand for n = 3;
(ii) verify using the binomial theorem, evaluating for specific values of x;

(iii) give a combinatorial proof of the identity.

(a)

n∑
k=0

(
n

k

)
= 2n;

(b)
n∑

k=0

k

(
n

k

)
= n2n−1 for n > 0

[Hint: for (ii), differentiate first].

(c)
n∑

k=0

(−1)k
(
n

k

)
= 0 for n > 0

[Hint: For (iii), rewrite the identity by moving the negative terms to the right (generally good
practice for combinatorial proofs). Construct a bijection between the set En of all subsets of
[n] that have an even number of elements and On, the odd counterpart.].

Exercise 6. Use the multiplication rules for exponential series to show that

1 = exe−x implies
n∑

k=0

(−1)k
(
n

k

)
= 0 for n > 0

(our third proof, making EC1, Example 1.1.6 more explicit).

Exercise 7. Use 1
1−x =

∑
n∈N x

n and ex =
∑

n∈N
xn

n! as definitions of 1
1−x and ex, i.e.

1

1− ex
is short-hand for F (G(x)), where

F (x) =
∑

n∈N x
n, and

G(x) =
∑

n∈N
xn

n! .

Which of the following expressions are well-defined formal power series? Why? For those expres-
sions that are well-defined, give their first few terms.

(i) ex+1 (ii) ex+3x2
(iii) ee

x
(iv) ee

x−1 (v)
1

1− xex
(vi)

1

xex


