Recall

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}, \quad \text { and } \quad e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} .
$$

Warmup. Last time, we showed

$$
\begin{equation*}
\frac{1}{(1-x)^{2}}=\frac{d}{d x} \sum_{\ell=0}^{\infty} x^{\ell}=\sum_{n=0}^{\infty}(n+1) x^{n} . \tag{*}
\end{equation*}
$$

Working from the lowest degree terms, verify $(*)$ by expanding the first few terms of

$$
\frac{1}{(1-x)^{2}}=\left(1+x+x^{2}+x^{3}+\cdots\right)\left(1+x+x^{2}+x^{3}+\cdots\right) .
$$

In other words, the constant term is $1 * 1=1$; the degree 1 term is $1 * x+x * 1=2 x$; and so on. Similarly, we can use substitution to show

$$
\begin{equation*}
e^{2 x}=\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{n!}=\sum_{n=0}^{\infty} 2^{n} \frac{x^{n}}{n!} . \tag{**}
\end{equation*}
$$

Verify (**) by expanding the first few terms of

$$
e^{2 x}=\left(e^{x}\right)^{2}=\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right) .
$$

Exercise 4. (a) Give both the generating and exponential generating functions for

$$
f(n)=3^{n} ; \quad g(n)=3 ; \quad \varphi(n)=3 n ; \quad \text { and } \quad \psi(n)=n!3^{n} ; \quad \text { for } n \in \mathbb{N}
$$

For each, give your answer in series form. Whenever possible, also give your answer in closed form.
(b) Verify the rule for multiplying basic and exponential formal series for $I=\mathbb{N}$, for the first 4 coefficients. In other words, calculate c_{n} for $n=0,1,2,3$ by multiplying out the left hand side of
$\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots\right)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots$,
and comparing coefficients (and similarly for the exponential case).
(c) Verify that

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots
$$

by solving for b_{n} in the equation

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

where

$$
a_{0}=a_{1}=c_{0}=1, \text { and } a_{n}, c_{n}=0 \text { otherwise },
$$

i.e., $\sum_{n=0}^{\infty} a_{n} x^{n}=1+x$ and $\sum_{n=0}^{\infty} c_{n} x^{n}=0$. [See EC1, Example 1.1.5; but be more explicit.]

Exercise 5. For each of the following identities,
(i) check by hand for $n=3$;
(ii) verify using the binomial theorem, evaluating for specific values of x;
(iii) give a combinatorial proof of the identity.
(a) $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$;
(b) $\sum_{k=0}^{n} k\binom{n}{k}=n 2^{n-1}$ for $n>0$
[Hint: for (ii), differentiate first].
(c) $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$ for $n>0$
[Hint: For (iii), rewrite the identity by moving the negative terms to the right (generally good practice for combinatorial proofs). Construct a bijection between the set E_{n} of all subsets of $[n]$ that have an even number of elements and O_{n}, the odd counterpart.].

Exercise 6. Use the multiplication rules for exponential series to show that

$$
1=e^{x} e^{-x} \quad \text { implies } \quad \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0 \quad \text { for } n>0
$$

(our third proof, making EC1, Example 1.1.6 more explicit).

Exercise 7. Use $\frac{1}{1-x}=\sum_{n \in \mathbb{N}} x^{n}$ and $e^{x}=\sum_{n \in \mathbb{N}} \frac{x^{n}}{n!}$ as definitions of $\frac{1}{1-x}$ and e^{x}, i.e.

$$
\frac{1}{1-e^{x}} \text { is short-hand for } F(G(x)), \text { where } \begin{aligned}
& F(x)=\sum_{n \in \mathbb{N}} x^{n}, \text { and } \\
& G(x)=\sum_{n \in \mathbb{N}} \frac{x^{n}}{n!} .
\end{aligned}
$$

Which of the following expressions are well-defined formal power series? Why? For those expressions that are well-defined, give their first few terms.
(i) e^{x+1}
(ii) $e^{x+3 x^{2}}$
(iii) $e^{e^{x}}$
(iv) $e^{e^{x}-1}$
(v) $\frac{1}{1-x e^{x}}$
(vi) $\frac{1}{x e^{x}}$

