Exercise 3. (From last time)

(a) Explain why $\binom{n}{k}=\frac{(n)_{k}}{k!}$ directly using product and division rules.
(b) Give a combinatorial proof of the identity

$$
\sum_{i=0}^{n}\binom{a}{i}\binom{b}{n-i}=\binom{a+b}{n}
$$

where $a, b, n \in \mathbb{N}$ and $a, b \geq n$. [Hint: Consider two disjoint sets A and B, with $|A|=a$ and $|B|=b$. How many subsets does $A \sqcup B$ have?]

Recall the Taylor series expansions

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}, \quad \text { and } \quad e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} .
$$

Warmup. Use substitution (function composition), differentiation, and integration to give the series expansions for the following functions, for $c \in \mathbb{R}, c \neq 0$.

$$
\frac{1}{1-c x}, \quad \frac{1}{1-x^{c}}, \quad e^{c x}, \quad \frac{1}{(1-x)^{2}}, \quad \frac{1}{(1-x)^{3}}, \quad \ln |1-x| .
$$

[For example, $\frac{d}{d x} \frac{1}{1-x}=-(1-x)^{-2}(-1)=\frac{1}{(1-x)^{2}}$, so the series expansion of $\frac{1}{(1-x)^{2}}$ is the derivative of the series expansion of $\frac{1}{1-x}$]

Exercise 4.

(a) Give both the generating and exponential generating functions for

$$
f(n)=3^{n} ; \quad g(n)=3 ; \quad \varphi(n)=3 n ; \quad \text { and } \quad \psi(n)=n!3^{n} ; \quad \text { for } n \in \mathbb{N} .
$$

For each, give your answer in series form. Whenever possible, also give your answer in closed form.
(b) Verify the rule for multiplying basic and exponential formal series for $I=\mathbb{N}$, for the first 4 coefficients. In other words, calculate c_{n} for $n=0,1,2,3$ by multiplying out the left hand side of
$\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots\right)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots$,
and comparing coefficients (and similarly for the exponential case).
(c) Verify that

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots
$$

by solving for b_{n} in the equation

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

where

$$
a_{0}=a_{1}=c_{0}=1, \text { and } a_{n}, c_{n}=0 \text { otherwise },
$$

i.e., $\sum_{n=0}^{\infty} a_{n} x^{n}=1+x$ and $\sum_{n=0}^{\infty} c_{n} x^{n}=0$. [See EC1, Example 1.1.5; but be more explicit.]

Exercise 5. For each of the following identities,
(i) check by hand for $n=3$;
(ii) verify using the binomial theorem, evaluating for specific values of x;
(iii) give a combinatorial proof of the identity.
(a) $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$;
(b) $\sum_{k=0}^{n} k\binom{n}{k}=n 2^{n-1}$
[Hint: for (ii), differentiate first].
(c) $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$
[Hint: For (iii), rewrite the identity by moving the negative terms to the right (generally good practice for combinatorial proofs). Construct a bijection between the set E_{n} of all subsets of [n] that have an even number of elements and O_{n}, the odd counterpart.].

