Solutions for HW7

Exercise 24.

(a) Eulerian numbers.
(i) Verify that $A_{3}=x+4 x^{2}+x^{3}$ and $A_{4}=x+11 x^{2}+11 x^{3}+x^{4}$.

Solution: Recall, $A(d, k)$ is the number of permutations of d with exactly $k-1$ descents. So for \mathcal{S}_{3},

$$
\begin{aligned}
& A(3,1)=|\{123\}|=1, \\
& A(3,2)=|\{132,213,231,312,\}|=4, \text { and } \\
& A(3,3)=|\{321\}|=1
\end{aligned}
$$

So $A_{3}=x+4 x^{2}+x^{3}$. For \mathcal{S}_{4},

$$
A(4,1)=|\{1234\}|=1 \quad \text { and } \quad A(4,4)=|\{4321\}|=1 .
$$

For $A(4,2)$, we'll be a little more clever. If there is exactly one descent, it comes in position 1,2 , or 3 . So since

$$
\begin{gathered}
\left|\left\{w \in \mathcal{S}_{4} \mid D(w)=\{1\}\right\}\right|=\mid\left\{a b c d \in \mathcal{S}_{4} \mid a>b<c<d\right\}=1 \\
(\text { choose } a \neq 1), \\
\left|\left\{w \in \mathcal{S}_{4} \mid D(w)=\{2\}\right\}\right|=\left\lvert\,\left\{a b c d \in \mathcal{S}_{4} \mid ac<d\right\}=\binom{4}{2}-1=5\right. \\
(\text { choose }\{a, b\} \neq\{1,2\}), \text { and } \\
\left|\left\{w \in \mathcal{S}_{4} \mid D(w)=\{3\}\right\}\right|=\mid\left\{a b c d \in \mathcal{S}_{4} \mid a<b<c>d\right\}=3 \\
(\text { choose } d \neq 4) .
\end{gathered}
$$

So $A(4,2)=3+5+3$. Since all 24 permutations are accounted for in one of the $A(4, k)$, we have $A(4,3)=24-1-11-1=11$. Thus $A_{4}=x+11 x^{2}+11 x^{3}+x^{4}$.
(ii) In general, for $d>0$, what are $A(d, 1)$ and $A(d, d)$?

Solution:

$$
A(d, 1)=|\{123 \cdots d\}|=1 \quad \text { and } \quad A(d, d)=|\{d \cdots 321\}|=1
$$

(iii) What is $A_{d}(1)$?

Solution:

$$
A_{d}(1)=\sum_{w \in \mathcal{S}_{d}} 1^{1+\operatorname{des}(w)}=\sum_{w \in \mathcal{S}_{d}} 1=\left|\mathcal{S}_{d}\right|=d!.
$$

(b) Excedances.
(i) Show that $w=w_{1} w_{2} \cdots w_{d}$ has k weak excedances if and only if $u=u_{1} u_{2} \cdots u_{d}$, defined by $u_{i}=d+1-w_{d-i+1}$, has $d-k$ excedances.
Solution: If there is a weak excedance in position i, then $w_{i} \geq i$, so that

$$
d+1-i \leq d+1-w_{i}=u_{d+1-i}
$$

is not an excedance in u. On the other hand, if there is not a weak excedance in position i, then $w_{i}<i$, so that

$$
d+1-i>d+1-w_{i}=u_{d+1-i}
$$

is an excedance in u. Therefore if there are k weak excedances in w, there are $d-k$ excedances in u.
(ii) Show w has $d-1-j$ descents if and only if $w^{\mathrm{op}}=w_{d} w_{d-1} \cdots w_{1}$ has j descents.

Solution: If i is a descent in w, then $w_{i}>w_{i+1}$. So $d-i$ is not a descent in w^{op}. Similarly, if i is not a descent in w, then $d-i$ is a descent in $w^{\text {op }}$. Therefore if there are j descents in w, there are $(d-1)-j$ descents in $w^{\text {op }}$.
(iii) Show that

$$
A(d, k+1)=\mid\left\{w \in \mathcal{S}_{d} \mid w \text { has } k \text { excedances }\right\} \mid
$$

and

$$
A(d, k+1)=\mid\left\{w \in \mathcal{S}_{d} \mid w \text { has } k+1 \text { weak excedances }\right\} \mid .
$$

Solution: We have that

$$
d-\operatorname{des}(\hat{w})=\mid\{i \in[d] \mid w(i) \geq i\},
$$

the number of weak excedances of w. So $\hat{w} \mapsto w$ gives a bijection between partitions $k+1$ weak excedances and $d-k-1$ descents. By part bii, $w \mapsto w^{\text {op }}$ gives a bijection between $d-k-1$ descents and partitions with k descents. So,

$$
\hat{w} \mapsto w \mapsto w^{\mathrm{op}}
$$

gives a bijection between partitions $k+1$ weak excedances and partitions with k descents, giving the second desired identity.

In part bi, the map $u \mapsto w$ gives a bijection between partitions with k excedances and $d-k$ weak excedances, so that

$$
u \mapsto w \mapsto \hat{w}
$$

gives a bijection between partitions with k excedances and partitions with k descents, giving the first desired identity.
(c) Complete the proof of Prop. 1.4.6 by proving that $\operatorname{inv}\left(\gamma_{k}\right)=\operatorname{maj}\left(\eta_{k}\right) \operatorname{implies} \operatorname{inv}\left(\gamma_{k+1}\right)=$ $\operatorname{maj}\left(\eta_{k+1}\right)$ in the case where the last letter w_{k} of γ_{k} is smaller than w_{k+1}.
Solution: If the last letter w_{k} of γ_{k} is smaller than w_{k+1}, then $k \notin D(w)$. Thus we need to show that $\operatorname{maj}\left(\eta_{k+1}\right)=\operatorname{inv}\left(\gamma_{k+1}\right)=\operatorname{inv}\left(\gamma_{k}\right)$. In this case, the last letter in any compartment C of γ_{k} is the smallest letter in the compartment. So when we cyclically shift this compartment, we eliminate $|C|-1$ inversions. But adding w_{k+1} to the end of γ_{k} will also introduce $|C|-$ 1 inversions from that same compartment. Thus, there is no net change in the number of inversions between γ_{k} and γ_{k+1}, as desired.

