Solutions for HW6

Exercise 20. (a) Compute the signless Stirling numbers of the first kind $c(n, k)$ for $n=1,2,3,4$ and $k=1, \ldots, n$ (i) directly, and (ii) using the recursion. Then give the Stirling numbers of the first kind $s(n, k)$ for $n=1,2,3,4$ and $k=1, \ldots, n$.

Solution: Direct computations:

$$
\begin{aligned}
& n=1: c(1,1)=|\{(1)\}|=1 \\
& n=2: c(2,1)=|\{(12)\}|=1, c(2,2)=|\{(1)(2)\}|=1 \\
& n=3: c(3,1)=|\{(123),(132)\}|=2, c(3,2)=|\{(12)(3),(13)(2),(23)(1)\}|=3 \\
& \quad c(3,3)=|\{(1)(2)(3)\}|=1
\end{aligned}
$$

For $n=4$, let's be a little more clever.

$$
\begin{aligned}
c(4,1)= & \left|\left\{w \in \mathcal{S}_{4} \mid \operatorname{type}(w)=(0,0,0,1)\right\}\right|=3!=6 \\
& (\text { every cycle starts with } 4, \text { followed by a permutation of }\{1,2,3\}) \\
c(4,2)= & \left|\left\{w \in \mathcal{S}_{4} \mid \operatorname{type}(w)=(1,0,1,0)\right\} \sqcup\left\{w \in \mathcal{S}_{4} \mid \operatorname{type}(w)=(0,2,0,0)\right\}\right| \\
= & 4 * 2!+\binom{4}{2} / 2=11 \\
c(4,3)= & \left|\left\{w \in \mathcal{S}_{4} \mid \operatorname{type}(w)=(2,1,0,0)\right\}\right|=\binom{4}{2}=6 \\
c(4,4)= & \left|\left\{w \in \mathcal{S}_{4} \mid \operatorname{type}(w)=(4,0,0,0)\right\}\right|=1
\end{aligned}
$$

By recursion:

$$
\left.\begin{array}{rl}
c(1,1) & =c(0,0)+(1-1) c(0,1)=1 \\
c(2,1) & =c(1,0)+(2-1) c(1,1)=1 \\
c(2,2) & =c(1,1)+(2-1) c(1,2)=1 \\
c(3,1) & =c(2,0)+(3-1) c(2,1)=2 * 1=2 \\
c(3,2) & =c(2,1)+(3-1) c(2,2)=1+2 * 1=3 \\
c(3,3) & =c(2,2)+(3-1) c(2,3)=1
\end{array}\right\} \begin{aligned}
& c(4,1)=c(3,0)+3 c(3,1)=3 * 2=6 \\
& c(4,2)=c(3,1)+4 c(3,2)=2+3 * 3=11 \\
& c(4,3)=c(3,2)+3 c(3,3)=3+3=6 \\
& c(4,4)=c(3,3)+3 c(3,4)=1 \\
& n=1: s(1,1)=1 . \\
& n=2: s(2,1)=-1, s(2,2)=1
\end{aligned}
$$

$n=1: s(1,1)=1$.
$n=2: s(2,1)=-1, s(2,2)=1$.
$n=3: s(3,1)=2, s(3,2)=-3, s(3,3)=1$.
(b) Verify $\sum_{k=0}^{n} c(n, k) t^{k}=t(t+1)(t+2) \cdots(t+n-1)$ for $n=0,1,2,3,4$.

Solution: $n=0: 1=c(0,0) \checkmark n=1: t=c(1,1) t \checkmark$.
$n=2: t(t+1)=t^{2}+t=c(2,2) t^{2}+c(2,1) t \checkmark$.
$n=3: t(t+1)(t+2)=t^{3}+3 t^{2}+2 t=c(3,3) t^{3}+c(3,2) t^{2}+c(3,1) t \checkmark$
$n=3: t(t+1)(t+2)(t+3)=t^{4}+6 t^{3}+11 t^{2}+6 t=c(4,4) t^{4}+c(4,3) t^{3}+c(4,2) t^{2}+c(4,1) t \checkmark$.
Exercise 21. (Proving Proposition 1.3.7)
(a) Verify that $\sum_{k=0}^{n} c(n, k) t^{k}=n!Z_{n}(t, t, \ldots, t)$ for $n=1,2,3$, and then explain why this identity holds in general.
Solution:

$$
\begin{aligned}
1!Z_{1}(t) & =t \checkmark \\
2!Z_{2}(t, t) & =t_{1}^{2}+\left.t_{2}\right|_{t_{i}=t}=t^{2}+t \checkmark \\
3!Z_{3}(t, t, t) & =t_{1}^{3}+3 t_{1} t_{2}+\left.2 t_{3}\right|_{t_{i}=t}=t^{3}+3 t^{2}+2 t \checkmark \\
4!Z_{4}(t, t, t, t) & =t_{1}^{4}+6 t_{1}^{2} t_{2}+3 t_{2}^{2}+8 t_{3} t_{1}+\left.6 t_{4}\right|_{t_{i}=t}=t^{4}+6 t^{3}+11 t^{2}+6 t \checkmark
\end{aligned}
$$

In general, the degree k monomials in $n!Z_{n}$ are in bijection with the permutations with k cycles, since the number of cycles in w is equal to the sum over i of $c_{i}(w)$. Thus, when we evaluate at $t_{i}=t$, the coefficient of the degree k term counts the number of permutations with k cycles.
(b) Cary out another example for the third proof of Proposition 1.3.7, again for $n=9$ and $k=4$.

Solution: Let $S=\{4,5,6,7,8\}$ and $f(4)=4, f(5)=3, f(6)=1, f(7)=7, f(8)=1$. Then $T=\{6,7,8,9\}$ and $b_{1}=5, b_{2}=4, b_{3}=3, b_{4}=2, b_{5}=1$. We start to build w with four cycles, each starting with the elements of T :

$$
(6 \quad)(7 \quad)(8 \quad)(9 \quad) .
$$

Then place b_{i}, one by one, so that there are $f\left(a_{i}\right)=b\left(n-b_{i}\right)$ numbers larger than b_{i} to the left of b_{i} (since we're adding them in decreasing order, there's no ambiguity about where to insert them):

$$
\left.\begin{array}{l}
\text { insert } 5 \text { with } 4 \text { values to the left: }\left(\begin{array}{lll}
6 &)(7 &)(8)(95
\end{array}\right) \\
\text { insert } 4 \text { with } 3 \text { values to the left: }\left(\begin{array}{ll}
6 &)(7) \\
\text { (}
\end{array}(84 \quad(94\right.
\end{array}\right)
$$

(c) Walk through and complete the third proof of Proposition 1.3.7.

Solution: Outline the proof given.
Completing the proof is a matter of (1) making sure the insertion algorithm is well-defined (never runs into trouble) and returns a permutation in $\mathcal{S}_{n, k}$, and (2) making sure the algorithm is invertible, and that that inverse always returns a subset $S \in\left(\begin{array}{c}{\left[\begin{array}{c}n-1] \\ n-k\end{array}\right) \text { and function } f: S \rightarrow[n-1]}\end{array}\right.$ with $f(i) \leq i$ whenever fed a permutation in $\mathcal{S}_{n, k}$.

For the first step, the algorithm produces k cycles by design; and when it runs, it places all n terms, so that it returns a permutation in $\mathcal{S}_{n, k}$. The place where we might run into trouble is if it is not possible to place b_{i} with $f\left(a_{i}\right)$ numbers to the left. But $a_{i}=n-b_{i}$, so that, and
$n-b_{i}$ is exactly the number of values (already placed) available which are larger than b_{i}. So the restriction on the function that $f\left(a_{i}\right) \leq a_{i}=n-b_{i}$ is exactly the right condition.

For the inverse, put $w \in \mathcal{S}_{n, k}$ in standard cycle notation. Then T is read off of the first values of each cycle of w; since n must be the largest value in its cycle, we always have $n \in T$. Then T determines S by

$$
S=\{i \in[n-1] \mid n-i \notin T\}
$$

Since $|T|=k,|S|=n-|T|=n-k$, so $S \in\binom{[n-1]}{n-k}$. Finally, $([n]-T)_{>}=\left\{b_{1}, \ldots, b_{n-k}\right\}$ is the set of numbers which do not start the cycles, placed in decreasing order. So set $f\left(a_{i}\right)=$ $\left.f_{(} n-b_{i}\right)=\#\left\{\right.$ values larger than b_{i} to the left of b_{i} in $\left.w\right\}$. Since there are at most $n-b_{i}$ such values, and at least one such value exists (b_{i} doesn't start a cycle, by definition), we have $f: S \rightarrow[n-1]$ and $f\left(a_{i}\right) \leq a_{i}$, as desired.
(d) Read the fourth proof and example 1.3.9. Cary out another example for $n=9$ and $t=4$ for a sequence $\left(a_{1}, \ldots, a_{n}\right)$ of your choice.

Solution: If $n=9, t=4$, then $t+n-i-1=12-i$ and $t-1=3$. Let $a=(0,10,5,2,0,1,1,4,2)$. Then the insertion algorithm goes as follows:

$$
\begin{equation*}
f\left(C_{1}\right)=2+1=3 \tag{9}
\end{equation*}
$$

$$
\begin{gathered}
a_{8}=4=t+0(98) \\
a_{7}=1 \leq 3(7)(98) \\
a_{6}=1 \leq 3(6)(7)(98) \\
a_{5}=0 \leq 3(5)(6)(7)(98) \\
a_{4}=2 \leq 3(4)(5)(6)(7)(98) \\
a_{3}=5=t+1(4)(53)(6)(7)(98) \\
a_{2}=10=t+6(4)(52)(6)(7)(982) \\
a_{1}=0 \leq 0(1)(4)(52)(6)(7)(982)
\end{gathered}
$$

$$
\begin{aligned}
& f\left(C_{2}\right)=1+1=2 \\
& f\left(C_{3}\right)=2 \\
& f\left(C_{4}\right)=1 \\
& f\left(C_{5}\right)=3 \\
& \\
& f\left(C_{6}\right)=1
\end{aligned}
$$

Exercise 22. Using only the combinatorial definitions of the signless Stirling numbers $c(n, k)$, give formulas for $c(n, 1), c(n, n), c(n, n-1)$, and $c(n, n-2)$.

Solution: The permutations of $[n]$ with 1 cycle are in bijection with the permutations of $n-1$ (start the cycle with n, and finish it with a permutation of $[n-1]$), so $c(n, 1)=(n-1)$!.

The only permutation of $[n]$ with n cycles is the identity permutation, so $c(n, n)=1$.
If a permutation of $[n]$ has $n-1$ cycles, that means that it must be of type $(n-2,1,0, \ldots, 0)$. So $c(n, n-1)=\binom{n}{2}$ (choose the two elements to go into the 2-cycle).

If a permutation of $[n]$ has $n-2$ cycles, then it's either of type $(n-3,0,1,0, \ldots, 0)$, of which there are $\binom{n}{3} * 2$ (choose the three elements to go into the 3 -cycle, and then there are 2 permutations that have those three elements in that 3 -cycle), or it's of type ($n-4,2,0, \ldots, 0$), of which there are $\binom{n}{4} * 3$ (choose the 4 elements to go into the two 2 -cycles, and then there are 3 ways to distribute those 4 elements into two 2-cycles). So $c(n, n-2)=2\binom{n}{3}+3\binom{n}{4}$.

Exercise 23. Inversions and descents.
(a) For each of $w \in \mathcal{S}_{3}$, write w in word form and give (i) w^{-1}, (ii) $I(w)$, (iii) $\operatorname{inv}(w)$, (iv) code (w), (v) $D(w)$, (vi) des (w), and (vii) maj (w). (Make a table.)

Solution:

\mathcal{S}_{3}	123	132	213	231	312	321
w^{-1}	123	132	213	312	231	321
$I(w)$	$(0,0,0)$	$(0,1,0)$	$(1,0,0)$	$(2,0,0)$	$(1,1,0)$	$(2,1,0)$
$\operatorname{code}(w)$	$(0,0,0)$	$(0,1,0)$	$(1,0,0)$	$(1,1,0)$	$(2,0,0)$	$(2,1,0)$
$\operatorname{inv}(w)$	0	1	1	2	2	3
$D(w)$	\emptyset	$\{2\}$	$\{1\}$	$\{2\}$	$\{1\}$	$\{1,2\}$
$\operatorname{des}(w)$	0	1	1	1	1	2
$\operatorname{maj}(w)$	0	2	1	2	1	3

(b) Use your calculations in (a) to verify
(i) $I\left(w^{-1}\right)$ and $\operatorname{code}_{i}(w)=\#\{j>i \mid w(j)<w(i)\}$ are equivalent definitions of code (w), CHECK
(ii) Corollary 1.3.13,

Solution:

$$
\sum_{w \in \mathcal{S}_{3}}=q^{0}+q+q+q^{2}+q^{2}+q^{3}=1+2 q+2 q^{2}+q^{3}=(1+q)\left(1+q+q^{3}\right) \checkmark
$$

(iii) Proposition 1.3.14,

Solution: The only permutation to check here is that $\operatorname{inv}(231)=2=\operatorname{inv}(312)$ (the rest of the permutations are equal to their own inverses).
(iv) the proof of Prop 1.3.14 (show the bijection between inversions (i, j) in w and inversions $\left(w_{i}^{-1}, w-1_{j}\right)$ in $\left.w^{-1}\right)$;
Solution: For 132, 213, and 321, the inversion labels are exactly the same as the inversion places (and these permutations are self-inverses). For 231, the inversions are $(2,1)=$ $\left(w_{1}, w_{3}\right)$ and $(3,1)=\left(w_{2}, w_{3}\right)$, where the inversions in 312 are $(3,1)=\left(w_{1}, w_{2}\right)$ and $(3,2)=\left(w_{1}, w_{3}\right)$.
(v) equation (1.41),

Solution: There is 1 permutation with $\operatorname{inv}(w)=0,2$ permutations with $\operatorname{inv}(w)=1,2$ permutations with $\operatorname{inv}(w)=2$, and 1 with $\operatorname{inv}(w)=3$. Similarly, there is 1 permutation with $\operatorname{maj}(w)=0,2 \operatorname{permutations}$ with $\operatorname{maj}(w)=1,2 \operatorname{permutations}$ with $\operatorname{maj}(w)=2$, and 1 with $\operatorname{maj}(w)=3$.
for $n=3$.

