Solutions for HW6

Exercise 20. (a) Compute the signless Stirling numbers of the first kind ¢(n, k) for n = 1,2,3,4
and k = 1,...,n (i) directly, and (ii) using the recursion. Then give the Stirling numbers of
the first kind s(n, k) for n =1,2,3,4 and k =1,...,n.

Solution: Direct computations:
n=1:¢1,1)=|{(1)} =1.
n=2:e(2,1) = {12} = 1,¢(2,2) = {()@)} = 1.
n=3:c(3,1)=[{(123),(132)} = 2,¢(3,2) = {(12)(3), (13)(2), (23)(1)}| = 3,
¢(3,3) = HW)E2)B)} = 1.
For n =4, let’s be a little more clever.
c(4,1) = {w € 84 | type(w) = (0,0,0,1)} =3!'=6
(every cycle starts with 4, followed by a permutation of {1,2,3})
c(4,2) = {w € 84 | type(w) = (1,0,1,0)} U{w € Sy | type(w) = (0,2,0,0)}]

4
:4*2!+<2)/2:11

c(4,3) = {w € &4 | type(w) = (2,1,0,0)}| = <;l) =6

c(4,4) = {w € 84 | type(w) = (4,0,0,0)}| =1

By recursion:

¢(3,1) = ¢(2,0) + (3 - 1)¢(2,1) =2% 1 =2
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c(3,3) =¢c(2,2) +(3-1)c(2,3) =1

c(4,1) = ¢(3,0) +3¢(3,1) =3%2 =6
c(4,2) =¢(3,1) +4¢(3,2) =2+ 3%x3 =11
c(4,3) = ¢(3,2) +3¢(3,3) =3+ 3 =
c(4,4) =¢(3,3) +3¢(3,4) =1

n=1 s(1,1)=1.

n=2 s(2,1)=-1,s(2,2)=1

n=3:s(3,1)=2,5(3,2)=-3,5(3,3) =1

n=3:s(4,1) = -6, s(4,2) =11, s(4,3) = —6, s(4,4) =1



(b)

Verify Y7 _gc(n,k)th =t(t + 1)(t+2)---(t+n—1) forn=0,1,2,3,4.

Solution: n=0:1=¢(0,0)v n=1: t=c¢(1,1)tv.

n=2tlt+1)=1t>+t=c(2,2)t> +c(2,1)tv.

n=3 tlt+1)(t+2)=t3+3t2+2t = c(3, 3)t3 4+ ¢(3,2)t2 + (3, 1)tV

n=3: t{t+1)({t+2)(t+3) =t1+6t3+11t% + 6t = c(4,4)t* + (4, 3)t3 + c(4,2)t% + c(4, 1)tV .

Exercise 21. (Proving Proposition 1.3.7)

(a)

Verify that Y c(n, k)t = nlZ,(t,t,...,t) for n =1,2,3, and then explain why this identity
holds in general.
Solution:
1Z(t) =
217Z5(t,t) =] + tQ}t =12+t
31Z5(t,t,t) = ti’ +3tity + 23], _, = t° + 36> + 207

AIZy(t, 8,1, t) = t] + 615ty + 315 + 8tgty + 6ty|, _, = t* + 6t° + 116 + 6t

In general, the degree k monomials in n!Z,, are in bijection with the permutations with &
cycles, since the number of cycles in w is equal to the sum over i of ¢;(w). Thus, when we
evaluate at t; = t, the coeflicient of the degree k term counts the number of permutations with
k cycles.

Cary out another example for the third proof of Proposition 1.3.7, again for n =9 and k = 4.
Solution: Let S = {4,5,6,7,8} and f(4) = 4, f(5) = 3,f(6) = 1, f(7) = 7, f(8) = 1. Then
T =1{6,7,8,9} and by =5, bg =4, bg = 3, by = 2, b5 = 1. We start to build w with four cycles,
each starting with the elements of 7"

(6 )T )B )9 ).
Then place b;, one by one, so that there are f(a;) = b(n — b;) numbers larger than b; to the left

of b; (since we're adding them in decreasing order, there’s no ambiguity about where to insert
them):

insert 5 with 4 values to the left: (6 )(7 )(8 )(95 )
insert 4 with 3 values to the left: (6 )(7 )(84 )(94 )
insert 3 with 1 value to the left: (63 )(7 )(84 )(94 )
insert 2 with 7 values to the left: (63 )(7 )(84 )(942 )
insert 1 with 1 value to the left: (631)(7)(84)(942) = w

Walk through and complete the third proof of Proposition 1.3.7.

Solution: Outline the proof given.

Completing the proof is a matter of (1) making sure the insertion algorithm is well-defined
(never runs into trouble) and returns a permutation in S,, , and (2) making sure the algorithm is
invertible, and that that inverse always returns a subset S € ([n ,161) and function f : S — [n—1]
with f(i) < whenever fed a permutation in S, j.

For the first step, the algorithm produces k cycles by design; and when it runs, it places all
n terms, so that it returns a permutation in Sy, . The place where we might run into trouble
is if it is not possible to place b; with f(a;) numbers to the left. But a; = n — b;, so that , and



n — b; is exactly the number of values (already placed) available which are larger than b;. So
the restriction on the function that f(a;) < a; = n — b; is exactly the right condition.

For the inverse, put w € S, in standard cycle notation. Then T is read off of the first
values of each cycle of w; since n must be the largest value in its cycle, we always have n € T
Then T determines S by

S={ien-1|n—-i¢T}
Since |T| =k, |S|=n—|T|=n—k,s0 S € ([Z:}j). Finally, ([n] = T)> = {b1,...,bp—x} is
the set of numbers which do not start the cycles, placed in decreasing order. So set f(a;) =

o — b;) = #{values larger than b; to the left of b; in w}. Since there are at most n — b; such

values, and at least one such value exists (b; doesn’t start a cycle, by definition), we have
f:8—=[n—1] and f(a;) < a;, as desired.

(d) Read the fourth proof and example 1.3.9. Cary out another example for n =9 and ¢ = 4 for a
sequence (ai,...,a,) of your choice.

Solution: Ifn=9,t =4, thent+n—i—1=12—¢and t—1 = 3. Let a = (0,10,5,2,0,1, 1,4, 2).
Then the insertion algorithm goes as follows:

(9) f(C)=2+1=3
ag =4 =1t+0(98)
ar =1 < 3(7)(98) f(C)=1+1=2
ag =1 < 3(6)(7)(98) f(Cs5) =2
a5 =0 < 3(5)(6)(7)(98) f(Cy) =
ag =2 < 3(4)(5)(6)(7)(98) f(C5) =3
as =5 =t + 1(4)(53)(6)(7)(98)
agy = 10 = t 4 6(4)(52)(6)(7)(982)
a1 =0 <0(1)(4)(52)(6)(7)(982) f(Cs) =1

Exercise 22. Using only the combinatorial definitions of the signless Stirling numbers ¢(n, k), give
formulas for ¢(n, 1), ¢(n,n), ¢(n,n — 1), and c¢(n,n — 2).

Solution: The permutations of [n] with 1 cycle are in bijection with the permutations of n — 1
(start the cycle with n, and finish it with a permutation of [n — 1]), so ¢(n,1) = (n — 1)L

The only permutation of [n] with n cycles is the identity permutation, so ¢(n,n) = 1.

If a permutation of [n] has n — 1 cycles, that means that it must be of type (n —2,1,0,...,0). So
¢(n,n —1) = (3) (choose the two elements to go into the 2-cycle).

If a permutation of [n] has n — 2 cycles, then it’s either of type (n —3,0,1,0,...,0), of which there
are (g) % 2 (choose the three elements to go into the 3-cycle, and then there are 2 permutations
that have those three elements in that 3-cycle), or it’s of type (n—4,2,0,...,0), of which there are
(Z) * 3 (choose the 4 elements to go into the two 2-cycles, and then there are 3 ways to distribute

those 4 elements into two 2-cycles). So c¢(n,n —2) = 2(3) + 3(}).

Exercise 23. Inversions and descents.



(a) For each of w € S3, write w in word form and give (i) w1, (ii) I(w), (iii) inv(w), (iv) code(w),

(v) D(w), (vi) des(w), and (vii) maj(w). (Make a table.)

Solution:

S3 123 132 213 231 312 321

w ! 123 132 213 312 231 321
I(w) | (0,0,0) | (0,1,0) | (1,0,0) | (2,0,0) | (1,1,0) | (2,1,0)
code(w) | (0,0,0) | (0,1,0) | (1,0,0) | (1,1,0) | (2.0,0) | (2,1,0)

inv(w) 0 1 1 2 2 3

D(w)| 0 {2} {1} {2} {1y | {1,2}

des(w) 0 1 1 1 1 2

maj(w) 0 2 1 2 1 3

(b) Use your calculations in (a) to verify

(1) I(w™!) and code;(w) = #{j > i | w(j) < w(i)} are equivalent definitions of code(w),
CHECK
(ii) Corollary 1.3.13,
Solution:
_ 0 2., 2, 3 _ 2, 3_ 3
Y =+qtq+ P+ P+ =1+2+2 + =1+ )1+ g+ )V
wWES3
(iii) Proposition 1.3.14,
Solution: The only permutation to check here is that inv(231) = 2 = inv(312) (the rest
of the permutations are equal to their own inverses).
(iv) the proof of Prop 1.3.14 (show the bijection between inversions (i, j) in w and inversions
(w; w=1;) inw™);
Solution: For 132, 213, and 321, the inversion labels are exactly the same as the inversion
places (and these permutations are self-inverses). For 231, the inversions are (2,1) =
(w1,ws) and (3,1) = (we,ws), where the inversions in 312 are (3,1) = (wy,wz) and
(37 2) = (wla ’11)3)-
(v) equation (1.41),

Solution: There is 1 permutation with inv(w) = 0, 2 permutations with inv(w) = 1, 2
permutations with inv(w) = 2, and 1 with inv(w) = 3. Similarly, there is 1 permutation
with maj(w) = 0, 2 permutations with maj(w) = 1, 2 permutations with maj(w) = 2,
and 1 with maj(w) = 3.

for n = 3.



