
Solutions for HW6

Exercise 20. (a) Compute the signless Stirling numbers of the first kind c(n, k) for n = 1, 2, 3, 4
and k = 1, . . . , n (i) directly, and (ii) using the recursion. Then give the Stirling numbers of
the first kind s(n, k) for n = 1, 2, 3, 4 and k = 1, . . . , n.

Solution: Direct computations:

n = 1 : c(1, 1) = |{(1)}| = 1.

n = 2 : c(2, 1) = |{(12)}| = 1, c(2, 2) = |{(1)(2)}| = 1.

n = 3 : c(3, 1) = |{(123), (132)}| = 2, c(3, 2) = |{(12)(3), (13)(2), (23)(1)}| = 3,

c(3, 3) = |{(1)(2)(3)}| = 1.

For n = 4, let’s be a little more clever.

c(4, 1) = |{w ∈ S4 | type(w) = (0, 0, 0, 1)}| = 3! = 6

(every cycle starts with 4, followed by a permutation of {1, 2, 3})
c(4, 2) = |{w ∈ S4 | type(w) = (1, 0, 1, 0)} t {w ∈ S4 | type(w) = (0, 2, 0, 0)}|

= 4 ∗ 2! +

(
4

2

)
/2 = 11

c(4, 3) = |{w ∈ S4 | type(w) = (2, 1, 0, 0)}| =
(

4

2

)
= 6

c(4, 4) = |{w ∈ S4 | type(w) = (4, 0, 0, 0)}| = 1

By recursion:

c(1, 1) = c(0, 0) + (1− 1)c(0, 1) = 1

c(2, 1) = c(1, 0) + (2− 1)c(1, 1) = 1

c(2, 2) = c(1, 1) + (2− 1)c(1, 2) = 1

c(3, 1) = c(2, 0) + (3− 1)c(2, 1) = 2 ∗ 1 = 2

c(3, 2) = c(2, 1) + (3− 1)c(2, 2) = 1 + 2 ∗ 1 = 3

c(3, 3) = c(2, 2) + (3− 1)c(2, 3) = 1

c(4, 1) = c(3, 0) + 3c(3, 1) = 3 ∗ 2 = 6

c(4, 2) = c(3, 1) + 4c(3, 2) = 2 + 3 ∗ 3 = 11

c(4, 3) = c(3, 2) + 3c(3, 3) = 3 + 3 = 6

c(4, 4) = c(3, 3) + 3c(3, 4) = 1

n = 1: s(1, 1) = 1.
n = 2: s(2, 1) = −1, s(2, 2) = 1.
n = 3: s(3, 1) = 2, s(3, 2) = −3, s(3, 3) = 1.
n = 3: s(4, 1) = −6, s(4, 2) = 11, s(4, 3) = −6, s(4, 4) = 1.



(b) Verify
∑n

k=0 c(n, k)tk = t(t + 1)(t + 2) · · · (t + n− 1) for n = 0, 1, 2, 3, 4.

Solution: n = 0: 1 = c(0, 0)X n = 1: t = c(1, 1)tX.
n = 2: t(t + 1) = t2 + t = c(2, 2)t2 + c(2, 1)tX.
n = 3: t(t + 1)(t + 2) = t3 + 3t2 + 2t = c(3, 3)t3 + c(3, 2)t2 + c(3, 1)tX
n = 3: t(t+ 1)(t+ 2)(t+ 3) = t4 + 6t3 + 11t2 + 6t = c(4, 4)t4 + c(4, 3)t3 + c(4, 2)t2 + c(4, 1)tX.

Exercise 21. (Proving Proposition 1.3.7)

(a) Verify that
∑n

k=0 c(n, k)tk = n!Zn(t, t, . . . , t) for n = 1, 2, 3, and then explain why this identity
holds in general.

Solution:

1!Z1(t) = tX

2!Z2(t, t) = t21 + t2
∣∣
ti=t

= t2 + tX

3!Z3(t, t, t) = t31 + 3t1t2 + 2t3
∣∣
ti=t

= t3 + 3t2 + 2tX

4!Z4(t, t, t, t) = t41 + 6t21t2 + 3t22 + 8t3t1 + 6t4
∣∣
ti=t

= t4 + 6t3 + 11t2 + 6tX

In general, the degree k monomials in n!Zn are in bijection with the permutations with k
cycles, since the number of cycles in w is equal to the sum over i of ci(w). Thus, when we
evaluate at ti = t, the coefficient of the degree k term counts the number of permutations with
k cycles.

(b) Cary out another example for the third proof of Proposition 1.3.7, again for n = 9 and k = 4.

Solution: Let S = {4, 5, 6, 7, 8} and f(4) = 4, f(5) = 3, f(6) = 1, f(7) = 7, f(8) = 1. Then
T = {6, 7, 8, 9} and b1 = 5, b2 = 4, b3 = 3, b4 = 2, b5 = 1. We start to build w with four cycles,
each starting with the elements of T :

(6 )(7 )(8 )(9 ).

Then place bi, one by one, so that there are f(ai) = b(n− bi) numbers larger than bi to the left
of bi (since we’re adding them in decreasing order, there’s no ambiguity about where to insert
them):

insert 5 with 4 values to the left: (6 )(7 )(8 )(95 )

insert 4 with 3 values to the left: (6 )(7 )(84 )(94 )

insert 3 with 1 value to the left: (63 )(7 )(84 )(94 )

insert 2 with 7 values to the left: (63 )(7 )(84 )(942 )

insert 1 with 1 value to the left: (631)(7)(84)(942) = w

(c) Walk through and complete the third proof of Proposition 1.3.7.

Solution: Outline the proof given.
Completing the proof is a matter of (1) making sure the insertion algorithm is well-defined

(never runs into trouble) and returns a permutation in Sn,k, and (2) making sure the algorithm is

invertible, and that that inverse always returns a subset S ∈
([n−1]
n−k

)
and function f : S → [n−1]

with f(i) ≤ i whenever fed a permutation in Sn,k.
For the first step, the algorithm produces k cycles by design; and when it runs, it places all

n terms, so that it returns a permutation in Sn,k. The place where we might run into trouble
is if it is not possible to place bi with f(ai) numbers to the left. But ai = n− bi, so that , and



n − bi is exactly the number of values (already placed) available which are larger than bi. So
the restriction on the function that f(ai) ≤ ai = n− bi is exactly the right condition.

For the inverse, put w ∈ Sn,k in standard cycle notation. Then T is read off of the first
values of each cycle of w; since n must be the largest value in its cycle, we always have n ∈ T .
Then T determines S by

S = {i ∈ [n− 1] | n− i /∈ T}.

Since |T | = k, |S| = n − |T | = n − k, so S ∈
([n−1]
n−k

)
. Finally, ([n] − T )> = {b1, . . . , bn−k} is

the set of numbers which do not start the cycles, placed in decreasing order. So set f(ai) =
f(n− bi) = #{values larger than bi to the left of bi in w}. Since there are at most n− bi such
values, and at least one such value exists (bi doesn’t start a cycle, by definition), we have
f : S → [n− 1] and f(ai) ≤ ai, as desired.

(d) Read the fourth proof and example 1.3.9. Cary out another example for n = 9 and t = 4 for a
sequence (a1, . . . , an) of your choice.

Solution: If n = 9, t = 4, then t+n−i−1 = 12−i and t−1 = 3. Let a = (0, 10, 5, 2, 0, 1, 1, 4, 2).
Then the insertion algorithm goes as follows:

(9) f(C1) = 2 + 1 = 3

a8 = 4 = t + 0(98)

a7 = 1 ≤ 3(7)(98) f(C2) = 1 + 1 = 2

a6 = 1 ≤ 3(6)(7)(98) f(C3) = 2

a5 = 0 ≤ 3(5)(6)(7)(98) f(C4) = 1

a4 = 2 ≤ 3(4)(5)(6)(7)(98) f(C5) = 3

a3 = 5 = t + 1(4)(53)(6)(7)(98)

a2 = 10 = t + 6(4)(52)(6)(7)(982)

a1 = 0 ≤ 0(1)(4)(52)(6)(7)(982) f(C6) = 1

Exercise 22. Using only the combinatorial definitions of the signless Stirling numbers c(n, k), give
formulas for c(n, 1), c(n, n), c(n, n− 1), and c(n, n− 2).

Solution: The permutations of [n] with 1 cycle are in bijection with the permutations of n − 1
(start the cycle with n, and finish it with a permutation of [n− 1]), so c(n, 1) = (n− 1)!.

The only permutation of [n] with n cycles is the identity permutation, so c(n, n) = 1.

If a permutation of [n] has n− 1 cycles, that means that it must be of type (n− 2, 1, 0, . . . , 0). So
c(n, n− 1) =

(
n
2

)
(choose the two elements to go into the 2-cycle).

If a permutation of [n] has n− 2 cycles, then it’s either of type (n− 3, 0, 1, 0, . . . , 0), of which there
are

(
n
3

)
∗ 2 (choose the three elements to go into the 3-cycle, and then there are 2 permutations

that have those three elements in that 3-cycle), or it’s of type (n− 4, 2, 0, . . . , 0), of which there are(
n
4

)
∗ 3 (choose the 4 elements to go into the two 2-cycles, and then there are 3 ways to distribute

those 4 elements into two 2-cycles). So c(n, n− 2) = 2
(
n
3

)
+ 3
(
n
4

)
.

Exercise 23. Inversions and descents.



(a) For each of w ∈ S3, write w in word form and give (i) w−1, (ii) I(w), (iii) inv(w), (iv) code(w),
(v) D(w), (vi) des(w), and (vii) maj(w). (Make a table.)

Solution:

S3 123 132 213 231 312 321
w−1 123 132 213 312 231 321
I(w) (0, 0, 0) (0, 1, 0) (1, 0, 0) (2, 0, 0) (1, 1, 0) (2, 1, 0)

code(w) (0, 0, 0) (0, 1, 0) (1, 0, 0) (1, 1, 0) (2, 0, 0) (2, 1, 0)
inv(w) 0 1 1 2 2 3
D(w) ∅ {2} {1} {2} {1} {1, 2}

des(w) 0 1 1 1 1 2
maj(w) 0 2 1 2 1 3

(b) Use your calculations in (a) to verify
(i) I(w−1) and codei(w) = #{j > i | w(j) < w(i)} are equivalent definitions of code(w),

CHECK
(ii) Corollary 1.3.13,

Solution:∑
w∈S3

= q0 + q + q + q2 + q2 + q3 = 1 + 2q + 2q2 + q3 = (1 + q)(1 + q + q3)X

(iii) Proposition 1.3.14,

Solution: The only permutation to check here is that inv(231) = 2 = inv(312) (the rest
of the permutations are equal to their own inverses).

(iv) the proof of Prop 1.3.14 (show the bijection between inversions (i, j) in w and inversions
(w−1i , w−1j) in w−1);

Solution: For 132, 213, and 321, the inversion labels are exactly the same as the inversion
places (and these permutations are self-inverses). For 231, the inversions are (2, 1) =
(w1, w3) and (3, 1) = (w2, w3), where the inversions in 312 are (3, 1) = (w1, w2) and
(3, 2) = (w1, w3).

(v) equation (1.41),

Solution: There is 1 permutation with inv(w) = 0, 2 permutations with inv(w) = 1, 2
permutations with inv(w) = 2, and 1 with inv(w) = 3. Similarly, there is 1 permutation
with maj(w) = 0, 2 permutations with maj(w) = 1, 2 permutations with maj(w) = 2,
and 1 with maj(w) = 3.

for n = 3.


