
Solutions for HW4

Exercise 13.

(a) Prove

(1 + x1 + x21 + · · · )(1 + x2 + x22 + · · · ) · · · (1 + xn + x2n + · · · ) =
∑

M=(S,ν)

∏
xi∈S

x
ν(xi)
i ,

by induction on n.

Solution: First note that since the multisets on {x1} are determined by ν(x1), the set of
multisets on {x1} is in bijection with N. So

1 + x1 + x21 + · · · =
∑
k∈N

xk1 =
∑

M=({x1},ν)

x
ν(x1)
1 =

∑
M=({x1},ν)

∏
xi∈{x1}

x
ν(xi)
i ,

so our identity holds for n = 1.
Now fix n and assume, for S = {x1, . . . , xn}, we have

(1 + x1 + x21 + · · · )(1 + x2 + x22 + · · · ) · · · (1 + xn + x2n + · · · ) =
∑

M=(S,ν)

∏
xi∈S

x
ν(xi)
i .

Then with S′ = S t {xn+1},
(1 + x1 + x21 + · · · )(1 + x2 + x22 + · · · ) · · · (1 + xn+1 + x2n+1 + · · · )

IHOP
= (1 + xn+1 + x2n+1 + · · · )

∑
M=(S,ν)

∏
xi∈S

x
ν(xi)
i

=
∑
k∈N

∑
M=(S,ν)

∏
xi∈S

x
ν(xi)
i

xkn+1

=
∑

M=(S′,ν)

∏
xi∈S′

x
ν(xi)
i .

So our identity holds for all n by induction.

(b) Show algebraically that
(−n
k

)
(−1)k =

(
n+k−1

k

)
.

Solution:(
−n
k

)
(−1)k =

1

k!
(−1)n(−n)(−n− 1) . . . (−n− k + 1) =

1

k!
n(n+ 1) · · · (n+ k− 1) =

(
n+ k − 1

k

)
.

(c) (a) Write the generating function (both series and closed form) for the number of weak com-
positions of n with k parts.
[Hint: This should look something like the generating function for multisets.]

Solution: Since the number of weak compositions of n with k parts is(
n+ k − 1

k − 1

)
=

((
k − 1

n

))
,

the generating function for weak compositions of n with k parts is∑
n∈N

(
n+ k − 1

k − 1

)
xn = (1− x)−k.



(b) Write the generating function (both series and closed form) for the number of (not weak)
compositions of n with k parts.

Solution: Since the number of compositions of n with k parts is
(
n−1
k−1
)
, the generating

function for compositions of n with k parts is

n∑
k=1

(
n− 1

k − 1

)
xk =

n−1∑
`=0

(
n− 1

`

)
x`+1 = x(1 + x)n−1.

(c) Write the generating function for the number of weak compositions of n with k parts, all
less than j.

Solution: Let κ(n, j, k) be the number of weak compositions of n with k parts, all less than
j. Start with

(1 + x1 + x21 + · · ·+ xj−11 )(1 + x2 + x22 + · · ·+ xj−12 ) · · · (1 + xk + x2k + · · ·+ xj−1n )

=
∑
n∈N

∑
α1+···+αk=n
1≤αi≤j−1

xα1
1 · · ·x

αk
k .

Then evaluating at x1 = · · · = xk = x, we get∑
n∈N

κ(n, j, k)xn =
∑
n∈N

∑
α1+···+αk=n
1≤αi≤j−1

xn

= (1 + x+ x2 + · · ·+ xj−1)k

= (1− xj)k(1− x)−k.

(d) Item give a generating function proof that the number of weak compositions of n into k
parts, with each part less than j, is∑

r,s∈N
r+sj=n

(−1)s
(
k + r − 1

r

)(
k

s

)
.

Solution: Continuing from the previous part, use the generalized binomial theorem to
expand ∑

n∈N
κ(n, j, k)xn = (1− xj)k(1− x)−k

=

(∑
s∈N

(
k

s

)
(−xj)s

)(∑
r∈N

(
−k
r

)
(−x)r

)

=

(∑
s∈N

(
k

s

)
(−1)sxsj

)(∑
r∈N

(
−k
r

)
(−1)rx

)

=

(∑
s∈N

(
k

s

)
(−1)sxsj

)(∑
r∈N

(
k + r − 1

r

)
x

)
,



since
(−k
r

)
(−1)r =

(
k+r−1
r

)
. Now using the multiplication rule for series, we have that the

coefficient of xn on the last line is∑
r,s∈N
r+sj=n

(
k

s

)
(−1)s

(
k + r − 1

r

)
,

thus proving the desired result.

Exercise 14.

(a) Deriving multinomial coefficients algebraically. Let α = (α1, . . . , α`) be a composition
of n. Use the formula

(
n
k

)
= n!

k!(n−k)! to compute
(

n
α1,...,α`

)
, noting that you can first choose the

α1 items from n, then α2 from n− α1, then α3 from n− (α1 + α2), and so on.

Solution: By first choosing the α1 items from n, then α2 from n−α1, then α3 from n−(α1+α2),
and so on, product rule says that(

n

α1, . . . , α`

)
=

(
n

α1

)(
n− α1

α2

)(
n− (α1 + α2)

α3

)
· · ·
(
n− (α1 + · · ·α`−1)

α`

)
=

n!

α1!(n− α1)!

(n− α1)!

α2!(n− (α1 + α2))!

(n− (α1 + α2))!

α3!(n− (α1 + α2 + α3))!
· · · (n− (α1 + · · ·+ α`−1))!

α`!(n− (α1 + · · ·+ α`))!

=
n!

α1! · · ·α`!0!
=

n!

α1! · · ·α`!
,

since n− (α1 + · · ·+ α`) = n− n = 0.

(b) Multinomial theorem. Following our proof of the binomial theorem, show that

(x1 + x2 + · · ·+ x`)
n =

∑
(α1,...,α`)∈N`
α1+···+α`=n

(
n

α1, . . . , α`

)
xα1
1 xα2

2 · · ·x
α`
` .

[Hint: Recall that the key computation for the binomial theorem was that, for S = {x(1), . . . , x(n)},∏
x(i)∈S

(1 + x(i)) =
∑
T⊆S

∏
x(i)∈T

x(i), so that (1 + x)n =
∑
T⊆S

∏
x(i)∈T

x =
∑
T⊆S

x|T |.

The former we had to prove by induction on n. Now fix `, and let S = {x(j)i | 1 ≤ i ≤ `, 1 ≤
j ≤ n} (so that there are n distinct variables associated to each xi), and walk through a similar
proof.]

Solution: First consider the case where n = 1, so that∑
(α1,...,α`)∈N`
α1+···+α`=1

(
1

α1, . . . , α`

)
xα1
1 xα2

2 · · ·x
α`
` =

∑̀
i=1

x01 · · ·x0i−1x1ix0i+1 · · ·x0` =
∑̀
i=1

xi.X

Now assume

(x1 + x2 + · · ·+ x`)
n−1 =

∑
(α1,...,α`)∈N`
α1+···+α`=n−1

(
n− 1

α1, . . . , α`

)
xα1
1 xα2

2 · · ·x
α`
`



for a fixed n. Note that since
(

n
α1,...,α`

)
gives the number of ways of partitioning [n] into labeled

` sets of size α1, . . . , α`, respectively, by tracking which set n goes into, we have that(
n

α1, . . . , α`

)
=
∑̀
i=1

(
n− 1

α1, . . . , αi−1, αi − 1, αi+1, · · · , α`

)
(∗)

(this is the multinomial coefficient generalization of the identity
(
n
k

)
=
(
n−1
k−1
)

+
(
n
k

)
, since(

n
k

)
=
(

n
k,n−k

)
). So

(x1 + x2 + · · ·+ x`)
n IHOP

=

(∑̀
i=1

xi

) ∑
(α1,...,α`)∈N`
α1+···+α`=n−1

(
n− 1

α1, . . . , α`

)
xα1
1 xα2

2 · · ·x
α`
`

=
∑̀
i=1

∑
(α1,...,α`)∈N`
α1+···+α`=n−1

(
n− 1

α1, . . . , α`

)
xi(x

α1
1 xα2

2 · · ·x
α`
` )

=
∑

(α1,...,α`)∈N`
α1+···+α`=n−1

∑̀
i=1

(
n− 1

α1, . . . , α`

)
xα1
1 · · ·x

αi−1

i−1 x
αi+1
i x

αi+1

i+1 · · ·x
α`
`

=
∑

(α′1,...,α
′
`
)∈N`

α′1+···+α
′
`
=n

∑̀
i=1

(
n− 1

α1, . . . , αi−1, αi − 1, αi+1, · · · , α`

)
x
α′1
1 x

α′2
2 · · ·x

α′`
`

=
∑

(α′1,...,α
′
`
)∈N`

α′1+···+α
′
`
=n

(
n+ 1

α′1, . . . , α
′
`

)
x
α′1
1 x

α′2
2 · · ·x

α′`
` ,

by (∗).

(c) Lattice paths. Proposition 1.2.1 in EC1 says the following. Let v = (a1, . . . , ad) ∈ Nd, and
let ei denote the ith unit coordinate vector in Zd. The number of lattice paths in Zd from
the origin (0, 0, . . . , 0) to v with steps in {e1, . . . , ed} is given by the multinomial coefficient(
a1+···+ad
a1,...,ad

)
.

(i) Check this proposition for d = 2 with the point v = (2, 3).

Solution: The lattice paths from (0, 0) to (2, 3) with steps in S = {(1, 0), (0, 1)} are

, , , , , , , , , ,

of which there are 10 = (2+3)!
2!3! =

(
2+3
2,3

)
. X

(ii) Check this proposition for d = 3 with the point v = (1, 1, 2).

Solution: The lattice paths from (0, 0, 0) to (1, 1, 2) with steps in S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
are



v

,
v

,

v

,

v

,

v

,

v

,

v

,

v

,

v

,

v

,

v

,

v

,

of which there are 12 = (1+1+2)!
1!1!2! =

(
1+1+2
1,1,2

)
. X

(iii) Prove this theorem (spell out the book’s proof with more details).

Solution: Let v0, . . . , vk be a lattice path from 0 to vk = (a1, · · · , ad) with elementary
steps, where k = a1 + · · ·+ ad. Then consider the sequence determined by the path

(v1 − v0, v2 − v1, . . . , vk − vk−1) = (ei1 , ei2 , . . . , eik) ∈ SM ,
where M is the multiset on S = {e1, . . . , ed} with weight ν(ei) = ai. Similarly, each
sequence (ei1 , ei2 , . . . , eik) ∈ SM determines the path

0, ei1 , ei1 + ei2 , . . . , ei1 + · · ·+ eik ,

from 0 to ei1 +· · ·+eik = (a1, . . . , ad). So the lattice paths from 0 to vk = (a1, · · · , ad) with

elementary steps are in bijection with permutations in SM , of which there are
(
a1+···+ad
a1,...,ad

)
.

(d) Integer partitions. An (integer) partition λ = (λ1, . . . , λ`) of n is a composition of n
satisfying λ1 ≥ λ2 ≥ · · · ≥ λ` > 0. We draw partitions as n boxes piled up and to the left into
a corner, with λ1 boxes in the first row, λ2 boxes in the second row, and so on. For example,

λ = (3, 3, 2, 1, 1, 1) = is a partition of 11,

λ = (5, 4, 3) = is a partition of 12,

λ = (5) = is a partition of 5, and

λ = ∅ is a partition of 0.

The six partitions to fit in a 2× 2 square are

∅ = , (1) = , (2) = , (1, 1) = , (2, 1) = , and (2, 2) = .

Use lattice paths to count the number of integer partitions fitting into a m× n rectangle.

Solution: Note that by taking a partition inside an m× n rectangle, and overlaying an m× n
grid with the origin (0, 0) at the south-west corner, we have that tracing the south-east wall
of the partition, tracing the wall of the grid when appropriate, determines a lattice path from
(0, 0) to (n,m) with elementary steps. Vice versa, any lattice path from (0, 0) to (n,m) with
elementary steps determines the partition whose ith part ends at the m− i+ 1st up-step. For
example,

0
←→

0
and

0
←→

0

Thus, partitions inside an m × n rectangle are in bijection with lattice paths from (0, 0) to

(n,m) with elementary steps, of which there are
(
n+m
n,m

)
.



Exercise 15.

(a) For each of the following, give examples for small values of n. Then express the following
numbers in terms of the Fibonacci numbers.

(i) Example: The number of subsets S of the set [n] = {1, 2, . . . , n} such that S contains
no two consecutive integers.

Answer: Let an be the number of good subsets of [n]. Note that a1 = |{∅, {1}}| = 2 and
a2 = {∅, {1}, {2}} = 3.
Now divide S into 2 cases: either it contains n or it doesn’t. Since every good subset
without n is also a good subset of [n − 1], and vice versa, the number of good subsets
without n is an−1. Similarly S 7→ S − {n} is a bijection between good subsets of [n]
containing n and good subsets of [n− 2], the number of good subsets of [n] containing n
is an−2. So an = an−1 + an−2, with a1 = 2 = f3, a2 = 3 = f4. This is the same recurrence
that determines fn, but shifted so that an = fn+2.

So there are fn+2 good subsets of [n]. �

NOTE: For many of these, this is the strategy you want. Make a recurrence relation that
looks like the Fibonacci recurrence, and shift appropriately. For at least one, you’ll want
to use a previous part.

(ii) The number of compositions of n into parts greater than 1.

Solution: Let

Sn = { compositions of n into parts greater than 1 },
An = { compositions of n into parts greater than 1, whose last part is 2 }, and

Bn = { compositions of n into parts greater than 1, whose last part is note 2 },

so that an = |Sn| is the value we wish to enumerate, and

Sn = An tBn, so that an = |An|+ |Bn|.
Note that a0 = a1 = 0, and a2 = |{(2)}| = 1.
The function from An which takes (α1, . . . , α`, 2) to (α1, . . . , α`) is a function from An to
Sn−2 since α1 + · · ·+ α` + 2 = n and αi > 1. Its inverse, appending a good composition
of n− 2 by 2, is well-defined, so An is in bijection with Sn−2.
Similarly, the function from Bn which takes (α1, . . . , α`) to (α1, . . . , α` − 1) is a function
from Bn to Sn−1, since (α1 + · · · + α`) − 1 = n − 1 and αi > 1 for i = 1, . . . , ` = 1, and
α` > 2 so α` − 1 > 1. Its inverse, adding 1 to the last part, is well-defined, so Bn is in
bijection with Sn−1.
Thus

an = |Sn| = |An|+ |Bn| = |Sn−2|+ |Sn−1| = an−2 + an−1.

Since a1 = 0 = f0 and a2 = 1 = f1, we have an = fn+1 .

(iii) The number of compositions of n into parts equal to 1 or 2.

Solution: Let

Sn = { compositions of n into into parts equal to 1 or 2 },
An = { compositions in Sn, whose last part is 1 }, and

Bn = { compositions in Sn, whose last part is 2 },



so that an = |Sn| is the value we wish to enumerate, and

Sn = An tBn, so that an = |An|+ |Bn|.
Note that a0 = 0, and a1 = |{(1)}| = 1.
The function from An which takes (α1, . . . , α`, 1) to (α1, . . . , α`) is a function from An
to Sn−1 since (α1 + · · · + α`) + 1 = n and αi = 1 or 2. Its inverse, appending a good
composition of n− 1 by 1, is well-defined, so An is in bijection with Sn−1.
Similarly, the function from Bn which takes (α1, . . . , α`, 2) to (α1, . . . , α`) is a function
from Bn to Sn−2, since (α1 + · · ·+ α`) + 2 = n and αi = 1 or 2. Its inverse, appending a
good composition of n− 2 by 2, is well-defined, so Bn is in bijection with Sn−2.
Thus

an = |Sn| = |An|+ |Bn| = |Sn−1|+ |Sn−2| = an−1 + an−2.

Since a0 = 0 = f0 and a1 = 1 = f1, we have an = fn .

(iv) The number of compositions of n into odd parts.

Solution: Let

Sn = { compositions of n into into odd parts },
An = { compositions in Sn, whose last part is 1 }, and

Bn = { compositions in Sn, whose last part is not 1 },

so that an = |Sn| is the value we wish to enumerate, and

Sn = An tBn, so that an = |An|+ |Bn|.
Note that a0 = 0, and a1 = |{(1)}| = 1.
The function from An which takes (α1, . . . , α`, 1) to (α1, . . . , α`) is a function from An to
Sn−1 since (α1 + · · · + α`) + 1 = n and αi is odd for all i. Its inverse, appending a good
composition of n− 1 by 1, is well-defined, so An is in bijection with Sn−1.
Similarly, the function from Bn which takes (α1, . . . , α`) to (α1, . . . , α` − 2) is a function
from Bn to Sn−2, since (α1 + · · · + α`) + 2 = n and αi is odd, and α` ≥ 3 and odd so
that α`− 2 ≥ 1 and odd. Its inverse, adding 2 to the last part, is well-defined, so Bn is in
bijection with Sn−2.
Thus

an = |Sn| = |An|+ |Bn| = |Sn−1|+ |Sn−2| = an−1 + an−2.

Since a0 = 0 = f0 and a1 = 1 = f1, we have an = fn .

(v) The number of sequences (ε1, ε2, . . . , εn) of 0s and 1s such that ε1 ≤ ε2 ≥ ε3 ≤ ε4 ≥ · · · .
Solution: Let

Sn = { good sequences },
An = { sequences in Sn, whose value is 0 }, and

Bn = { compositions in Sn, whose value is 1 },

so that an = |Sn| is the value we wish to enumerate, and

Sn = An tBn, so that an = |An|+ |Bn|.
Note that a1 = |{(0), (1)}| = 2, and a2 = |{(0, 0), (0, 1), (1, 1)}| = 3.
We consider two cases:



(i) n odd, so that the last inequality is ‘≥’.
If ε ∈ An, then εn−1 ≥ εn = 0, which puts no restriction on εn−1, nor any previous
εi. So good sequences

ε1 ≤ ε2 ≥ ε3 ≤ · · · ≤ εn−1 ≥ 0

are in bijection with good sequences

ε1 ≤ ε2 ≥ ε3 ≤ · · · ≤ εn−1,
i.e. An is in bijection with Sn−1.
If ε ∈ Bn, then εn−1 ≥ εn = 1, so εn−1 = 1. However, εn−2 ≤ εn−1 = 1 puts no
restriction on εn−2, nor any previous εi. So good sequences

ε1 ≤ ε2 ≥ ε3 ≤ · · · ≥ εn−2 ≤ 1 ≥ 1

are in bijection with good sequences

ε1 ≤ ε2 ≥ ε3 ≤ · · · ≤ εn−2,
i.e. Bn is in bijection with Sn−2.

(ii) n even, so that the last inequality is ‘≤’.
This follows exactly as in the previous case, except now An is in bijection with Sn−2
and Bn is in bijection with Sn−1.

Either way,

an = |Sn| = |An|+ |Bn| = |Sn−1|+ |Sn−2| = an−1 + an−2.

Since a1 = 2 = f3 and a2 = 3 = f4, we have an = fn+2 .

(vi) The number of sequences (T1, T2, . . . , Tk) of subsets Ti of [n] such that T1 ⊆ T2 ⊇ T3 ⊆
T4 ⊇ · · · .

Solution: For each i ∈ [n], assign a sequence ε(i) = (ε
(i)
1 , . . . , ε

(i)
k ) by

ε
(i)
j =

{
0 if i /∈ Tj ,
1 if i ∈ Tj .

Note that

Tj ⊆ Tj+1 if and only if ε
(i)
j ≤ ε

(i)
j+1 for all i ∈ [n],

and

Tj ⊇ Tj+1 if and only if ε
(i)
j ≥ ε

(i)
j+1 for all i ∈ [n].

So by spanning over i ∈ [n], we get a sequence ε = (ε(1), . . . , ε(k)) of sequences ε(i) =

(ε
(i)
1 , . . . , εk) of 1’s and 0’s satisfying

ε
(i)
1 ≤ ε

(i)
2 ≥ ε

(i)
3 ≤ ε

(i)
4 ≥ · · · .

Similarly, any such a sequence of good sequences gives a sequence of subset Ti of [n]
such that T1 ⊆ T2 ⊇ T3 ⊆ T4 ⊇ · · · . Since the sequences corresponding to each i are
independent of each other, and the number of good sequences ε(i) is fk+2 by the previous
part, we have the number of good sequences of subsets is given by

|{ε(1)}| · · · |{ε(n)}| = fk+2 · · · fk+2 = fnk+2 .



(vii) The sum
∑
α1α2 · · ·α` over all 2n−1 compositions α = (α1, α2, . . . , α`) of n.

[Hint: this sum counts the number of ways of inserting at most one vertical bar in each
of the n − 1 spaces between stars in a line of n stars, and then circling one star in each
compartment. Now try replacing bars, un-circled stars, and circled stars by 1’s, 2’s, and
1’s, respectively. Use a previous part.]

Solution: Let Sn be the set of strong stars and bars arrangements with n stars and `− 1
bars, together with a choice of distinguished star for each of the ` regions. For example,
if n = 10 and ` = 3, elements of Sn include

∗|∗ ∗|∗ ∗ ∗ ∗ ∗ ∗ ∗ , ∗|∗ ∗|∗ ∗ ∗ ∗ ∗ ∗ ∗ , and ∗ ∗ ∗ ∗|∗ ∗ ∗|∗ ∗ ∗ .
Since strong star and bar arrangements with n stars and ` − 1 bars are in bijection
with compositions of n with ` parts, and for each such arrangement corresponding to the
composition (a1, . . . , a`), there are a1 · · · a` ways to choose the distinguished stars (product
rule), we have

|Sn| =
∑

comps α of n

α1 · · ·α`.

Now for each arrangement in Sn assign the sequence of 1’s and 2′s by replacing bars, un-
circled stars, and circled stars by 1’s, 2’s, and 1’s, respectively. For example, the sequences
corresponding to the arrangements above are

111212222222, 112112222222, and 212212211122,

respectively. For a fixed `, there are `− 1 bars, ` circled stars, and n− ` uncircled stars,
so the values sum to (`− 1) ∗ 1 + ` ∗ 1 + (n− `) ∗ 2 = `− 1 + `+ 2n− 2` = 2n− 1, which
is independent of `. So we have mapped Sn to compositions of 2n− 1 whose parts are all
1’s and 2’s.
Now, lets consider the inverse operation. Since 2n− 1 is odd, any composition of 2n− 1
whose parts are all 1’s and 2’s will have an odd number of 1’s. So for any such composition,
replace all the 2′s by stars, and then replace each of the 1’s from left to right, alternating,
with circled stars and bars (the first 1 becomes a circled star, the second 1 becomes a bar,
and so on). If there are r 2’s, then there are s = 2n − 1 − 2r 1’s; and (s + 1)/2 of those
1’s will become circled stars. So the subsequent arrangement will consist of

r + (s+ 1)/2 = r + (2n− 1− 2r + 1)/2 = r + n− r = n stars (circled and uncircled),

and

(s− 1)/2 = (2n− 1− 2r − 1)/2 = n− r − 1 bars.

[Note that since, over all such sequences, r can range from 0 to n− 1, the number of bars
can range from 0 to n−1, as desired] So this inverse from all compositions of 2n−1 whose
parts are 1’s and 2’s is a well-defined map to Sn. Therefore, we have a bijection.
Thus, by part (a)(iii), ∑

comps α of n

α1 · · ·α` = |Sn| = f2n−1.

(b) Consider the identity

fn+1 =

n∑
k=0

(
n− k
k

)
.



(i) Check this identity for n = 2 and 3.

Solution:

f2 =
1∑

k=0

(
1− k
k

)
=

(
1

0

)
+

(
0

1

)
= 1 + 0 = 1X

f3 =

2∑
k=0

(
1− k
k

)
=

(
2

0

)
+

(
1

1

)
+

(
0

2

)
= 1 + 1 + 0 = 2X

(ii) Prove this identity recursively by showing that it satisfies the Fibonacci recurrence, and
that it holds for the first 2 values.

Solution: Recall the identity that(
a

b

)
=

(
a− 1

b

)
+

(
a− 1

b− 1

)
,

and let F (n+ 1) =
∑n

k=0

(
n−k
k

)
. Then

F (n) + F (n− 1) =
n−1∑
k=0

(
n− k − 1

k

)
+
n−2∑
k=0

(
n− k − 2

k

)

=
n−1∑
k=0

(
n− k − 1

k

)
+
n−1∑
`=1

(
n− `− 1

`− 1

)
(setting ` = k + 1)

=

(
n− 1

0

)
+

n−1∑
k=1

((
n− k − 1

k

)
+

(
n− k − 1

k − 1

))

=

(
n

0

)
+
n−1∑
k=1

(
n− k
k

)

=
n∑
k=0

(
n− k
k

)
,

since
(
n−n
n

)
= 0. But the last line is just F (n + 1). So F (n) satisfies the Fibonacci

recurrence and F (2) = f2 and F (3) = f3. Thus F (n) = fn.

(iii) Prove this identity combinatorially. Namely, first show combinatorially that the number

of k-subsets of [n−1] containing no two consecutive integers is
(
n−k
k

)
, and then use (a)(i).

Solution: Let Sn,k be k-subsets of [n − 1] containing no two consecutive integers. For
A = {a1 < a2 < · · · < ak} ∈ Sn,k, consider the map

ϕ : {a1, a2, . . . , ak} 7→ {a1, a2 − 1, a3 − 2, . . . , ak − k + 1} = {b1, b2, b3, . . . , bk},
i.e. bi = ai − i+ 1. Since A contains no two consecutive integers,

bi+1 − bi = ai+1 − (i+ 1) + 1− (ai − i+ 1) = ai+1 − ai − 1 > 0,

so this map is a well-defined map of sets. Moreover, b1 = a1 ≥ 1 and bk = ak − k + 1 ≤
n− 1− k + 1 = n− k, and b1 < bi < bk, so ϕ(A) ∈

([n−k]
k

)
.

The inverse, sending a set B = {b1 < b2 < · · · < bk} ∈
([n−k]

k

)
to

ϕ−1 : {b1, b2, . . . , bk} 7→ {b1, b2 + 1, b3 + 2, . . . , bk + k − 1}



is well-defined with image in Sn,k, since we have dilated the entries of B (giving no two
consecutive elements) and bk + k− 1 ≤ n− k+ k− 1 = n− 1. So Sn,k is in bijection with([n−k]

k

)
.

Thus by (a)(i),

n∑
k=0

(
n− k
k

)
=

n−1∑
k=0

(
n− k
k

)
=

n−1∑
k=0

|Sn,k| = fn−1+2 = fn+1.

(c) Note that EC1, Example 1.1.12 to computes the generating function for the sequence (ai)i∈N,
where ai = fi+1 (so a0 = 1, a1 = 1, a2 = 2, a3 = 3, and so on). Repeat this computation for
(fi)i∈Z>0 , making the appropriate changes to accommodate the shift.

Solution: Just do it.


