Solutions for HW?2

Exercise 4. (a) Give both the generating and exponential generating functions for
f(n)=13"% g(n) =3; e(n) =3n; and P(n)=n!3"; for n € N.

For each, give your answer in series form. Whenever possible, also give your answer in closed

form.
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(b) Verify the rule for multiplying basic and exponential formal series for I = N, for the first 4
coefficients. In other words, calculate ¢, for n = 0,1, 2,3 by multiplying out the left hand side
of

(ap 4+ a1z 4 asx® 4+ aza® 4+ - )(bg + bz + boax? + b3x +---) = co + c12 + cox? + 32> + -+,

and comparing coefficients (and similarly for the exponential case).



Solution:

Generating function rule:

(ao + a1x+a2x2 + CL3$3 + - )(bo + b1z + b2$2 + b3x3 —+ .- )

= agbo + (agh1 + aibo)x + (agby + ayby + abg)z?
+ (agbs + aiby 4 agby + azbg)z® + - --

0
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apby + a1by + azbg = Z aiba_iv’
=0
3
apbs + a1bs + asby + agby = Z a;bz_iv’
i=0

Exponential generating function rule:

(c) Verify that
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by solving for b,, in the equation

where

(i anx"> <§: b,ﬂ:") = i ",
n=0 n=0 n=0

ap = a1 = cg =1, and ay,c, = 0 otherwise,



Le, Yo panz™ =1+ 2z and > 7 cpa™ = 0. [See ECI, Example 1.1.5; but be more explicit.|
Solution: Write -1~ = 3" b,z", so that

1:(1—:U)<1ix>

=(1—x)(bo + b1z + box? + b3z® +---)
=bo + (b1 — bo)x + (bo — b1)x* + (b3 — be)a® + - --

=bo+ > (bn = bp1)z".
n=1

Comparing coefficients on either side, we have
bp=1 and bn — b,,—1 =0 for n > 0;
ie.
bp=1 and bn, = b1 for n > 0.
Thus b, = 1 for n € N, i.e. &= = Y>> (2" as expected.

Exercise 5. For each of the following identities,

(i) check by hand for n = 3;
(i) verify using the binomial theorem, evaluating for specific values of x;
(iii) give a combinatorial proof of the identity.

W > (5) =2

k=0

Solution:
(i) check by hand for n = 3:

S (0= ()+ () ()+ () -reswsn-sone

(ii) verify using the binomial theorem, evaluating for specific values of x:
Evaluate the binomial theorem at x = 1 to get

i(Z) :i(Z)lk:(lJrl)”:Z”.

k=0 k=0
(iii) give a combinatorial proof of the identity:

Let f(n) be the number of subsets of [n]. On the one hand, we know f(n) = 27| = 27,
On the other hand, one can sum up the number of subsets of size k for k = 0,1,...,n,

which gives §
(O ()

n

Thus



b)Y k<Z> =n2"! forn > 0
k=0
[Hint: for (ii), differentiate first].

Solution:

(i) check by hand for n = 3:

3
3\ 3 3 3\ o -
kzz()k<k>_0+<1>+2<2>+3<3>_3+6+3_12_3*2 v,

(ii) verify using the binomial theorem, evaluating for specific values of x:
Differentiate the binomial theorem to get

n

3 <Z> kb=t = n(1 + z)" .

k=0
Then evaluate at © = 1 to get

n

3 <Z>k =n(l+1)"t = np2n .

k=0

(iii) give a combinatorial proof of the identity:
Let f(n) be the number of ways to pick a committee of any size from n people, together
with a person to run meetings. On the one hand, you can choose a committee of k people
(for k between 1 and n) and then choose the leader, giving

-5 G50

by the sum and product rules. On the other hand, you can choose the leader = € [n] first,
and then a committee from the remaining set [n] — {z}; giving

fln) = n2llPll=1 — pon—1
Thus

zn: (Z)k = f(n) = n2"L,

k=0

n
(c) Z(—l)k<z> =0forn>0
k=0
[Hint: For (iii), rewrite the identity by moving the negative terms to the right (generally good
practice for combinatorial proofs). Construct a bijection between the set E,, of all subsets of

[n] that have an even number of elements and O,,, the odd counterpart.].

Solution:
(i) check by hand for n = 3:

()= () () () ()1



(ii) verify using the binomial theorem, evaluating for specific values of x:

Evaluate the binomial theorem at x = —1 to get
n
) (Z) (-1)F=(@1-1)" =0
k=0

(iii) give a combinatorial proof of the identity:
The identity of interest is equivalent to the identity

-0

Let E,, be the set of subsets of [n] that have an even number of elements, and O,, be the
set of subsets of [n] that have an odd number of elements. Note that

Bl =Y (Z) and  |On = Y (:)

k even k odd
Define a map on F,, by

A—{n ifneA,
o) = A0
Au{n} ifn¢ A
Since adding or removing one element changes the parity of the set A, ¢ : B, — O,,. The

same map on O, is exactly the inverse function ¢~!: O, — E, (i.e. ¢ is a fixed-point
free involution on 2/ that swaps E, and O,). Therefore

5 (Z) = |Eu| =00l = > <Z>

k even k odd
giving the expected identity.



Exercise 6. Use the multiplication rules for exponential series to show that
- n
l=c¢""" implies Z(—l)k (k:) =0 forn>0
k=0
(our third proof, making EC1, Example 1.1.6 more explicit).
Solution: Write
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where
ap = (—1)" and b, =1 for n € N.

Thus since

" /n " /n i

<k>akbnk = Z (k) (=1~
k=0 k=0

we have

1l=e"%" = (Z(—l)”i) (Z 9::) = ( <Z> (—1)’“) ™.
neEN ' neN neN \k=0

Comparing coefficients on either side, we have

n

Z (Z) (-1)F =0 for all n € Z~o.

k=0

p 1 n T __ " o 1 T
Exercise 7. Use ;=—— =) y2" and e = Y %1 as definitions of = and €7, i.e.

is short-hand for F(G(x)), where F(@) =2 nen T and
G(z) = Xnen r-

Which of the following expressions are well-defined formal power series?” Why? For those expres-
sions that are well-defined, give their first few terms.

1—e”

1

(i) e**1 Answer: Here, G(x) = 1 + x has non-zero linear term. So e is not well-defined.

x+3x2

(i) e*32% Answer: Here, G(z) = z + 322 has zero linear term. So e is well-defined. Namely,

ex+3x2 _ Z (CL' + 3,172)71,
neN nt
(43220 (z+32H)! (2 +322)2  (zv+32%)3
+ + + +
0! 1! 2! 3!

1 1
=1+ (z+32%) + §(x2 + 623 + 921) + g(x?’ + 92 + 2725 + 272%) + - -

1 1
:1+x+(3+§)x2+(3+§)x3+---.

(iii) e*" Answer: Here, G(x) = €® has non-zero linear term. So e® is not well-defined.



(iv) e~ Answer: Here, G(z) = e®—1 = >_7° | ¥ /k! has zero linear term. So e®” ! is well-defined.
Namely,
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(v) +=2=% Answer: Here, G(z) = ze® = > 3o, 2%/(k — 1)! has zero linear term. So - is
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well-defined. Namely,

- _11'61 — Z(xex)n — Z 2N en®

neN neN
=1+a(l+z+2?/2+2%/3+ ) +2%(1 + 22 + 2222 /2 + 2323 /31 + )
+ 231+ 3z +3%22/24+ 3323 /31 + - )+ - -
=14+ @422 +23/2+21/3 +- )+ (2% + 223 + 221+ (23/3D)2° + )
+ (2 + 321+ (32/2)2° + (333020 + - ) + -
=14+z+222+(7/2)+---.

(vi) X Answer: Here, G(z) = ze” + 1, which has non-zero linear term. So L is not well-defined.

Exercise 8. (EC1, exercise 1.8)

1
V1—-4x

in series form.

(a) Use the generalized binomial theorem to expand

I 12 —-1/2\ ,,
= = (14 (~42)) 1/2_Z< . )x

neN

(b) Calculate %! for n = 1,2,3. What is 2% in general?

n! n!




(2% 1)!

T
(2%2)] 453521 _,
21 21 (3%1)
(2%3)!  6x5%4%3%x2x1 4
3 3%2%1 =27 (5x3x1)

2xn)!  2n)*x2n—1)*2n—1))*(2n —3)*--- %2 %1 =2"(2n —1)(2n — 3) - - - 1.

n! nn—1)---x1

Thus

2n)!
2n—-1)2n—3)---1= (2"71)'

(c) Calculate (7}!2) for £k = 1,2,3 What is (122) in general? [Note that you can factor % from
every term in the numerator. Then use part (b).]

Solution:
(V") =5t
(‘12/2> = %(—1/2)(—1/2 —1)= %(—1/2)2(1)(3)
(72 = e v -2 = Laproee
(—2/2) _ %(_1/2)(_1/2 —1)(-1/2-2)---(1/2 = (k—1)) = %(—1/2)]6(1)(3)(5) - (2k=1)

! L2k 2%
— 2 G = (%),

(d) Conclude
1 i 2n\ o
Vi—dzx f=A\n
Solution: This is a direct combination of parts (a) and (c).
(e) Give a combinatorial proof of the identity 2(2"7:1) = (25)
Solution: Consider the set S, of size-n subsets A of [2n].
Claim: There is a fixed-point free involution on §,, given by
p: A [2n] — A

Proof: Namely, for any A € S, since |A| = n, we have |p(A)| = n, and so p(A4) € S (i.e.
¢ : S — §). Further, the complement of the complement of A in [2n] is A itself, so ¢ is its



own inverse (i.e. it is an involution). Finally, since A N @(A) = ), we have A # p(A), i.e. p is
fixed-point free. [

Further note that ¢ gives a bijection between Sy, the set of size-n subsets of [2n] containing
2n, and Sy, the set of size-n subsets of [2n] not containing 2n. This is because exactly one of
A and ¢(A) contains n, for all A € S. Thus, since |S1| = |So|, S = S1 U Sy, we have

2n
(n) = |S] = |51 USo| = |S1] + [So| = 2|So|-

But Sy, the size-n subsets of [2n] not containing n, are exactly the size-n subsets of [2n — 1].
So |So| = (*";"). Therefore

n 2n —1
< >:5|:2|50|=2< )
n n

Solution: Using parts (e) and then (d), we have

(" ) -2 -

n=0 n=0

Find > 7, (2"_1)x".

n



