
Solutions for HW2

Exercise 4. (a) Give both the generating and exponential generating functions for

f(n) = 3n; g(n) = 3; ϕ(n) = 3n; and ψ(n) = n!3n; for n ∈ N.

For each, give your answer in series form. Whenever possible, also give your answer in closed
form.

Solution:

∑
n∈N

f(n)xn =
∑
n∈N

3nxn =
1

1− 3x∑
n∈N

f(n)
xn

n!
=
∑
n∈N

3n
xn

n!
= e3x

∑
n∈N

g(n)xn =
∑
n∈N

3xn =
3

1− x∑
n∈N

g(n)
xn

n!
=
∑
n∈N

3
xn

n!
= 3ex

∑
n∈N

ϕ(n)xn =
∑
n∈N

3nxn = 3x
∑
m∈N

(m+ 1)xm =
3x

(1− x)2∑
n∈N

ϕ(n)
xn

n!
=
∑
n∈N

3n
xn

n!
= 3x

∑
m∈N

xm

m!
= 3xex

∑
n∈N

ψ(n)xn =
∑
n∈N

n!3nxn (no closed form)

∑
n∈N

ψ(n)
xn

n!
=
∑
n∈N

n!3n
xn

n!
=

1

1− 3x

(b) Verify the rule for multiplying basic and exponential formal series for I = N, for the first 4
coefficients. In other words, calculate cn for n = 0, 1, 2, 3 by multiplying out the left hand side
of

(a0 + a1x+ a2x
2 + a3x

3 + · · · )(b0 + b1x+ b2x
2 + b3x

3 + · · · ) = c0 + c1x+ c2x
2 + c3x

3 + · · · ,

and comparing coefficients (and similarly for the exponential case).



Solution: Generating function rule:

(a0 + a1x+a2x
2 + a3x

3 + · · · )(b0 + b1x+ b2x
2 + b3x

3 + · · · )
= a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x

2

+ (a0b3 + a1b2 + a2b1 + a3b0)x
3 + · · ·

a0b0 =
0∑

i=0

aib0−iX

a0b1 + a1b0 =

1∑
i=0

aib1−iX

a0b2 + a1b1 + a2b0 =

2∑
i=0

aib2−iX

a0b3 + a1b2 + a2b1 + a3b0 =
3∑

i=0

aib3−iX

Exponential generating function rule:

(a0 + a1x+a2
x2

2!
+ a3

x3

3!
+ · · · )(b0 + b1x+ b2

x2

2!
+ b3

x3

3!
+ · · · )

= a0b0 + (a0b1 + a1b0)x+ (a0b2 + 2a1b1 + a2b0)
x2

2!

+ (a0b3 + 3a1b2 + 3a2b1 + a3b0)
x3

3!
+ · · ·

a0b0 =
0∑

i=0

aib0−iX

a0b1 + a1b0 =
1∑

i=0

(
1

i

)
aib1−iX

a0b2 + 2a1b1 + a2b0 =
2∑

i=0

(
2

i

)
aib2−iX

a0b3 + 3a1b2 + 3a2b1 + a3b0 =

3∑
i=0

(
3

i

)
aib3−iX

(c) Verify that

1

1− x
=
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·

by solving for bn in the equation( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=
∞∑
n=0

cnx
n,

where
a0 = a1 = c0 = 1, and an, cn = 0 otherwise,



i.e.,
∑∞

n=0 anx
n = 1 + x and

∑∞
n=0 cnx

n = 0. [See EC1, Example 1.1.5; but be more explicit.]

Solution: Write 1
1−x =

∑∞
n=0 bnx

n, so that

1 = (1− x)

(
1

1− x

)
= (1− x)(b0 + b1x+ b2x

2 + b3x
3 + · · · )

= b0 + (b1 − b0)x+ (b2 − b1)x2 + (b3 − b2)x3 + · · ·

= b0 +

∞∑
n=1

(bn − bn−1)xn.

Comparing coefficients on either side, we have

b0 = 1 and bn − bn−1 = 0 for n > 0;

i.e.
b0 = 1 and bn = bn−1 for n > 0.

Thus bn = 1 for n ∈ N, i.e. 1
1−x =

∑∞
n=0 x

n as expected.

Exercise 5. For each of the following identities,

(i) check by hand for n = 3;
(ii) verify using the binomial theorem, evaluating for specific values of x;

(iii) give a combinatorial proof of the identity.

(a)
n∑

k=0

(
n

k

)
= 2n;

Solution:
(i) check by hand for n = 3:

3∑
k=0

(
3

k

)
=

(
3

0

)
+

(
3

1

)
+

(
3

2

)
+

(
3

3

)
= 1 + 3 + 3 + 1 = 8 = 23X

(ii) verify using the binomial theorem, evaluating for specific values of x:
Evaluate the binomial theorem at x = 1 to get

n∑
k=0

(
n

k

)
=

n∑
k=0

(
n

k

)
1k = (1 + 1)n = 2n.

(iii) give a combinatorial proof of the identity:

Let f(n) be the number of subsets of [n]. On the one hand, we know f(n) = |2[n]| = 2n.
On the other hand, one can sum up the number of subsets of size k for k = 0, 1, . . . , n,
which gives

f(n) =
n∑

k=0

∣∣∣∣([n]

k

)∣∣∣∣ =
n∑

k=0

(
n

k

)
.

Thus
n∑

k=0

(
n

k

)
= f(n) = 2n.



(b)
n∑

k=0

k

(
n

k

)
= n2n−1 for n > 0

[Hint: for (ii), differentiate first].

Solution:
(i) check by hand for n = 3:

3∑
k=0

k

(
3

k

)
= 0 +

(
3

1

)
+ 2

(
3

2

)
+ 3

(
3

3

)
= 3 + 6 + 3 = 12 = 3 ∗ 23−1X.

(ii) verify using the binomial theorem, evaluating for specific values of x:
Differentiate the binomial theorem to get

n∑
k=0

(
n

k

)
kxk−1 = n(1 + x)n−1.

Then evaluate at x = 1 to get

n∑
k=0

(
n

k

)
k = n(1 + 1)n−1 = n2n−1.

(iii) give a combinatorial proof of the identity:
Let f(n) be the number of ways to pick a committee of any size from n people, together
with a person to run meetings. On the one hand, you can choose a committee of k people
(for k between 1 and n) and then choose the leader, giving

f(n) =

n∑
k=1

(
n

k

)
k =

n∑
k=0

(
n

k

)
k,

by the sum and product rules. On the other hand, you can choose the leader x ∈ [n] first,
and then a committee from the remaining set [n]− {x}; giving

f(n) = n2|[n]|−1 = n2n−1.

Thus
n∑

k=0

(
n

k

)
k = f(n) = n2n−1.

(c)

n∑
k=0

(−1)k
(
n

k

)
= 0 for n > 0

[Hint: For (iii), rewrite the identity by moving the negative terms to the right (generally good
practice for combinatorial proofs). Construct a bijection between the set En of all subsets of
[n] that have an even number of elements and On, the odd counterpart.].

Solution:
(i) check by hand for n = 3:

3∑
k=0

(−1)k
(

3

k

)
=

(
3

0

)
−
(

3

1

)
+

(
3

2

)
−
(

3

3

)
= 1− 3 + 3− 1 = 0X



(ii) verify using the binomial theorem, evaluating for specific values of x:
Evaluate the binomial theorem at x = −1 to get

n∑
k=0

(
n

k

)
(−1)k = (1− 1)n = 0.

(iii) give a combinatorial proof of the identity:
The identity of interest is equivalent to the identity∑

k even

(
n

k

)
=
∑
k odd

(
n

k

)
.

Let En be the set of subsets of [n] that have an even number of elements, and On be the
set of subsets of [n] that have an odd number of elements. Note that

|En| =
∑

k even

(
n

k

)
and |On| =

∑
k odd

(
n

k

)
.

Define a map on En by

ϕ(A) =

{
A− {n} if n ∈ A,
A t {n} if n /∈ A.

Since adding or removing one element changes the parity of the set A, ϕ : En → On. The
same map on On is exactly the inverse function ϕ−1 : On → En (i.e. ϕ is a fixed-point

free involution on 2[n] that swaps En and On). Therefore∑
k even

(
n

k

)
= |En| = |On| =

∑
k odd

(
n

k

)
,

giving the expected identity.



Exercise 6. Use the multiplication rules for exponential series to show that

1 = exe−x implies

n∑
k=0

(−1)k
(
n

k

)
= 0 for n > 0

(our third proof, making EC1, Example 1.1.6 more explicit).

Solution: Write

e−x =
∑
n∈N

an
xn

n!
and ex =

∑
n∈N

bn
xn

n!
,

where

an = (−1)n and bn = 1 for n ∈ N.

Thus since
n∑

k=0

(
n

k

)
akbn−k =

n∑
k=0

(
n

k

)
(−1)k,

we have

1 = e−xex =

(∑
n∈N

(−1)n
xn

n!

)(∑
n∈N

xn

n!

)
=
∑
n∈N

(
n∑

k=0

(
n

k

)
(−1)k

)
xn.

Comparing coefficients on either side, we have

n∑
k=0

(
n

k

)
(−1)k = 0 for all n ∈ Z>0.

Exercise 7. Use 1
1−x =

∑
n∈N x

n and ex =
∑

n∈N
xn

n! as definitions of 1
1−x and ex, i.e.

1

1− ex
is short-hand for F (G(x)), where

F (x) =
∑

n∈N x
n, and

G(x) =
∑

n∈N
xn

n! .

Which of the following expressions are well-defined formal power series? Why? For those expres-
sions that are well-defined, give their first few terms.

(i) ex+1 Answer: Here, G(x) = 1 + x has non-zero linear term. So ex+1 is not well-defined.

(ii) ex+3x2
Answer: Here, G(x) = x+ 3x2 has zero linear term. So ex+3x2

is well-defined. Namely,

ex+3x2
=
∑
n∈N

(x+ 3x2)n

n!

=
(x+ 3x2)0

0!
+

(x+ 3x2)1

1!
+

(x+ 3x2)2

2!
+

(x+ 3x2)3

3!
+ · · ·

= 1 + (x+ 3x2) +
1

2
(x2 + 6x3 + 9x4) +

1

3!
(x3 + 9x4 + 27x5 + 27x6) + · · ·

= 1 + x+ (3 +
1

2
)x2 + (3 +

1

3!
)x3 + · · · .

(iii) ee
x

Answer: Here, G(x) = ex has non-zero linear term. So ee
x

is not well-defined.



(iv) ee
x−1 Answer: Here, G(x) = ex−1 =

∑∞
k=1 x

k/k! has zero linear term. So ee
x−1 is well-defined.

Namely,

ee
x−1 =

∑
n∈N

(x+ x2/2 + x3/3! + · · · )n

n!

= 1 + (x+ x2/2 + x3/3! + · · · ) +
1

2
(x+ x2/2 + x3/3! + · · · )2

+
1

3!
(x+ x2/2 + x3/3! + · · · ) + · · ·

= 1 + (x+ x2/2 + x3/3! + · · · ) +
1

2
(x2 + x3 +

7

12
x4 + · · · )

+
1

3!
(x3 +

3

2
x4 +

5

4
x5 + · · · ) + · · ·

= 1 + x+ x2 +
4

3!
x3 + · · · .

(v) 1
1−xex Answer: Here, G(x) = xex =

∑∞
k=1 x

k/(k − 1)! has zero linear term. So 1
1−xex is

well-defined. Namely,

1

1− xex
=
∑
n∈N

(xex)n =
∑
n∈N

xnenx

= 1 + x(1 + x+ x2/2 + x3/3! + · · · ) + x2(1 + 2x+ 22x2/2 + 23x3/3! + · · · )
+ x3(1 + 3x+ 32x2/2 + 33x3/3! + · · · ) + · · ·

= 1 + (x+ x2 + x3/2 + x4/3! + · · · ) + (x2 + 2x3 + 2x4 + (23/3!)x5 + · · · )
+ (x3 + 3x4 + (32/2)x5 + (33/3!)x6 + · · · ) + · · ·

= 1 + x+ 2x2 + (7/2)x3 + · · · .

(vi) 1
xex Answer: Here, G(x) = xex +1, which has non-zero linear term. So 1

xex is not well-defined.

Exercise 8. (EC1, exercise 1.8)

(a) Use the generalized binomial theorem to expand 1√
1−4x in series form.

1√
1− 4x

= (1 + (−4x))−1/2 =
∑
n∈N

(
−1/2

n

)
xn.

(b) Calculate (2n)!
n! for n = 1, 2, 3. What is (2n)!

n! in general?



(2 ∗ 1)!

1!
= 2

(2 ∗ 2)!

2!
=

4 ∗ 3 ∗ 2 ∗ 1

2 ∗ 1
= 22(3 ∗ 1)

(2 ∗ 3)!

3!
=

6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

3 ∗ 2 ∗ 1
= 23(5 ∗ 3 ∗ 1)

(2 ∗ n)!

n!
=

(2n) ∗ (2n− 1) ∗ (2(n− 1)) ∗ (2n− 3) ∗ · · · ∗ 2 ∗ 1

n(n− 1) · · · ∗ 1
= 2n(2n− 1)(2n− 3) · · · 1.

Thus

(2n− 1)(2n− 3) · · · 1 =
(2n)!

2nn!
.

(c) Calculate
(−1/2

k

)
for k = 1, 2, 3 What is

(1/2
k

)
in general? [Note that you can factor 1

2 from
every term in the numerator. Then use part (b).]

Solution:(
−1/2

1

)
=

1

1!
(−1/2)(

−1/2

2

)
=

1

2!
(−1/2)(−1/2− 1) =

1

2!
(−1/2)2(1)(3)(

−1/2

3

)
=

1

3!
(−1/2)(−1/2− 1)(−1/2− 2) =

1

3!
(−1/2)3(1)(3)(5)

(
−1/2

k

)
=

1

k!
(−1/2)(−1/2− 1)(−1/2− 2) · · · (1/2− (k − 1)) =

1

k!
(−1/2)k(1)(3)(5) · · · (2k − 1)

=
1

k!
(−1/2)n

(2k)!

2kk!
= (−1/4)k

(
2k

k

)
.

(d) Conclude

1√
1− 4x

=

∞∑
n=0

(
2n

n

)
xn.

Solution: This is a direct combination of parts (a) and (c).

(e) Give a combinatorial proof of the identity 2
(
2n−1
n

)
=
(
2n
n

)
.

Solution: Consider the set Sn of size-n subsets A of [2n].

Claim: There is a fixed-point free involution on Sn given by

ϕ : A 7→ [2n]−A.

Proof: Namely, for any A ∈ S, since |A| = n, we have |ϕ(A)| = n, and so ϕ(A) ∈ S (i.e.
ϕ : S → S). Further, the complement of the complement of A in [2n] is A itself, so ϕ is its



own inverse (i.e. it is an involution). Finally, since A ∩ ϕ(A) = ∅, we have A 6= ϕ(A), i.e. ϕ is
fixed-point free. �

Further note that ϕ gives a bijection between S1, the set of size-n subsets of [2n] containing
2n, and S0, the set of size-n subsets of [2n] not containing 2n. This is because exactly one of
A and ϕ(A) contains n, for all A ∈ S. Thus, since |S1| = |S0|, S = S1 t S0, we have(

2n

n

)
= |S| = |S1 t S0| = |S1|+ |S0| = 2|S0|.

But S0, the size-n subsets of [2n] not containing n, are exactly the size-n subsets of [2n − 1].

So |S0| =
(
2n−1
n

)
. Therefore (

2n

n

)
= |S| = 2|S0| = 2

(
2n− 1

n

)
.

(f) Find
∑∞

n=0

(
2n−1
n

)
xn.

Solution: Using parts (e) and then (d), we have
∞∑
n=0

(
2n− 1

n

)
xn =

∞∑
n=0

1

2

(
2n

n

)
xn =

1

2
√

1− 4x
.


