Solutions for HW2

Exercise 4. (a) Give both the generating and exponential generating functions for

$$
f(n)=3^{n} ; \quad g(n)=3 ; \quad \varphi(n)=3 n ; \quad \text { and } \quad \psi(n)=n!3^{n} ; \quad \text { for } n \in \mathbb{N} .
$$

For each, give your answer in series form. Whenever possible, also give your answer in closed form.

Solution:

$$
\begin{aligned}
& \sum_{n \in \mathbb{N}} f(n) x^{n}=\sum_{n \in \mathbb{N}} 3^{n} x^{n}=\frac{1}{1-3 x} \\
& \sum_{n \in \mathbb{N}} f(n) \frac{x^{n}}{n!}=\sum_{n \in \mathbb{N}} 3^{n} \frac{x^{n}}{n!}=e^{3 x} \\
& \sum_{n \in \mathbb{N}} g(n) x^{n}=\sum_{n \in \mathbb{N}} 3 x^{n}=\frac{3}{1-x} \\
& \sum_{n \in \mathbb{N}} g(n) \frac{x^{n}}{n!}=\sum_{n \in \mathbb{N}} 3 \frac{x^{n}}{n!}=3 e^{x} \\
& \sum_{n \in \mathbb{N}} \varphi(n) x^{n}=\sum_{n \in \mathbb{N}} 3 n x^{n}=3 x \sum_{m \in \mathbb{N}}(m+1) x^{m}=\frac{3 x}{(1-x)^{2}} \\
& \sum_{n \in \mathbb{N}} \varphi(n) \frac{x^{n}}{n!}=\sum_{n \in \mathbb{N}} 3 n \frac{x^{n}}{n!}=3 x \sum_{m \in \mathbb{N}} \frac{x^{m}}{m!}=3 x e^{x} \\
& \sum_{n \in \mathbb{N}} \psi(n) x^{n}=\sum_{n \in \mathbb{N}} n!3^{n} x^{n}(\text { no closed form }) \\
& \sum_{n \in \mathbb{N}} \psi(n) \frac{x^{n}}{n!}=\sum_{n \in \mathbb{N}} n!3^{n} \frac{x^{n}}{n!}=\frac{1}{1-3 x}
\end{aligned}
$$

(b) Verify the rule for multiplying basic and exponential formal series for $I=\mathbb{N}$, for the first 4 coefficients. In other words, calculate c_{n} for $n=0,1,2,3$ by multiplying out the left hand side of
$\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots\right)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots$,
and comparing coefficients (and similarly for the exponential case).

Solution: Generating function rule:

$$
\begin{gathered}
\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots\right) \\
=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2} \\
\quad+\left(a_{0} b_{3}+a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{0}\right) x^{3}+\cdots \\
a_{0} b_{0}=\sum_{i=0}^{0} a_{i} b_{0-i} \checkmark \\
a_{0} b_{1}+a_{1} b_{0}=\sum_{i=0}^{1} a_{i} b_{1-i} \checkmark \\
a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}=\sum_{i=0}^{2} a_{i} b_{2-i} \checkmark \\
a_{0} b_{3}+a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{0}=\sum_{i=0}^{3} a_{i} b_{3-i} \checkmark
\end{gathered}
$$

Exponential generating function rule:

$$
\begin{gathered}
\left(a_{0}+a_{1} x+a_{2} \frac{x^{2}}{2!}+a_{3} \frac{x^{3}}{3!}+\cdots\right)\left(b_{0}+b_{1} x+b_{2} \frac{x^{2}}{2!}+b_{3} \frac{x^{3}}{3!}+\cdots\right) \\
=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+2 a_{1} b_{1}+a_{2} b_{0}\right) \frac{x^{2}}{2!} \\
+\left(a_{0} b_{3}+3 a_{1} b_{2}+3 a_{2} b_{1}+a_{3} b_{0}\right) \frac{x^{3}}{3!}+\cdots \\
a_{0} b_{0}=\sum_{i=0}^{0} a_{i} b_{0-i} \checkmark \\
a_{0} b_{1}+a_{1} b_{0}=\sum_{i=0}^{1}\binom{1}{i} a_{i} b_{1-i} \checkmark \\
a_{0} b_{2}+2 a_{1} b_{1}+a_{2} b_{0}=\sum_{i=0}^{2}\binom{2}{i} a_{i} b_{2-i} \checkmark \\
a_{0} b_{3}+3 a_{1} b_{2}+3 a_{2} b_{1}+a_{3} b_{0}=\sum_{i=0}^{3}\binom{3}{i} a_{i} b_{3-i} \checkmark
\end{gathered}
$$

(c) Verify that

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots
$$

by solving for b_{n} in the equation

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty} c_{n} x^{n},
$$

where

$$
a_{0}=a_{1}=c_{0}=1, \text { and } a_{n}, c_{n}=0 \text { otherwise },
$$

i.e., $\sum_{n=0}^{\infty} a_{n} x^{n}=1+x$ and $\sum_{n=0}^{\infty} c_{n} x^{n}=0$. [See EC1, Example 1.1.5; but be more explicit.]

Solution: Write $\frac{1}{1-x}=\sum_{n=0}^{\infty} b_{n} x^{n}$, so that

$$
\begin{aligned}
1 & =(1-x)\left(\frac{1}{1-x}\right) \\
& =(1-x)\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots\right) \\
& =b_{0}+\left(b_{1}-b_{0}\right) x+\left(b_{2}-b_{1}\right) x^{2}+\left(b_{3}-b_{2}\right) x^{3}+\cdots \\
& =b_{0}+\sum_{n=1}^{\infty}\left(b_{n}-b_{n-1}\right) x^{n} .
\end{aligned}
$$

Comparing coefficients on either side, we have

$$
b_{0}=1 \quad \text { and } \quad b_{n}-b_{n-1}=0 \text { for } n>0 ;
$$

i.e.

$$
b_{0}=1 \quad \text { and } \quad b_{n}=b_{n-1} \text { for } n>0
$$

Thus $b_{n}=1$ for $n \in \mathbb{N}$, i.e. $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ as expected.
Exercise 5. For each of the following identities,
(i) check by hand for $n=3$;
(ii) verify using the binomial theorem, evaluating for specific values of x;
(iii) give a combinatorial proof of the identity.
(a) $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$;

Solution:

(i) check by hand for $n=3$:

$$
\sum_{k=0}^{3}\binom{3}{k}=\binom{3}{0}+\binom{3}{1}+\binom{3}{2}+\binom{3}{3}=1+3+3+1=8=2^{3} \checkmark
$$

(ii) verify using the binomial theorem, evaluating for specific values of x :

Evaluate the binomial theorem at $x=1$ to get

$$
\sum_{k=0}^{n}\binom{n}{k}=\sum_{k=0}^{n}\binom{n}{k} 1^{k}=(1+1)^{n}=2^{n} .
$$

(iii) give a combinatorial proof of the identity:

Let $f(n)$ be the number of subsets of $[n]$. On the one hand, we know $f(n)=\left|2^{[n]}\right|=2^{n}$. On the other hand, one can sum up the number of subsets of size k for $k=0,1, \ldots, n$, which gives

$$
f(n)=\sum_{k=0}^{n}\left|\binom{[n]}{k}\right|=\sum_{k=0}^{n}\binom{n}{k} .
$$

Thus

$$
\sum_{k=0}^{n}\binom{n}{k}=f(n)=2^{n}
$$

(b) $\sum_{k=0}^{n} k\binom{n}{k}=n 2^{n-1}$ for $n>0$
[Hint: for (ii), differentiate first].

Solution:

(i) check by hand for $n=3$:

$$
\sum_{k=0}^{3} k\binom{3}{k}=0+\binom{3}{1}+2\binom{3}{2}+3\binom{3}{3}=3+6+3=12=3 * 2^{3-1} \checkmark
$$

(ii) verify using the binomial theorem, evaluating for specific values of x : Differentiate the binomial theorem to get

$$
\sum_{k=0}^{n}\binom{n}{k} k x^{k-1}=n(1+x)^{n-1}
$$

Then evaluate at $x=1$ to get

$$
\sum_{k=0}^{n}\binom{n}{k} k=n(1+1)^{n-1}=n 2^{n-1}
$$

(iii) give a combinatorial proof of the identity:

Let $f(n)$ be the number of ways to pick a committee of any size from n people, together with a person to run meetings. On the one hand, you can choose a committee of k people (for k between 1 and n) and then choose the leader, giving

$$
f(n)=\sum_{k=1}^{n}\binom{n}{k} k=\sum_{k=0}^{n}\binom{n}{k} k,
$$

by the sum and product rules. On the other hand, you can choose the leader $x \in[n]$ first, and then a committee from the remaining set $[n]-\{x\}$; giving

$$
f(n)=n 2^{|[n]|-1}=n 2^{n-1}
$$

Thus

$$
\sum_{k=0}^{n}\binom{n}{k} k=f(n)=n 2^{n-1}
$$

(c) $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$ for $n>0$
[Hint: For (iii), rewrite the identity by moving the negative terms to the right (generally good practice for combinatorial proofs). Construct a bijection between the set E_{n} of all subsets of [n] that have an even number of elements and O_{n}, the odd counterpart.].

Solution:

(i) check by hand for $n=3$:

$$
\sum_{k=0}^{3}(-1)^{k}\binom{3}{k}=\binom{3}{0}-\binom{3}{1}+\binom{3}{2}-\binom{3}{3}=1-3+3-1=0 \checkmark
$$

(ii) verify using the binomial theorem, evaluating for specific values of x : Evaluate the binomial theorem at $x=-1$ to get

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}=(1-1)^{n}=0
$$

(iii) give a combinatorial proof of the identity:

The identity of interest is equivalent to the identity

$$
\sum_{k \text { even }}\binom{n}{k}=\sum_{k \text { odd }}\binom{n}{k}
$$

Let E_{n} be the set of subsets of $[n]$ that have an even number of elements, and O_{n} be the set of subsets of $[n]$ that have an odd number of elements. Note that

$$
\left|E_{n}\right|=\sum_{k \text { even }}\binom{n}{k} \quad \text { and } \quad\left|O_{n}\right|=\sum_{k \text { odd }}\binom{n}{k} .
$$

Define a map on E_{n} by

$$
\varphi(A)= \begin{cases}A-\{n\} & \text { if } n \in A \\ A \sqcup\{n\} & \text { if } n \notin A\end{cases}
$$

Since adding or removing one element changes the parity of the set $A, \varphi: E_{n} \rightarrow O_{n}$. The same map on O_{n} is exactly the inverse function $\varphi^{-1}: O_{n} \rightarrow E_{n}$ (i.e. φ is a fixed-point free involution on $2^{[n]}$ that swaps E_{n} and O_{n}). Therefore

$$
\sum_{k \text { even }}\binom{n}{k}=\left|E_{n}\right|=\left|O_{n}\right|=\sum_{k \text { odd }}\binom{n}{k}
$$

giving the expected identity.

Exercise 6. Use the multiplication rules for exponential series to show that

$$
1=e^{x} e^{-x} \quad \text { implies } \quad \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0 \quad \text { for } n>0
$$

(our third proof, making EC1, Example 1.1.6 more explicit).
Solution: Write

$$
e^{-x}=\sum_{n \in \mathbb{N}} a_{n} \frac{x^{n}}{n!} \quad \text { and } \quad e^{x}=\sum_{n \in \mathbb{N}} b_{n} \frac{x^{n}}{n!},
$$

where

$$
a_{n}=(-1)^{n} \quad \text { and } \quad b_{n}=1 \quad \text { for } n \in \mathbb{N} .
$$

Thus since

$$
\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}
$$

we have

$$
1=e^{-x} e^{x}=\left(\sum_{n \in \mathbb{N}}(-1)^{n} \frac{x^{n}}{n!}\right)\left(\sum_{n \in \mathbb{N}} \frac{x^{n}}{n!}\right)=\sum_{n \in \mathbb{N}}\left(\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\right) x^{n} .
$$

Comparing coefficients on either side, we have

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}=0 \quad \text { for all } n \in \mathbb{Z}_{>0}
$$

Exercise 7. Use $\frac{1}{1-x}=\sum_{n \in \mathbb{N}} x^{n}$ and $e^{x}=\sum_{n \in \mathbb{N}} \frac{x^{n}}{n!}$ as definitions of $\frac{1}{1-x}$ and e^{x}, i.e.

$$
\frac{1}{1-e^{x}} \text { is short-hand for } F(G(x)), \text { where } \begin{aligned}
& F(x)=\sum_{n \in \mathbb{N}} x^{n}, \text { and } \\
& G(x)=\sum_{n \in \mathbb{N}} \frac{x^{n}}{n!} .
\end{aligned}
$$

Which of the following expressions are well-defined formal power series? Why? For those expressions that are well-defined, give their first few terms.
(i) e^{x+1} Answer: Here, $G(x)=1+x$ has non-zero linear term. So e^{x+1} is not well-defined.
(ii) $e^{x+3 x^{2}}$ Answer: Here, $G(x)=x+3 x^{2}$ has zero linear term. So $e^{x+3 x^{2}}$ is well-defined. Namely,

$$
\begin{aligned}
e^{x+3 x^{2}} & =\sum_{n \in \mathbb{N}} \frac{\left(x+3 x^{2}\right)^{n}}{n!} \\
& =\frac{\left(x+3 x^{2}\right)^{0}}{0!}+\frac{\left(x+3 x^{2}\right)^{1}}{1!}+\frac{\left(x+3 x^{2}\right)^{2}}{2!}+\frac{\left(x+3 x^{2}\right)^{3}}{3!}+\cdots \\
& =1+\left(x+3 x^{2}\right)+\frac{1}{2}\left(x^{2}+6 x^{3}+9 x^{4}\right)+\frac{1}{3!}\left(x^{3}+9 x^{4}+27 x^{5}+27 x^{6}\right)+\cdots \\
& =1+x+\left(3+\frac{1}{2}\right) x^{2}+\left(3+\frac{1}{3!}\right) x^{3}+\cdots
\end{aligned}
$$

(iii) $e^{e^{x}}$ Answer: Here, $G(x)=e^{x}$ has non-zero linear term. So $e^{e^{x}}$ is not well-defined.
(iv) $e^{e^{x}-1}$ Answer: Here, $G(x)=e^{x}-1=\sum_{k=1}^{\infty} x^{k} / k$! has zero linear term. So $e^{e^{x}-1}$ is well-defined. Namely,

$$
\begin{aligned}
e^{e^{x}-1}= & \sum_{n \in \mathbb{N}} \frac{\left(x+x^{2} / 2+x^{3} / 3!+\cdots\right)^{n}}{n!} \\
= & 1+\left(x+x^{2} / 2+x^{3} / 3!+\cdots\right)+\frac{1}{2}\left(x+x^{2} / 2+x^{3} / 3!+\cdots\right)^{2} \\
& +\frac{1}{3!}\left(x+x^{2} / 2+x^{3} / 3!+\cdots\right)+\cdots \\
= & 1+\left(x+x^{2} / 2+x^{3} / 3!+\cdots\right)+\frac{1}{2}\left(x^{2}+x^{3}+\frac{7}{12} x^{4}+\cdots\right) \\
& +\frac{1}{3!}\left(x^{3}+\frac{3}{2} x^{4}+\frac{5}{4} x^{5}+\cdots\right)+\cdots \\
= & 1+x+x^{2}+\frac{4}{3!} x^{3}+\cdots .
\end{aligned}
$$

(v) $\frac{1}{1-x e^{x}}$ Answer: Here, $G(x)=x e^{x}=\sum_{k=1}^{\infty} x^{k} /(k-1)$! has zero linear term. So $\frac{1}{1-x e^{x}}$ is well-defined. Namely,

$$
\begin{aligned}
\frac{1}{1-x e^{x}}= & \sum_{n \in \mathbb{N}}\left(x e^{x}\right)^{n}=\sum_{n \in \mathbb{N}} x^{n} e^{n x} \\
= & 1+x\left(1+x+x^{2} / 2+x^{3} / 3!+\cdots\right)+x^{2}\left(1+2 x+2^{2} x^{2} / 2+2^{3} x^{3} / 3!+\cdots\right) \\
& \quad+x^{3}\left(1+3 x+3^{2} x^{2} / 2+3^{3} x^{3} / 3!+\cdots\right)+\cdots \\
= & 1+\left(x+x^{2}+x^{3} / 2+x^{4} / 3!+\cdots\right)+\left(x^{2}+2 x^{3}+2 x^{4}+\left(2^{3} / 3!\right) x^{5}+\cdots\right) \\
& \quad+\left(x^{3}+3 x^{4}+\left(3^{2} / 2\right) x^{5}+\left(3^{3} / 3!\right) x^{6}+\cdots\right)+\cdots \\
= & 1+x+2 x^{2}+(7 / 2) x^{3}+\cdots .
\end{aligned}
$$

(vi) $\frac{1}{x e^{x}}$ Answer: Here, $G(x)=x e^{x}+1$, which has non-zero linear term. So $\frac{1}{x e^{x}}$ is not well-defined.

Exercise 8. (EC1, exercise 1.8)
(a) Use the generalized binomial theorem to expand $\frac{1}{\sqrt{1-4 x}}$ in series form.

$$
\frac{1}{\sqrt{1-4 x}}=(1+(-4 x))^{-1 / 2}=\sum_{n \in \mathbb{N}}\binom{-1 / 2}{n} x^{n} .
$$

(b) Calculate $\frac{(2 n)!}{n!}$ for $n=1,2,3$. What is $\frac{(2 n)!}{n!}$ in general?

$$
\begin{aligned}
& \frac{(2 * 1)!}{1!}=2 \\
& \frac{(2 * 2)!}{2!}=\frac{4 * 3 * 2 * 1}{2 * 1}=2^{2}(3 * 1) \\
& \frac{(2 * 3)!}{3!}=\frac{6 * 5 * 4 * 3 * 2 * 1}{3 * 2 * 1}=2^{3}(5 * 3 * 1) \\
& \frac{(2 * n)!}{n!}=\frac{(2 n) *(2 n-1) *(2(n-1)) *(2 n-3) * \cdots * 2 * 1}{n(n-1) \cdots * 1}=2^{n}(2 n-1)(2 n-3) \cdots 1 .
\end{aligned}
$$

Thus

$$
(2 n-1)(2 n-3) \cdots 1=\frac{(2 n)!}{2^{n} n!}
$$

(c) Calculate $\binom{-1 / 2}{k}$ for $k=1,2,3$ What is $\binom{1 / 2}{k}$ in general? [Note that you can factor $\frac{1}{2}$ from every term in the numerator. Then use part (b).]
Solution:

$$
\begin{aligned}
& \binom{-1 / 2}{1}=\frac{1}{1!}(-1 / 2) \\
& \binom{-1 / 2}{2}=\frac{1}{2!}(-1 / 2)(-1 / 2-1)=\frac{1}{2!}(-1 / 2)^{2}(1)(3) \\
& \binom{-1 / 2}{3}=\frac{1}{3!}(-1 / 2)(-1 / 2-1)(-1 / 2-2)=\frac{1}{3!}(-1 / 2)^{3}(1)(3)(5)
\end{aligned}
$$

$$
\binom{-1 / 2}{k}=\frac{1}{k!}(-1 / 2)(-1 / 2-1)(-1 / 2-2) \cdots(1 / 2-(k-1))=\frac{1}{k!}(-1 / 2)^{k}(1)(3)(5) \cdots(2 k-1)
$$

$$
=\frac{1}{k!}(-1 / 2)^{n} \frac{(2 k)!}{2^{k} k!}=(-1 / 4)^{k}\binom{2 k}{k} .
$$

(d) Conclude

$$
\frac{1}{\sqrt{1-4 x}}=\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n}
$$

Solution: This is a direct combination of parts (a) and (c).
(e) Give a combinatorial proof of the identity $2\binom{2 n-1}{n}=\binom{2 n}{n}$.

Solution: Consider the set \mathcal{S}_{n} of size- n subsets A of $[2 n]$.
Claim: There is a fixed-point free involution on \mathcal{S}_{n} given by

$$
\varphi: A \mapsto[2 n]-A .
$$

Proof: Namely, for any $A \in \mathcal{S}$, since $|A|=n$, we have $|\varphi(A)|=n$, and so $\varphi(A) \in \mathcal{S}$ (i.e. $\varphi: \mathcal{S} \rightarrow \mathcal{S})$. Further, the complement of the complement of A in [2n] is A itself, so φ is its
own inverse (i.e. it is an involution). Finally, since $A \cap \varphi(A)=\emptyset$, we have $A \neq \varphi(A)$, i.e. φ is fixed-point free.

Further note that φ gives a bijection between \mathcal{S}_{1}, the set of size- n subsets of [2n] containing $2 n$, and \mathcal{S}_{0}, the set of size- n subsets of [2n] not containing $2 n$. This is because exactly one of A and $\varphi(A)$ contains n, for all $A \in \mathcal{S}$. Thus, since $\left|\mathcal{S}_{1}\right|=\left|\mathcal{S}_{0}\right|, \mathcal{S}=\mathcal{S}_{1} \sqcup \mathcal{S}_{0}$, we have

$$
\binom{2 n}{n}=|\mathcal{S}|=\left|\mathcal{S}_{1} \sqcup \mathcal{S}_{0}\right|=\left|\mathcal{S}_{1}\right|+\left|\mathcal{S}_{0}\right|=2\left|\mathcal{S}_{0}\right| .
$$

But \mathcal{S}_{0}, the size- n subsets of $[2 n]$ not containing n, are exactly the size- n subsets of $[2 n-1]$. So $\left|\mathcal{S}_{0}\right|=\binom{2 n-1}{n}$. Therefore

$$
\binom{2 n}{n}=|\mathcal{S}|=2\left|\mathcal{S}_{0}\right|=2\binom{2 n-1}{n} .
$$

(f) Find $\sum_{n=0}^{\infty}\binom{2 n-1}{n} x^{n}$.

Solution: Using parts (e) and then (d), we have

$$
\sum_{n=0}^{\infty}\binom{2 n-1}{n} x^{n}=\sum_{n=0}^{\infty} \frac{1}{2}\binom{2 n}{n} x^{n}=\frac{1}{2 \sqrt{1-4 x}}
$$

