Solutions for HW10

Exercise 32. Complete the proof of the following theorem:
The following are equivalent for a simple graph G.
(1) G is a tree.
(2) G is a minimal connected graph, i.e. every edge in E is a cut edge.
(3) G is a maximally acyclic graph, i.e. G is acyclic, and adding any edge between two nonadjacent vertices creates a cycle.

Solution: $(1) \Longrightarrow(2)$: Let $G=(V, E, \phi)$ be a tree, so that it is connected and acyclic. Let $e \in E$, and let $\phi(e)=\{u, v\}$. Suppose there is some path P from u to v that does not go through e. Then extending P by e results in a cycle, which is a contradiction. Thus e is a cut edge, and so G is minimally connected.
$(2) \Longrightarrow(1)$: Let G be a minimally connected graph. Suppose G contains a cycle C, with e an edge in C. Then any walk which goes through e can be rerouted along $C-e$. Thus e is not a cut edge, a contradiction. Thus G is connected and acyclic, and therefore a tree.
$(1) \Longrightarrow(3)$: Let $G=(V, E, \phi)$ be a tree, so that it is connected and acyclic. Consider an edge $e \in \bar{G}$, with $\phi(e)=\{u, v\}$. Since G is connected, there is a path P in G from u to v. Thus, in $G+e$, extending P by e results in a cycle. Thus G is maximally acyclic.
Not (1) \Longrightarrow not (3): Let $G=(V, E, \phi)$ be a graph that is not a tree. Then either G contains at least one cycle, implying G is not acyclic, or G is a forrest with at least two connected components. If G is a forrest, then let u and v be in different connected components. Thus $u v \notin E$, and there are no paths from u to v. Thus $G+e$ is also acyclic. In either case, G is not maximally acyclic.

Exercise 33. (a) How many spanning trees does C_{5} have?
Solution: One corresponding to the deletion of each edge in $C_{5}: 5$.
(b) Let

(i) Calculate $\operatorname{diam}(G)$ and $\operatorname{rad}(G)$.

Solution:

$d(u, v)$	a	b	c	d	e	f	g	h
a	0	2	2	1	1	3	1	3
b	2	0	2	3	1	1	3	3
c	2	2	0	3	1	1	1	1
d	1	3	3	0	2	4	2	4
e	1	1	1	2	0	2	2	2
f	3	1	1	4	2	0	2	2
g	1	3	1	2	2	2	0	2
h	3	3	1	4	2	2	2	0

$$
\operatorname{diam}(G)=d(d, h)=4, \quad \operatorname{rad}(G)=2(\text { see } e)
$$

(ii) Fix the vertex a, and give $V_{i}=\{u \in V \mid d(u, a)=i\}$.

Solution:

$$
\begin{aligned}
V_{0} & =\{a\} \\
V_{1} & =\{d, e, g\} \\
V_{2} & =\{b, c\} \\
V_{3} & =\{f, h\} .
\end{aligned}
$$

(iii) Build a spanning tree using Method 1 from the notes using $v=a$ (show your steps!). What is the radius of the resulting tree?'
(iv) Find a central vertex v, i.e. one for which $\max _{u \in V} d(u, v)=\operatorname{rad}(G)$, and build a spanning tree using Method 1 from the notes using that vertex (show your steps!). What is the radius of the resulting tree?
(v) Build a spanning tree using Method 2 from the notes starting with T_{1} being the isolated vertex a (show your steps!).

