Exercise 1. Extended warmup.

(a) Write out the following sets explicitly.

$$
\begin{aligned}
{[4]^{2}=} & \{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)\} \\
2^{[4]}= & \{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}, \\
& \{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}\} \\
S= & \{(a, b) \mid a \in[2,4], b \in[-4,7]\} \\
& \{(2,-4),(2,-3),(2,-2),(2,-1),(2,0), \quad(2,1), \quad(2,2), \quad(2,3), \quad(2,4), \quad(2,5), \quad(2,6), \quad(2,7), \\
= & (3,-4),(3,-3),(3,-2),(3,-1),(3,0), \quad(3,1), \quad(3,2), \quad(3,3), \quad(3,4), \quad(3,5), \quad(3,6), \quad(3,7), \\
& (4,-4),(4,-3),(4,-2),(4,-1),(4,0), \quad(4,1), \quad(4,2), \quad(4,3), \quad(4,4), \quad(4,5), \quad(4,6), \quad(4,7)\}
\end{aligned}
$$

$$
[4]^{2} \cap 2^{[4]}=\emptyset
$$

$$
[4]^{2} \cap S=\{(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)\}
$$

$$
2^{[3]} \cup 2^{[4]}=2^{[4]} \text { (see above). }
$$

(b) For sets A and B, decide whether the following identities are true or false, and why.
(i) $A \cap B=B \cap A$: True. The statement "contained in A or B " is equivalent to "contained in B or A ".
(ii) $A \cup B=B \cup A$: True. The statement "contained in A and B " is equivalent to "contained in B and A ".
(iii) $A-B=B-A$: False. For example, let $A=\{x, y\}$ and $B=\{y, z\}$. Then $A-B=\{x\}$ and $B-A=\{z\}$.
(iv) $|A-B|=|A|-|B|$: False. For example, Let A and B be as above. Then $|A-B|=1$ and $|A|-|B|=2-2=0$.
(c) Answer the following counting problems, leaving your numerical answer unsimplified.
(i) A particular kind of shirt comes in two different cuts-male and female, each in three color choices and five sizes. How many different choices are made available?
Solution: Using product rule, we have $2 * 3 * 5$ choices.
(ii) On a 10-question true-or-false quiz, how many different ways can a student fill out the quiz if they answer all of the questions? if they might leave questions blank?
Solution: Using product rule, we have 2^{10} possibilities if every question is answered; and 3^{10} possibilities if they might leave some blank.
(iii) How many 3-letter words (not "real" words, just strings of letters) are there?

Solution: Using product rule, we have 26^{3} three-letter words.
(iv) How many 3-letter words are there that have no repeated characters?

Solution: Using product rule, we have $26 * 25 * 24$ words with no repeated characters.
(v) How many 3-letter words are there that have the property that if they start in a vowel then they don't end in a vowel?

Solution: Discounting y, there are five vowels. There are $5^{2} * 26$ (three-letter) words that start and end in a vowel, so using the complement rule, there are $26^{3}-5^{2} * 26$ words that don't both start and end in a vowel.

Exercise 2 (EC 1.2). Give as simple a solution as possible. Justify your answers (using words).
(a) How many subsets of the set $[10]=\{1,2, \ldots, 10\}$ contain at least one odd integer?

Solution: There are 2^{10} subsets of [10], and 2^{5} subsets of [10] that contain no odd integers (the number of subsets of $\{2,4,6,8,10\}$). So there are $\left[2^{10}-2^{5}\right]$ subsets of [10] contain at least one odd integer.
(b) In how many ways can six people be seated in a circle if two seatings are considered the same whenever each person has the same neighbors (not necessarily on the same side)? For example,

Solution: There are 6! permutations of [6], but there are 2 orientations of each permutation around the table and 6 cyclic rotations of each oriented permutation. So there are $6!/(2 * 6)$ non-equivalent seatings.
(c) A permutation of a finite set S is a bijective map $w: S \rightarrow[n]$, where $n=|S|$.
(i) How many permutations $w:[6] \rightarrow[6]$ are there? 6!
(ii) How many permutations $w:[6] \rightarrow[6]$ satisfy $w(1) \neq 2$?

Solution: There are 5 choices for $w(1)$ (any of $[6]-\{2\}$), 5 remaining choices for $w(2)$ (any of $[6]-\{w(1)\}), 4$ choices for $w(3), \ldots$, one choice for $w(6)$. So there are $5 * 5$! such permutations.
Alternatively, there are 5 ! permutations with $w(1)=2$, so there are $6!-5$! such permutations.
Check: $6!-5!=6 * 5!-5!=5 * 5!\checkmark$.
A cycle of a permutation is a sequence $\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)$ such that

$$
w: c_{1} \mapsto c_{2}, \quad w: c_{2} \mapsto c_{3}, \quad \ldots \quad w: c_{\ell-1} \mapsto c_{\ell}, \quad w: c_{\ell} \mapsto c_{1}
$$

For example, the permutation $w:[4] \rightarrow[4]$ given by

$$
1 \mapsto 4, \quad 2 \mapsto 2, \quad 3 \mapsto 1, \quad 4 \mapsto 3
$$

has exactly two cycles: $(1,4,3)$ and (2).
(iii) How many permutations $w:[6] \rightarrow[6]$ have exactly one cycle? [Hint: question (b) $\times 2$.)

Solution: Start at 1. There are five values c_{2} to which 1 can map, then four values c_{3} to which c_{2} can map, and so on. Whatever c_{6} is, it maps to 1 . So there are 5 ! permutations that have exactly one cycle. This is like question ($\sqrt{\mathrm{b}})$, except that $1 \mapsto c_{2} \mapsto c_{3} \mapsto c_{4} \mapsto$ $c_{5} \mapsto c_{6} \mapsto 1$ is different from the cycle $1 \mapsto c_{6} \mapsto c_{5} \mapsto c_{4} \mapsto c_{3} \mapsto c_{2} \mapsto 1$. So there are twice as many of such cycles as non-equivalent seating arrangements, i.e. $6!/ 6=5!\checkmark$.
(iv) How many permutations $w:[6] \rightarrow[6]$ have exactly two cycles of length 3 ?

Solution: First, partition [6] into two subsets of size 3, of which there are $\frac{1}{2}\binom{6}{3}$ ways. Then for the set containing 1 , arrange in a cycle, of which there are 2 ! ways. Similarly, there are 2 ! ways to arrange the set not containing 1 into a cycle. So there are $\frac{1}{2}\binom{6}{3}(2!)^{2}$ such cycles.
(d) There are four people who want to sit down, and six distinct chairs in which to do so. In how many ways can this be done?
Solution: First, choose the 4 seats that will be taken, of which there are $\binom{6}{4}$ ways. Then there are 4! ways to arrange the people amongst those seats. So there are $\binom{6}{4} 4!$ seating arrangements in total.

Exercise 3. (a) Explain why $\binom{n}{k}=\frac{(n)_{k}}{k!}$ directly using product and division rules.
Solution: Consider size k subsets of $[n]$. Choose the k element subset one element at a time, for which product rule tells us there are $n *(n-1) \cdots(n-k+1)=(n)_{k}$ ways. However, there are k ! rearrangements of this process. So division rule tells us that there are $(n)_{k} / k$! size- k subsets of $[n]$.
(b) Give a combinatorial proof of the identity

$$
\sum_{i=0}^{n}\binom{a}{i}\binom{b}{n-i}=\binom{a+b}{n}
$$

where $a, b, n \in \mathbb{N}$ and $a, b \geq n$. [Hint: Consider two disjoint sets A and B, with $|A|=a$ and $|B|=b$. How many subsets does $A \sqcup B$ have?]
Solution: Let A and B be disjoint sets with $|A|=a$ and $|B|=b$. Then $|A \sqcup B|=a+b$. Therefore, by definition, the number of size- n subsets of $A \sqcup B$ is $\binom{a+b}{n}$. On the other hand, we can build all subsets S of $A \sqcup B$ by choosing a subset S_{A} of A followed by a subset S_{B} of B and then taking their union $S=S_{A} \sqcup S_{B}$. If $\left|S_{A}\right|=i$ and $|S|=n$, then since A and B are disjoint, we have $\left|S_{B}\right|=n-i$. So in this way, the number of subsets of $A \sqcup B$ is $\sum_{i=0}^{n}\binom{a}{i}\binom{b}{n-i}$. Since both values express the number of subsets of $A \sqcup B$ of size n, we have

$$
\sum_{i=0}^{n}\binom{a}{i}\binom{b}{n-i}=\binom{a+b}{n}
$$

