DISCRETE MATHEMATICS
AND ITS APPLICATIONS

SIKTH EDITION

McGRAW-HILL INTERNATIONAL EDITION

LIST OF SYMBOLS

TOPIC SYMBOL MEANING PAGE
LOGIC —p negation of p 3
PAg conjunction of p and g 4
pVq disjunction of p and ¢ 4
PDq exclusive or of p and g 5
p—q the implication p implies g 6
p<q biconditional of p and g 9
pP=q equivalence of p and ¢ 22
T tautology 24
F contradiction 24
P(xy,...,xp) propositional function 32
Vx P(x) universal quantification of P (x) 34
Ix P(x) existential quantification of P(x) 36
Alx P(x) uniqueness quantification of P(x) 37
therefore 63
piSlq partial correctness of S 323
SETS xeSs x is a member of S 112
xegS§ x is not a member of S 112
{ai,...,an} list of elements of a set 112
{x| P(x)} set builder notation 112
N set of natural numbers 112
V4 set of integers 112
z set of positive integers 113
Q set of rational numbers 113
R set of real numbers 113
S=T set equality 113
Y the empty (or null) set 114
SCT S is a subset of T 114
ScrT S is a proper subset of T 115
|S] cardinality of S 116
P(S) the power set of S 116
(a,...,an) n-tuple 117
(a, b) ordered pair 117
AXxB Cartesian product of A and B 118
AUB union of A and B 121
ANB intersection of A and B 121
A—-B the difference of A and B 123
A complement of A 123
UAi unionof A;,i =1,2,...,n 127

171
ﬂ A; intersectionof A;,i =1,2,...,n 128

i=l1
symmetric difference of A and B 131

TOPIC SYMBOL MEANING PAGE
FUNCTIONS f(a) value of the function f ata 133
f:A—> B function from A to B 133
N+ 1 sum of the functions f} and f> 135
NS product of the functions f; and f> 135
f£(S) image of the set S under f 136
ta(s) identity function on A 138
f1(x) inverse of f 139
fog composition of f and g 140
Lx] floor function of x 143
[x] ceiling function of x 143
an term of {a;} with subscript n 150
> a; sumofay, ay,...,a, 153
i=1
> ag sum of a, overa € S 156
acsS
ITax product of a1, ay, ..., a, 162
i=1
f(x)is O(g(x)) f(x) is big-O of g(x) 180
n! n factorial 185
f(x)is Q(g(x)) f(x) is big-Omega of g(x) 189
f(x)is O(g(x)) f(x) is big-Theta of g(x) 189
~ asymptotic 192
min (x, y) minimum of x and y 216
max (x, y) maximum of x and y 217
= approximately equal to 395
INTEGERS alb a divides b 201
afb a does not divide b 201
a divb quotient when a is divided by b 202
a mod b remainder when a is divided by b 202
a = b (mod m) a is congruent to b modulo m 203
a # b(mod m) a is not congruent to b modulo m 203
gcd (a, b) greatest common divisor of @ and b 215
Icm (a, b) least common multiple of a and b 217
(arap—1 --- a1ao0)p base b representation 219
MATRICES [aij] matrix with entries a;; 247
A+B matrix sum of A and B 247
AB matrix product of A and B 248
I, identity matrix of order n 251
A’ transpose of A 251
AVB join of A and B 252
AAB the meet of A and B 252
AOB Boolean product of A and B 253
Al nth Boolean power of A 254

(List of Symbols continued at back of book)

Discrete
Mathematics
and Its
Applications

Sixth Edition

Kenneth H. Rosen

AT&T Laboratories

i

Boston Burr Ridge, IL Dubuque, IA° New York San Francisco St. Louis
Bangkok Bogotd Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

The McGraw -Hill companies

DISCRETE MATHEMATICS AND ITS APPLICATIONS, SIXTH EDITION
International Edition 2007

Exclusive rights by McGraw-Hill Education (Asia), for manufacture and export. This book cannot be
re-exported from the country to which it is sold by McGraw-Hill. The International Edition is not
available in North America.

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2007 by Kenneth H. Rosen. All rights reserved. No
part of this publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc.,
including, butnot limited to, in any network or other electronic storage or transmission, or broadcast
for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

10 09 08 07 06 05 04 03 02 01
20 09 08 07 06
CTF BIE

The credits section for this book begins on page C-1 and is considered an extension of the copyright
page.

When ordering this title, use ISBN-13: 978-007-124474-9 or ISBN-10: 007-124474-3
Printed in Singapore

www.mhhe.com

Contents

Preface vii
The MathZone Companion Website xviii
To the Student xx
1 The Foundations: Logicand Proofs...............cooiiiiiiiiiiaee. 1
1.1 Propositional LogICouiiin i e 1
1.2 Propositional Equivalencescoouiiiuiiiiiii i 21
1.3 Predicates and Quantifiers. ...ttt e 30
1.4 Nested QUantifiers.ottt ettt e iiiiiaeeenns 50
1.5 Rulesof Inference e e 63
1.6 Introduction to Proofs........ ... e 75
1.7 Proof Methods and Strategycooiiiiiiiiiiii i 86
End-of-Chapter Material i i, 104
2 Basic Structures: Sets, Functions, Sequences, and Sums........... 111
2 B S 111
2.2 SetOPEIAtIONSottt ettt et e e et e e e 121
2.3 FUNCHOMSottt ettt 133
2.4 Sequences and SUMMALIONSuenuttnn ettt e eneennenns 149
End-of-Chapter Materialcoiiiiiiiiiiiii it eaiieeanns 163
3 The Fundamentals: Algorithms, the Integers, and Matrices........ 167
3.1 AlOrithms . ..o 167
3.2 The Growth of FUNCtiONS.ttt e e ieeeee e 180
3.3 Complexity of Algorithms. e 193
34 Thelntegersand Divisionottt eeannn, 200
3.5 Primes and Greatest Common DiViSOrsuiiiiiiieieeeeeeeeeeeennnnnnn. 210
3.6 Integersand Algorithms........ i it 219
3.7 Applications of Number Theoryottt 231
TR Y, F: 1 o (oA O 246
End-of-Chapter Material it 257
4 Induction and RecurSion.........ccceeeeeeeeececcccccccccccccnnnns 263
4.1 Mathematical Induction........ ...ttt i 263
4.2 Strong Induction and Well-Ordering ...ttt 283
4.3 Recursive Definitions and Structural Induction 294
4.4 Recursive Algorithms. i e 311

Contents

4.5

5.1
5.2
53
54
5.5
5.6

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5
7.6

8.1

8.2

8.3
8.4
8.5
8.6

9.1

9.2
93
9.4

Program COrTeCtneSSovvnnitt ettt ettt eeei e eiieeeannneeennns 322
End-of-Chapter Material i i i 328
Counting ..oouinuiiiiiiiiiiiiii ittt ittt iiiiitieieiaeanaens 335
The Basics of Countingooiuiiiiiiiiiii ittt eiie e eaneannnns 335
The Pigeonhole Principle. i 347
Permutations and Combinationst 355
Binomial Coefficients. ...ttt e 363
Generalized Permutations and Combinations.c..coiiiiiiiieenn.n. 370
Generating Permutations and Combinations................c..cooiiiiiiiiiin... 382
End-of-Chapter Material oo 386
Discrete Probability.........cooviiiiiiiiiiiiiiiiiiiiiiiiiiiinaa., 393
An Introduction to Discrete Probability i 393
Probability Theoryt e 400
Bayes” Theorem.ttt et 417
Expected Valueand Variancecoviiiiiiieiniii i eannns 426
End-of-Chapter Material i 442
Advanced Counting Techniques...........cccoviiiiiiiiiiiene. 449
Recurrence Relations i 449
Solving Linear Recurrence Relations. ..., 460
Divide-and-Conquer Algorithms and Recurrence Relations....................... 474
Generating FuUnCtionsttt i it 484
Inclusion—Exclusion.......... P 499
Applications of Inclusion—Exclusion i i 505
End-of-Chapter Materialo i 513
Relations .. coviiieiiiiiiiiiiniieeeeeneseeosennsscsssnssssssnnnss 519
Relations and Their Properties.coiiiiiiiii i et 519
n-ary Relations and Their Applicationscciiiiiiiiiniiininennnn.. 530
Representing Relationst 537
Closures Of Relationsot e eaeen 544
Equivalence Relationsoiiiiiiiii i 555
Partial Orderingsouiiitii i e e 566
End-of-Chapter Material i it ainens 581
Graphs..cuiiiii i i i it it 589
Graphs and Graph Models.o i e 589
Graph Terminology and Special Typesof Graphs................... o..... 597
Representing Graphs and Graph Isomorphism................, 611

L00)11 1 =115 41 PP 621

9.5
9.6
9.7
9.8

10

10.1
10.2
10.3
10.4
10.5

11

11.1
11.2
11.3
11.4

12

12.1
12.2
12.3
12.4
12.5

A-1
A-2
A-3

Contents v

Eulerand Hamilton Paths o i 633
Shortest-Path Problemso i e 647
Planar Graphs.o e 657
Graph Coloringt e 666
End-of-Chapter Materialo it 675
= 1 683
Introduction to Trees. P 683
Applications Of TTEeS cvutt i e 695
Tree Traversal....... ... e 710
Spanning TTEESttt et e e e e 724
Minimum Spanning Trees. ..ottt 737
End-of-Chapter Materialottt eanens 743
Boolean Algebra........cociiiiiiiiiiiiiiiiiiiiiiiiiiiiii i 749
Boolean Functions.t e 749
Representing Boolean Functions............ i i 757
LOgIC Gates. . .ottt ettt e 760
Minimization of CIrCuitsoouiin i 766
End-of-Chapter Material i 781
Modeling Computation.......ccocoiuiiiiiiiiiiiiiiiiiiiiinena., 785
Languages and Grammars.oounutttnit ettt e, 785
Finite-State Machines with Output........., 796
Finite-State Machines withNoOutput.............. i iiiiia... 804
Language Recognitiont 817
Turing Machines e 827
End-of-Chapter Material i 838
APPendixXeS...ociueiiiiiiiiiiiiiiiiiiiiiiiiiiiititiiettitteiannes A-1
Axioms for the Real Numbers and the Positive Integers A-1
Exponential and Logarithmic Functionsoiiaat. A-7
Pseudocodeo A-10

Suggested Readings B-1

Answers to Odd-Numbered Exercises S-1
Photo Credits C-1

Index of Biographies 1-1

Index 1-2

9.2 Graph Terminology and Special Types of Graphs

Links

i

Introduction

We introduce some of the basic vocabulary of graph theory in this section. We will use this
vocabulary later in this chapter when we solve many different types of problems. One such
problem involves determining whether a graph can be drawn in the plane so that no two of its
edges cross. Another example is deciding whether there is a one-to-one correspondence between
the vertices of two graphs that produces a one-to-one correspondence between the edges of the
graphs. We will also introduce several important families of graphs often used as examples and
in models. Several important applications will be described where these special types of graphs
arise.

598 9/Graphs

DEFINITION 1

DEFINITION 2

EXAMPLE 1

EXAMPLE 2

9-10

Basic Terminology

First, we give some terminology that describes the vertices and edges of undirected graphs.

Two vertices # and v in an undirected graph G are called adjacent (or neighbors) in G if u
and v are endpoints of an edge of G. If e is associated with {u, v}, the edge e is called incident
with the vertices u and v. The edge e is also said to connect u and v. The vertices u and v are
called endpoints of an edge associated with {u, v}.

To keep track of how many edges are incident to a vertex, we make the following definition.

The degree of a vertex in an undirected graph is the number of edges incident with it, except
that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex
v is denoted by deg(v). L

What are the degrees of the vertices in the graphs G and H displayed in Figure 1?

Solution: In G, deg(a) =2, deg(b) = deg(c) = deg(f) =4, deg(d) =1, deg(e) =3, and
deg(g) = 0. In H, deg(a) = 4, deg(b) = deg(e) = 6, deg(c) = 1, and deg(d) = 5. ' <

A vertex of degree zero is called isolated. It follows that an isolated vertex is not adjacent
to any vertex. Vertex g in graph G in Example 1 is isolated. A vertex is pendant if and only if it
has degree one. Consequently, a pendant vertex is adjacent to exactly one other vertex. Vertex
d in graph G in Example 1 is pendant.

Examining the degrees of vertices in a graph model can provide useful information about
the model, as Example 2 shows.

What does the degree of a vertex in a niche overlap graph (introduced in Example 1 in Section
9.1) represent? Which vertices in this graph are pendant and which are isolated? Use the niche
overlap graph shown in Figure 6 of Section 9.1 to interpret your answers.

Solution: There is an edge between two vertices in a niche overlap graph if and only if the two
species represented by these vertices compete. Hence, the degree of a vertex in a niche overlap
graph is the number of species in the ecosystem that compete with the species represented by
this vertex. A vertex is pendant if the species competes with exactly one other species in the

G H

FIGURE 1 The Undirected Graphs G and H.

9-11

THEOREM 1

EXAMPLE 3

THEOREM 2

9.2 Graph Terminology and Special Types of Graphs 599

ecosystem. Finally, the vertex representing a species is isolated if this species does not compete
with any other species in the ecosystem.

For instance, the degree of the vertex representing the squirrel in Figure 6 in Section 9.1 is
four, because the squirrel competes with four other species: the crow, the opossum, the raccoon,
and the woodpecker. In the graph in Figure 6, the mouse is the only species represented by a
pendant vertex, because the mouse competes only with the shrew and all other species compete
with at least two other species. The vertex representing a species is pendant if this species
competes with only one other species. There are no isolated vertices in the graph in Figure 6
because every species in this ecosystem competes with at least one other species. <

What do we get when we add the degrees of all the vertices of a graph G = (V, E)? Each
edge contributes two to the sum of the degrees of the vertices because an edge is incident with
exactly two (possibly equal) vertices. This means that the sum of the degrees of the vertices is
twice the number of edges. We have the result in Theorem 1, which is sometimes called the
Handshaking Theorem, because of the analogy between an edge having two endpoints and a
handshake involving two hands.

THE HANDSHAKING THEOREM Let G = (V, E) be an undirected graph with e
edges. Then

2e = Z deg(v).

veV

(Note that this applies even if multiple edges and loops are present.)

How many edges are there in a graph with 10 vertices each of degree six?

Solution: Because the sum of the degrees of the vertices is 6 - 10 = 60, it follows that 2e = 60.
Therefore, e = 30. <

Theorem 1 shows that the sum of the degrees of the vertices of an undirected graph is even.
This simple fact has many consequences, one of which is given as Theorem 2.

An undirected graph has an even number of vertices of odd degree.

Proof: Let V| and V; be the set of vertices of even degree and the set of vertices of odd degree,
respectively, in an undirected graph G = (V, E). Then

2e = Z deg(v) = Z deg(v) + Z deg(v).

veV veV, vevV,

Because deg(v) is even for v € Vi, the first term in the right-hand side of the last equality is
even. Furthermore, the sum of the two terms on the right-hand side of the last equality is even,
because this sum is 2e. Hence, the second term in the sum is also even. Because all the terms in
this sum are odd, there must be an even number of such terms. Thus, there are an even number
of vertices of odd degree. d

600 9/ Graphs

DEFINITION 3

DEFINITION 4

EXAMPLE 4

THEOREM 3

9-12

Terminology for graphs with directed edges reflects the fact that edges in directed graphs
have directions.

When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v and v
is said to be adjacent from u. The vertex u is called the initial vertex of (u, v), and v is called
the terminal or end vertex of (u, v). The initial vertex and terminal vertex of a loop are the
same.

Because the edges in graphs with directed edges are ordered pairs, the definition of the degree
of a vertex can be refined to reflect the number of edges with this vertex as the initial vertex and
as the terminal vertex.

In a graph with directed edges the in-degree of a vertex v, denoted by deg™ (v), is the number
of edges with v as their terminal vertex. The out-degree of v, denoted by deg™ (v), is the
number of edges with v as their initial vertex. (Note that a loop at a vertex contributes 1 to
both the in-degree and the out-degree of this vertex.)

Find the in-degree and out-degree of each vertex in the graph G with directed edges shown in
Figure 2.

Solution: The in-degrees in G are deg (a) = 2, deg™(b) = 2, deg (c¢) = 3, deg™ (d) =2,
deg™(e) = 3, and deg™(f) = 0. The out-degrees are deg™ (a) = 4, deg*(b) = 1, deg*(c) =2,
deg®(d) = 2, degt(e) = 3, and deg*(f) = 0. <

Because each edge has an initial vertex and a terminal vertex, the sum of the in-degrees and
the sum of the out-degrees of all vertices in a graph with directed edges are the same. Both of
these sums are the number of edges in the graph. This result is stated as Theorem 3.

Let G = (V, E) be a graph with directed edges. Then

D_deg™(@) =) _deg"(v) = |E|.

veV veV

FIGURE 2 The Directed Graph G.

9-13

°
K,

.——. A
K, K3

9.2 Graph Terminology and Special Types of Graphs 601

FIGURE 3 The Graphs K, for 1 < n < 6.

EXAMPLE 5

EXAMPLE 6

EXAMPLE 7

There are many properties of a graph with directed edges that do not depend on the direction
of its edges. Consequently, it is often useful to ignore these directions. The undirected graph
that results from ignoring directions of edges is called the underlying undirected graph. A
graph with directed edges and its underlying undirected graph have the same number of edges.

Some Special Simple Graphs

We will now introduce several classes of simple graphs. These graphs are often used as examples
and arise in many applications.

Complete Graphs The complete graph on n vertices, denoted by K,,, is the simple graph
that contains exactly one edge between each pair of distinct vertices. The graphs K, forn =
1,2,3,4,5, 6, are displayed in Figure 3. |

Cycles The cycle C,, n > 3, consists of n vertices v;, vy,...,v, and edges {v;, v2},
{va,v3}, ..., {Vn—1,v,}, and {v,,v;}. The cycles C3, C4, Cs, and C¢ are displayed in
Figure 4.

Wheels We obtain the wheel W, when we add an additional vertex to the cycle C,, forn > 3,
and connect this new vertex to each of the n vertices in C,, by new edges. The wheels W3, W,

Ws, and W are displayed in Figure 5. <
G C, Cs Cs

FIGURE 4 The Cycles C3, Cy4, Cs, and Cg.

AN K

W, Wy

FIGURE 5 The Wheels W;, W4, W5, and W;.

602 9/ Graphs

EXAMPLE 8

s B

DEFINITION 5

EXAMPLE 9

EXAMPLE 10

9-14

110 111

10 11 100 101

o 010 o1l

00 01 000 001

0, 0, Qs

FIGURE 6 The n-cube Q, for n = 1,2, and 3.

n-Cubes The n-dimensional hypercube, or n-cube, denoted by Q,, is the graph that has
vertices representing the 2" bit strings of length n. Two vertices are adjacent if and only if the
bit strings that they represent differ in exactly one bit position. The graphs Q,, Q», and Q3 are
displayed in Figure 6. Note that you can construct the (n + 1)-cube Q,; from the n-cube Q,
by making two copies of Q,, prefacing the labels on the vertices with a 0 in one copy of Q,
and with a 1 in the other copy of Q,, and adding edges connecting two vertices that have labels
differing only in the first bit. In Figure 6, Q3 is constructed from Q, by drawing two copies
of Q5 as the top and bottom faces of Q3, adding 0 at the beginning of the label of each vertex.
in the bottom face and 1 at the beginning of the label of each vertex in the top face. (Here,
by face we mean a face of a cube in three-dimensional space. Think of drawing the graph Q3
in three-dimensional space with copies of Q, as the top and bottom faces of a cube and then
drawing the projection of the resulting depiction in the plane.) <

Bipartite Graphs

Sometimes a graph has the property that its vertex set can be divided into two disjoint subsets
such that each edge connects a vertex in one of these subsets to a vertex in the other subset.
For example, consider the graph representing marriages between men and women in a village,
where each person is represented by a vertex and a marriage is represented by an edge. In this
graph, each edge connects a vertex in the subset of vertices representing males and a vertex in
the subset of vertices representing females. This leads us to Definition 5.

A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint
sets V| and V; such that every edge in the graph connects a vertex in V; and a vertex in V;
(so that no edge in G connects either two vertices in V| or two vertices in V,). When this
condition holds, we call the pair (V;, V») a bipartition of the vertex set V of G.

In Example 9 we will show that Cg is bipartite, and in Example 10 we will show that K3 is
not bipartite.

Cs is bipartite, as shown in Figure 7, because its vertex set can be partitioned into the two sets
Vi = {v1, v3, vs} and V, = {v,, v4, vs}, and every edge of Cg connects a vertex in V) and a
vertex in V,. |

K3 is not bipartite. To verify this, note that if we divide the vertex set of K3 into two disjoint
sets, one of the two sets must contain two vertices. If the graph were bipartite, these two vertices

9-15

9.2 Graph Terminology and Special Types of Graphs 603

f ¢
f /
e d e d

G H

FIGURE 7 Showing That Cg Is FIGURE 8 The Undirected Graphs G and H.
Bipartite.

EXAMPLE 11

THEOREM 4

EXAMPLE 12

could not be connected by an edge, but in K3 each vertex is connected to every other vertex by
an edge. <

Are the graphs G and H displayed in Figure 8 bipartite?

Solution: Graph G is bipartite because its vertex set is the union of two disjoint sets, {a, b, d}
and {c, e, f, g}, and each edge connects a vertex in one of these subsets to a vertex in the other
subset. (Note that for G to be bipartite it is not necessary that every vertex in {a, b, d} be adjacent
to every vertex in {c, e, f, g}. For instance, b and g are not adjacent.)

Graph H is not bipartite because its vertex set cannot be partitioned into two subsets so
that edges do not connect two vertices from the same subset. (The reader should verify this by
considering the vertices a, b, and f.) <

Theorem 4 provides a useful criterion for determining whether a graph is bipartite.

A simple graph is bipartite if and only if it is possible to assign one of two different colors to
each vertex of the graph so that no two adjacent vertices are assigned the same color.

Proof: First, suppose that G = (V, E) is a bipartite simple graph. Then V = V|, U V,, where
Vi and V; are disjoint sets and every edge in E connects a vertex in V; and a vertex in V5. If
we assign one color to each vertex in V) and a second color to each vertex in V5, then no two
adjacent vertices are assigned the same color.

Now suppose that it is possible to assign colors to the vertices of the graph using just two
colors so that no two adjacent vertices are assigned the same color. Let V; be the set of vertices
assigned one color and V, be the set of vertices assigned the other color. Then, V; and V, are
disjoint and V = V| U V,. Furthermore, every edge connects a vertex in V; and a vertex in
V, because no two adjacent vertices are either both in V| or both in V,. Consequently, G is
bipartite.

We illustrate how Theorem 4 can used to determine whether a graph is bipartite in Ex-
ample 12.

Use Theorem 4 to determine whether the graphs in Example 11 are bipartite.

Solution: We first consider the graph G. We will try to assign one of two colors, say red and
blue, to each vertex in G so that no edge in G connects a red vertex and a blue vertex. Without
loss of generality we begin by arbitrarily assigning red to a. Then, we must assign blue to c, e,
f, and g, because each of these vertices is adjacent to a. To avoid having an edge with two blue
endpoints, we must assign red to all the vertices adjacent to either c, e, f, or g. This means that

604 9/ Graphs

EXAMPLE 13

EXAMPLE 14

9-16

A K

Ky3 K33
Kjs Ky e

FIGURE 9 Some Complete Bipartite Graphs.

we must assign red to both b and d (and means that a must be assigned red, which it already has
been). We have now assigned colors to all vertices, with a, b, and d red and ¢, e, f, and g blue.
Checking all edges, we see that every edge connects a red vertex and a blue vertex. Hence, by
Theorem 4 the graph G is bipartite.

Next, we will try to assign either red or blue to each vertex in H so that no edge in H
connects a red vertex and a blue vertex. Without loss of generality we arbitrarily assign red to a.
Then, we must assign blue to b, e, and f, because each is adjacent to a. But this is not possible
because e and f are adjacent, so both cannot be assigned blue. This argument shows that we
cannot assign one of two colors to each of the vertices of H so that no adjacent vertices are
assigned the same color. It follows by Theorem 4 that H is not bipartite. <

Theorem 4 is an example of a result in the part of graph theory known as graph colorings.
Graph colorings is an important part of graph theory with important applications. We will study
graph colorings further in Section 9.8.

Another useful criterion for determing whether a graph is bipartite is based on the notion
of a path, a topic we study in Section 9.4. A graph is bipartite if and only if it is not possible to
start at a vertex and return to this vertex by traversing an odd number of distinct edges. We will
make this notion more precise when we discuss paths and circuits in graphs in Section 9.4 (see
Exercise 53 in that section).

Complete Bipartite Graphs The complete bipartite graph K, , is the graph that has its
vertex set partitioned into two subsets of m and n vertices, respectively. There is an edge between
two vertices if and only if one vertex is in the first subset and the other vertex is in the second
subset. The complete bipartite graphs K3, K33, K3 5, and K, ¢ are displayed in Figure 9. <«

Some Applications of Special Types of Graphs

We will show how bipartite graphs and special types of graphs are used in models in Examples
14-16.

Job Assignments Suppose that there are m employees in a group and j different jobs that
need to be done where m < j. Each employee is trained to do one or more of these j jobs.
We can use a graph to model employee capabilities. We represent each employee by a vertex
and each job by a vertex. For each employee, we include an edge from the vertex representing
that employee to the vertices representing all jobs that the employee has been trained to do.

9-17

EXAMPLE 15

==y
Links h\?’«

9.2 Graph Terminology and Special Types of Graphs 605

Alvarez Berkowitz Chen Davis

requirements architecture implementation testing

FIGURE 10 Modeling the Jobs for
Which Employees Have Been Trained.

Note that the vertex set of this graph can be partitioned into two disjoint sets, the set of vertices
representing employees and the set of vertices representing jobs, and each edge connects a vertex
representing an employee to a vertex representing a job. Consequently, this graph is bipartite.

For example, suppose thata group has four employees: Alvarez, Berkowitz, Chen, and Davis;
and suppose that four jobs need to be done to complete a project: requirements, architecture,
implementation, and testing. Suppose that Alvarez has been trained to do requirements and
testing; Berkowitz has been trained to do architecture, implementation, and testing; Chen has
been trained to do requirements, architecture, and implementation; and Davis has only been
trained to do requirements. We can model these capabilities of employees using the bipartite
graph shown in Figure 10.

To complete the project, we must assign jobs to the employees so that every job has an em-
ployee assigned to it and no employee is assigned more than one job. In this case, we can assign
Alvarez to do testing, Berkowitz to do implementation, Chen to do architecture, and Davis to do
requirements, as shown in Figure 10 (where colored lines show this assignment of jobs). <

Finding an assignment of jobs to employees can be thought of as finding a matching in the
graph model. A matching in a simple graph is a subset of the set of edges of the graph such
that no two edges are incident with the same vertex; a maximal matching is a matching with
the largest number of edges. In other words, a matching is a subset of edges such that if {s, ¢}
and {u, v} are edges of the matching, then s, 7, u, and v are distinct. To assign jobs to employees
so that the largest number of employees are assigned jobs, we seek a maximum matching in the
graph that models employee capabilities. (The interested reader can find more about matchings
in books about graph theory, including [GrYe06].)

Local Area Networks The various computers in a building, such as minicomputers and per-
sonal computers, as well as peripheral devices such as printers and plotters, can be connected
using a local area network. Some of these networks are based on a star topology, where all
devices are connected to a central control device. A local area network can be represented using
a complete bipartite graph K, ,, as shown in Figure 11(a). Messages are sent from device to
device through the central control device.

Other local area networks are based on a ring topology, where each device is connected to
exactly two others. Local area networks with a ring topology are modeled using n-cycles, C,,
as shown in Figure 11(b). Messages are sent from device to device around the cycle until the
intended recipient of a message is reached.

(a) (b) (©)

FIGURE 11 Star, Ring, and Hybrid Topologies for Local Area Networks.

606 9/ Graphs

EXAMPLE 16

9-18

Finally, some local area networks use a hybrid of these two topologies. Messages may be
sent around the ring, or through a central device. This redundancy makes the network more
reliable. Local area networks with this redundancy can be modeled using wheels W,, as shown
in Figure 11(c). <4

Interconnection Networks for Parallel Computation For many years, computers executed
programs one operation at a time. Consequently, the algorithms written to solve problems were
designed to perform one step at a time; such algorithms are called serial. (Almost all algorithms
described in this book are serial.) However, many computationally intense problems, such as
weather simulations, medical imaging, and cryptanalysis, cannot be solved in a reasonable
amount of time using serial operations, even on a supercomputer. Furthermore, there is a physical
limit to how fast a computer can carry out basic operations, so there will always be problems
that cannot be solved in a reasonable length of time using serial operations.

Parallel processing, which uses computers made up of many separate processors, each
with its own memory, helps overcome the limitations of computers with a single processor.
Parallel algorithms, which break a problem into a number of subproblems that can be solved
concurrently, can then be devised to rapidly solve problems using a computer with multiple
processors. In a parallel algorithm, a single instruction stream controls the execution of the
algorithm, sending subproblems to different processors, and directs the input and output of
these subproblems to the appropriate processors.

When parallel processing is used, one processor may need output generated by another
processor. Consequently, these processors need to be interconnected. We can use the appropriate
type of graph to represent the interconnection network of the processors in a computer with
multiple processors. In the following discussion, we will describe the most commonly used
types of interconnection networks for parallel processors. The type of interconnection network
used to implement a particular parallel algorithm depends on the requirements for exchange of
data between processors, the desired speed, and, of course, the available hardware.

The simplest, but most expensive, network-interconnecting processors include a two-way
link between each pair of processors. This network can be represented by K, the complete graph
on n vertices, when there are n processors. However, there are serious problems with this type
of interconnection network because the required number of connections is so large. In reality,
the number of direct connections to a processor is limited, so when there are a large number
of processors, a processor cannot be linked directly to all others. For example, when there are
64 processors, C(64, 2) = 2016 connections would be required, and each processor would have
to be directly connected to 63 others.

On the other hand, perhaps the simplest way to interconnect n processors is to use an
arrangement known as a linear array. Each processor P;, otherthan P, and P,, is connected to
its neighbors P;_; and P;; via a two-way link. P; is connected only to P,, and P, is connected
only to P,_;. The linear array for six processors is shown in Figure 12. The advantage of a
linear array is that each processor has at most two direct connections to other processors. The
disadvantage is that it is sometimes necessary to use a large number of intermediate links, called
hops, for processors to share information.

The mesh network (or two-dimensional array) is a commonly used interconnection net-
work. In such a network, the number of processors is a perfect square, say n = m?. The n
processors are labeled P(i, j),0 <i <m — 1,0 < j < m — 1. Two-way links connect proces-
sor P(i, j) with its four neighbors, processors P(i £ 1, j) and P(i, j = 1), as long as these
are processors in the mesh. (Note that four processors, on the corners of the mesh, have only
two adjacent processors, and other processors on the boundaries have only three neighbors.
Sometimes a variant of a mesh network in which every processor has exactly four connections
is used; see Exercise 66 at the end of this section.) The mesh network limits the number of links
for each processor. Communication between some pairs of processors requires O(1/n) = O(m)

9-19

DEFINITION 6

9.2 Graph Terminology and Special Types of Graphs 607

P@0,0) PO, 1) P(0,2) P(O,3)

P(1,0) [P(1,1) |P(1,2) |P(1,3)

P(2,0) |P(2,1) |P(2,2) |P(2,3)

A P B P P K P@3,0) |PG3, 1) |P3,2) |P@3,3)

FIGURE 12 A Linear FIGURE 13 A Mesh Network for
Array for Six Processors. 16 Processors.

intermediate links. (See Exercise 67 atthe end of this section.) The graph representing the mesh
network for 16 processors is shown in Figure 13.

One important type of interconnection network is the hypercube. For such a network, the
number of processors is a power of 2, n = 2™. The n processors are labeled Py, P, ..., Py_.
Each processor has two-way connections to m other processors. Processor P; is linked to the
processors with indices whose binary representations differ from the binary representation
of i in exactly one bit. The hypercube network balances the number of direct connections
for each processor and the number of intermediate connections required so that processors
can communicate. Many computers have been built using a hypercube network, and many
parallel algorithms have been devised that use a hypercube network. The graph Q,,, the m-cube,
represents the hypercube network with » = 2™ processors. Figure 14 displays the hypercube
network for eight processors. (Figure 14 displays a different way to draw Q3 than was shown in
Figure 6.) ’

New Graphs from Old

Sometimes we need only part of a graph to solve a problem. For instance, we may care only
about the part of a large computer network that involves the computer centers in New York,
Denver, Detroit, and Atlanta. Then we can ignore the other computer centers and all telephone
lines not linking two of these specific four computer centers. In the graph model for the large
network, we can remove the vertices corresponding to the computer centers other than the four
of interest, and we can remove all edges incident with a vertex that was removed. When edges
and vertices are removed from a graph, without removing endpoints of any remaining edges, a
smaller graph is obtained. Such a graph is called a subgraph of the original graph.

A subgraph of a graph G = (V, E) is agraph H = (W, F), where W C Vand F C E. A
subgraph H of G is a proper subgraph of G if H # G.

W d c c

FIGURE 14 A Hypercube Network for Eight Processors.

FIGURE 15 A Subgraph of Ks.

9-20

608 9/ Graphs
a b c a b c ‘a b c
[
d e d f d e f
G, G, G UG,

(@ (b)
FIGURE 16 (a) The Simple Graphs G; and G;; (b) Their Union G, U G».

EXAMPLE 17 The graph G shown in Figure 15 is a subgraph of K. <

Two or more graphs can be combined in various ways. The new graph that contains all the
vertices and edges of these graphs is called the union of the graphs. We will give a more formal
definition for the union of two simple graphs.

DEFINITION 7 The union of two simple graphs G, = (V}, E;) and G, = (V, E>) is the simple graph with
vertex set V| U V, and edge set E; U E;. The union of G| and G is denoted by G; U G,.

EXAMPLE 18 Find the union of the graphs G, and G, shown in Figure 16(a).

Solution: The vertex set of the union G| U G, is the union of the two vertex sets, namely,
{a,b,c,d, e, f}. The edge set of the union is the union of the two edge sets. The union is

displayed in Figure 16(b).

Exercises

In Exercises 1-3 find the number of vertices, the number of 3.
edges, and the degree of each vertex in the given undirected
graph. Identify all isolated and pendant vertices.

1. a b

Cc
Py
@

4. Find the sum of the degrees of the vertices of each graph
in Exercises 1-3 and verify that it equals twice the number
of edges in the graph.

5. Can a simple graph exist with 15 vertices each of degree
five?

2, a b

6. Show that the sum, over the set of people at a party, of
the number of people a person has shaken hands with, is
even. Assume that no one shakes his or her own hand.

In Exercises 7-9 determine the number of vertices and edges

and find the in-degree and out-degree of each vertex for the
e d given directed multigraph.

9-21
7 b 8 4 b
a
d c d c
9. a b

10. Foreach of the graphs in Exercises 7-9 determine the sum
of the in-degrees of the vertices and the sum of the out-
degrees of the vertices directly. Show that they are both
equal to the number of edges in the graph.

11. Construct the underlying undirected graph for the graph
with directed edges in Figure 2.

12. Whatdoes the degree of a vertex represent in the acquain-
tanceship graph, where vertices represent all the people
in the world? What do isolated and pendant vertices in
this graph represent? In one study it was estimated that
the average degree of a vertex in this graph is 1000. What
does this mean in terms of the model?

13. What does the degree of a vertex represent in a collab-
oration graph? What do isolated and pendant vertices
represent?

14. What does the degree of a vertex in the Hollywood graph
represent? What do the isolated and pendant vertices
represent?

15. What do the in-degree and the out-degree of a vertex
in a telephone call graph, as described in Example 7 of
Section 9.1, represent? What does the degree of a vertex
in the undirected version of this graph represent?

16. What do the in-degree and the out-degree of a vertex in
the Web graph, as described in Example 8 of Section 9.1,
represent?

17. What do the in-degree and the out-degree of a vertex in
a directed graph modeling a round-robin tournament rep-
resent?

18. Show that in a simple graph with at least two vertices there
must be two vertices that have the same degree.

19. Use Exercise 18 to show that in a group, there must be
two people who know the same number of other people
in the group.

20. Draw these graphs.

a) K; b) Kz ¢) Kygq
d & e) W;) 04

In Exercises 21-25 determine whether the graph is bipartite.

You may find it useful to apply Theorem 4 and answer the

question by determining whether it is possible to assign either

9.2 Graph Terminology and Special Types of Graphs 609

red or blue to each vertex so that no two adjacent vertices are
assigned the same color.

21. a b 22. b c
P
c | d e

23. b c
o

7 e

24. a b

fE EC
e d

25. b
a c
f d

e

26. For which values of n are these graphs bipartite?
a) K, b) C, c) W, d) O,

27. Suppose that a new company has five employees: Zamora,
Agraharam, Smith, Chou, and Macintyre. Each employee
will assume one of six responsiblities: planning, public-
ity, sales, marketing, development, and industry relations.
Each employee is capable of doing one or more of these
jobs: Zamora could do planning, sales, marketing, or in-
dustry relations; Agraharam could do planning or devel-
opment; Smith could do publicity, sales, or industry rela-
tions; Chou could do planning, sales, orindustry relations;
and Macintyre could do planning, publicity, sales, or in-
dustry relations. .

a) Model the capabilities of these employees using a bi-
partite graph.

b) Find an assignment of responsibilites such that each
employee is assigned a responsibility.

28. Suppose that there are five young women and six young
men on an island. Each woman is willing to marry some

610 9/ Graphs

of the men on the island and each man is willing to marry
any woman who is willing to marry him. Suppose that
Anna is willing to marry Jason, Larry, and Matt; Barbara
is willing to marry Kevin and Larry; Carol is willing to
marry Jason, Nick, and Oscar; Diane is willing to marry
Jason, Larry, Nick, and Oscar; and Elizabeth is willing to
marry Jason and Matt.

a) Model the possible marriages on the island using a
bipartite graph.

b) Find a matching of the young women and the young
men on the island such that each young woman is
matched with a young man whom she is willing to

marry.
29. How many vertices and how many edges do these graphs
have?
a) K, b) C, c) W,
d) Kn.n e) O,

The degree sequence of a graph is the sequence of the de-
grees of the vertices of the graph in nonincreasing order. For
example, the degree sequence of the graph G in Example 1 in
this section is 4, 4,4,3,2, 1, 0.
30. Find the degree sequences for each of the graphs in Exer-
cises 21-25.
31. Find the degree sequence of each of the following
graphs.
a) K, b) C4 c) Wy
d K33 e) O3
32. What is the degree sequence of the bipartite graph K, ,
where m and n are positive integers? Explain your answer.
33. What is the degree sequence of K,, where n is a positive
integer? Explain your answer.

34. How many edges does a graph have if its degree sequence
is 4, 3, 3, 2, 2? Draw such a graph.

35. How many edges does a graph have if its degree sequence
is 5,2, 2,2,2, 1? Draw such a graph.

A sequence d|, d,, ..., d, is called graphic if it is the degree

sequence of a simple graph.

36. Determine whether each of these sequences is graphic.
For those that are, draw a graph having the given degree

sequence.

a) 5,4,3,2,1,0 b) 6,5,4,3,2,1
) 2,2,2,2,2,2 d) 3,3,3,2,2,2
e 3,3,2,2,2,2 f) 1,1,1,1,1,1
g 53,3,3,3,3 h) 5 54,3,2,1

37. Determine whether each of these sequences is graphic.
For those that are, draw a graph having the given degree

sequence.
a) 3,3,3,3,2 b) 5,4,3,2,1
¢ 4,4,3,2,1 . d) 4,4,3,3,3
e 3,2,2,1,0 H 1,1,1,1,1
38. Suppose thatd;, d,, ..., d, is a graphic sequence. Show
that there is a simple graph with vertices vy, vz, ..., v,

such that deg(v;) =d; fori = 1,2, ...
centto va, ..., V4....

, n and v, is adja-

9-22

*39. Show that a sequence dy, d,, .. ., d, of nonnegative inte-
gers in nonincreasing order is a graphic sequence if and
only if the sequence obtained by reordering the terms of
the sequenced, — 1, ...,d44+1 — 1,da 42, ..., dy sothat
the terms are in nonincreasing order is a graphic sequence.

*40. Use Exercise 39 to construct arecursivealgorithm for de-
termining whether a nonincreasing sequence of positive

~ integers is graphic.

41. Show that every nonincreasing sequence of nonnegative
integers with an even sum of its terms is the degree se-
quence of a pseudograph, that is, an undirected graph
where loops are allowed. [Hint: Construct such a graph
by first adding as many loops as possible at each vertex.
Then add additional edges connecting vertices of odd de-
gree. Explain why this construction works.]

42. How many subgraphs with at least one vertex does K3
have?

43. How many subgraphs with at least one vertex does K3
have?

44. How many subgraphs with at least one vertex does W;
have?

45. Draw all subgraphs of this graph.

a b

c d

46. Let G be a graph with v vertices and e edges. Let M be
the maximum degree of the vertices of G, and let m be
the minimum degree of the vertices of G. Show that
a) 2e/v > m.

b) 2¢e/v < M.

A simple graph is called regular if every vertex of this graph

has the same degree. A regular graph is called n-regular if

every vertex in this graph has degree n.

47. For which values of n are these graphs regular?

a) K, b) C, c) W, d) 0,

48. For which values of m and n is K, , regular?

49. How many vertices does a regular graph of degree four
with 10 edges have?

In Exercises 5052 find the union of the given pair of sim-

ple graphs. (Assume edges with the same endpoints are the

same.)

50. a

9-23
51. a b a f b
——9 ——
e $e
—— o
c d c g d
52. a b :1 e
h
¢
c d f 8
53. The complementary graph G of a simple graph G has

54.

5S.

56.

57.

58.

59.

the same vertices as G. Two vertices are adjacent in G if
and only if they are not adjacent in G. Describe each of
these graphs.

a) K, b) K ©) Cy d) O,

If G is a simple graph with 15 edges and G has 13 edges,
how many vertices does G have?

If the simple graph G has v vertices and e edges, how
many edges does G have?

If the degree sequence of the simple graph G is
4,3, 3,2, 2, what is the degree sequence of G?

If the degree sequence of the simple graph G is
d\,d, ..., d,, what is the degree sequence of G?

Show that if G is a bipartite simple graph with v vertices
and e edges, then e < v2/4,

Show that if G is a simple graph with n vertices, then the
union of G and G is K,,.

*60.

9.3 Representing Graphs and Graph Isomorphism 611

Describe an algorithm to decide whether a graph is bipar-
tite based on the fact that a graph is bipartite if and only
if it is possible to color its vertices two different colors so
that no two vertices of the same color are adjacent.

The converse of a directed graph G = (V, E), denoted by
G, is the directed graph (V, F), where the set F of
edges of G°°"¥ is obtained by reversing the direction of each
edge in E. '

61.

62.

63.

64.

65.

66.

67.

Draw the converse of each of the graphs in Exercises 7-9
in Section 9.1. ’

Show that (G"')°" = G whenever G is a directed
graph.

Show that the graph G is its own converse if and only
if the relation associated with G (see Section 8.3) is
symmetric.

Show that if a bipartite graph G = (V, E) is n-regular for
some positive integer n (see the preamble to Exercise 47)
and (V;, V,) is a bipartition of V, then |V| = |V;|. That
is, show that the two sets in a bipartition of the vertex set
of an n-regular graph must contain the same number of
vertices.

Draw the mesh network for interconnecting nine parallel
Processors.

In a variant of a mesh network for interconnectingn = m
processors, processor P(i, j) is connected to the four pro-
cessors P((i £ 1) mod m, j) and P(i, (j £ 1) moed m),
so that connections wrap around the edges of the mesh.
Draw this variant of the mesh network for 16 processors.
Show that every pair of processors in a mesh network
of n = m? processors can communicate using O (/) =
O(m) hops between directly connected processors.

2

9.3 Representing Graphs and Graph Isomorphism

Introduction

There are many useful ways to represent graphs. As we will see throughout this chapter, in
working with a graph it is helpful to be able to choose its most convenient representation. In
this section we will show how to represent graphs in several different ways.

Sometimes, two graphs have exactly the same form, in the sense that there is a one-to-one
correspondence between their vertex sets that preserves edges. In such a case, we say that the
two graphs are isomorphic. Determining whether two graphs are isomorphic is an important
problem of graph theory that we will study in this section.

Representing Graphs

One way to represent a graph without multiple edges is to list all the edges of this graph. Another
way to represent a graph with no multiple edges is to use adjacency lists, which specify the
vertices that are adjacent to each vertex of the graph.

612 9/ Graphs

EXAMPLE 1

EXAMPLE 2

¢ d

FIGURE 3
Simple Graph.

Links

EXAMPLE 3

9-24

b TABLE 1 An Adjacency List
/ for a Simple Graph.
a < Vertex Adjacent Vertices
a b,c,e
b a
c a,d,e
e d d c, e
e a,c,d
FIGURE 1 A Simple Graph.

Use adjacency lists to describe the simple graph given in Figure 1.

Solution: Table 1 lists those vertices adjacent to each of the vertices of the graph. <

Represent the directed graph shown in Figure 2 by listing all the vertices that are the terminal
vertices of edges starting at each vertex of the graph.

Solution: Table 2 represents the directed graph shown in Figure 2. <
b TABLE 2 An Adjacency List for a
Directed Graph.
« < Initial Vertex Terminal Vertices
a b,c,d, e
b b, d
c ac,e
e d d
b,c,d
FIGURE 2 A Directed Graph. ¢ ¢

Adjacency Matrices

Carrying out graph algorithms using the representation of graphs by lists of edges, or by adja-
cency lists, can be cumbersome if there are many edges in the graph. To simplify computation,
graphs can be represented using matrices. Two types of matrices commonly used to represent
graphs will be presented here. One is based on the adjacency of vertices, and the other is based
on incidence of vertices and edges.

Suppose that G = (V, E) is a simple graph where |V | = n. Suppose that the vertices of
G are listed arbitrarily as v;, v2, ..., v,. The adjacency matrix A (or Ag) of G, with respect
to this listing of the vertices, is the n x n zero—one matrix with 1 as its (i, j)th entry when v;
and v; are adjacent, and 0 as its (i, j)th entry when they are not adjacent. In other words, if its
adjacency matrix is A = [a;;], then

i = [1 if {v;, v} is an edge of G,
o 0 otherwise.

Use an adjacency matrix to represent the graph shown in Figure 3.

9-25

EXAMPLE 4

d c

FIGURE 4

A Graph with the
Given Adjacency
Matrix.

EXAMPLE 5
a b

d c

FIGURE 5
A Pseudograph.

9.3 Representing Graphs and Graph Isomorphism 613

Solution: We order the vertices as a, b, ¢, d. The matrix representing this graph is

——— O
O = O =
(=
SO -

Draw a graph with the adjacency matrix

(= =]
—_0 O ~
—_0 O -
(= =]

with respect to the ordering of vertices a, b, ¢, d.

Solution: A graph with this adjacency matrix is shown in Figure 4. <

Note that an adjacency matrix of a graph is based on the ordering chosen for the vertices.
Hence, there are as many as »! different adjacency matrices for a graph with » vertices, because
there are n! different orderings of n vertices.

The adjacency matrix of a simple graph is symmetric, that is, a;; = a;;, because both of
these entries are 1 when v; and v; are adjacent, and both are 0 otherwise. Furthermore, because
a simple graph has no loops, each entry a;;,i = 1,2,3,...,n,is 0.

Adjacency matrices can also be used to represent undirected graphs with loops and with
multiple edges. A loop at the vertex a; is represented by a 1 at the (i, 7)th position of the adjacency
matrix. When multiple edges are present, the adjacency matrix is no longer a zero—one matrix,
because the (i, j)thentry of this matrix equals the number of edges that are associated to {a;, a;}.
All undirected graphs, including multigraphs and pseudographs, have symmetric adjacency
matrices.

Use an adjacency matrix to represent the pseudograph shown in Figure 5.

Solution: The adjacency matrix using the ordering of vertices a, b, ¢, d is

VO WO
_—— W
(NS
=Y SN

<

We used zero—one matrices in Chapter 8 to represent directed graphs. The matrix for a
directed graph G = (V, E) has a 1 in its (i, j)th position if there is an edge from v; to vj,
where vy, v2, ..., v, is an arbitrary listing of the vertices of the directed graph. In other words,
if A = [a;;] is the adjacency matrix for the directed graph with respect to this listing of the
vertices, then

a4 = 1 if (v;, v;) is an edge of G,
Y 0 otherwise.

The adjacency matrix for a directed graph does not have to be symmetric, because there may
not be an edge from a; to a; when there is an edge from g; to a;.

614 9/ Graphs

EXAMPLE 6

Vi V2 €6 V3
€3
€ €5
€
V4 VS
FIGURE 6 An

Undirected
Graph.

9-26

Adjacency matrices canalso be used to represent directed multigraphs. Again, such matrices
are not zero—one matrices when there are multiple edges in the same direction connecting two
vertices. In the adjacency matrix for a directed multigraph, a;; equals the number of edges that
are associated to (v;, vj).

TRADE-OFFS BETWEEN ADJACENCY LISTS AND ADJACENCY MATRICES When
a simple graph contains relatively few edges, that is, when it is sparse, it is usually preferable
to use adjacency lists rather than an adjacency matrix to represent the graph. For example, if
each vertex has degree not exceeding ¢, where c is a constant much smaller than 7, then each
adjacency list contains ¢ or fewer vertices. Hence, there are no more than cn items in all these
adjacency lists. On the other hand, the adjacency matrix for the graph has n? entries. Note,
however, that the adjacency matrix of a sparse graph is a sparse matrix, that is, a matrix with
few nonzero entries, and there are special techniques for representing, and computing with,
sparse matrices.

Now suppose that a simple graph is dense, that is, suppose that it contains many edges, such
as a graph that contains more than half of all possible edges. In this case, using an adjacency
matrix to represent the graph is usually preferable over using adjacency lists. To see why, we
compare the complexity of determining whether the possible edge {v;, v;} is present. Using an
adjacency matrix, we can determine whether this edge is present by examining the (i, j)th entry
in the matrix. This entry is 1 if the graph contains this edge and is 0 otherwise. Consequently,
we need make only one comparison, namely, comparing this entry with 0, to determine whether
this edge is present. On the other hand, when we use adjacency lists to represent the graph, we
need to search the list of vertices adjacent to either v; or v; to determine whether this edge is
present. This can require ®(|V|) comparisons when many edges are present.

Incidence Matrices

Another common way to represent graphs is to use incidence matrices. Let G = (V, E) be an
undirected graph. Suppose that vy, v, ..., v, are the vertices and e, ey, ..., e, are the edges
of G. Then the incidence matrix with respect to this ordering of V and E is the n x m matrix
M = [m;;], where

R l 1 when edge e; is incident with v;,
o 0 otherwise.

Represent the graph shown in Figure 6 with an incidence matrix.

Solution: The incidence matrix is

e e e3 e4 es5 €

vwil 1 0 0 0 O
»n|0 0 I 1 0 1
vz[0O O O O 1 1
wu|1 0 1 0 0 O
vs|1 0 1 0 1 1 0 <

Incidence matrices can also be used to represent multiple edges and loops. Multiple edges
are represented in the incidence matrix using columns with identical entries, because these edges
are incident with the same pair of vertices. Loops are represented using a column with exactly
one entry equal to 1, corresponding to the vertex that is incident with this loop.

9-27

EXAMPLE 7

Yy v, ey

V3

FIGURE 7
A Pseudograph.

DEFINITION 1

EXAMPLE 8

U Uy

us Uy

Vi . VZ

V3 V4
H

FIGURE 8 The
Graphs G and H.

9.3 Representing Graphs and Graph Isomorphism 615

Represent the pseudograph shown in Figure 7 using an incidence matrix.

Solution: The incidence matrix for this graph is

€l e e3 €4 es e e7 ey

w|{l 1 1.0 0 0 0 0
[0 1 1 1 0 1 1 0
vs[0 0 0 1 1 0 0 0
%[0 0 0 0 0 0 1 1
vs [0 0 0 0 1 1 0 0 <

Isomorphism of Graphs

We often need to know whether it is possible to draw two graphs in the same way. For instance,
in chemistry, graphs are used to model compounds. Different compounds can have the same
molecular formula but can differ in structure. Such compounds will be represented by graphs
that cannot be drawn in the same way. The graphs representing previously known compounds
can be used to determine whether a supposedly new compound has been studied before.

There is a useful terminology for graphs with the same structure.

The simple graphs G; = (Vi, E;) and G, = (V;, E») are isomorphic if there is a one-to-one
and onto function f from V; to V, with the property that a and b are adjacent in G, if and
only if f(a) and f(b) are adjacent in G5, for all a and b in V;. Such a function f is called an
isomorphism.*

In other words, when two simple graphs are isomorphic, there is a one-to-one correspondence
between vertices of the two graphs that preserves the adjacency relationship. Isomorphism of
simple graphs is an equivalence relation. (We leave the verification of this as Exercise 45 at the
end of this section.)

Show that the graphs G = (V, E) and H = (W, F), displayed in Figure 8, are isomorphic.

Solution: The function f with f(u) = vy, f(u2) = v4, f(u3) = v3, and f(u4) = v, is a one-
to-one correspondence between V and W. To see that this correspondence preserves adjacency,
note that adjacent vertices in G are u; and u5, u; and u3, #, and u4, and u3 and u4, and each of
the pairs f(#1) = v; and f(u;) = vs, f(u1) = vy and f(u3) = vs3, f(u2) = vs and f(us) = vy,
and f(u3) = v3 and f(u4) = v, are adjacent in H. <

It is often difficult to determine whether two simple graphs are isomorphic. There are n!
possible one-to-one correspondences between the vertex sets of two simple graphs with n ver-
tices. Testing each such correspondence to see whether it preserves adjacency and nonadjacency
is impractical if is at all large.

Sometimes it is not hard to show that two graphs are not isomorphic. In particular, we can
show that two graphs are not isomorphic if we can find a property only one of the two graphs
has, but that is preserved by isomorphism. A property preserved by isomorphism of graphs is
called a graph invariant. For instance, isomorphic simple graphs must have the same number of
vertices, because there is a one-to-one correspondence between the sets of vertices of the graphs.

*The word isomorphism comes from the Greek roots isos for “equal” and mor phe for “form.”

616 9/ Graphs 9-28

b b
a c a c a b s t
e f . X
h g 2 y
e d e d d c v u
G H G H
FIGURE 9 The Graphs G and H. FIGURE 10 The Graphs G and H.

Isomorphic simple graphs also must have the same number of edges, because the one-to-one

correspondence between vertices establishes a one-to-one correspondence between edges. In

addition, the degrees of the vertices in isomorphic simple graphs must be the same. That is, a

Links @ vertex v of degree d in G must correspond to a vertex f(v) of degree d in H, because a vertex
w in G is adjacent to v if and only if f(v) and f(w) are adjacent in H.

EXAMPLE 9 Show that graphs displayed in Figure 9 are not isomorphic.

Extra % Solution: Both G and H have five vertices and six edges. However, H has a vertex of degree one,
Examples namely, e, whereas G has no vertices of degree one. It follows that G and H are not isomorphic.

<

The number of vertices, the number of edges, and the number of vertices of each degree
are all invariants under isomorphism. If any of these quantities differ in two simple graphs,
these graphs cannot be isomorphic. However, when these invariants are the same, it does not
necessarily mean that the two graphs are isomorphic. There are no useful sets of invariants
currently known that can be used to determine whether simple graphs are isomorphic.

EXAMPLE 10 Determine whether the graphs shown in Figure 10 are isomorphic.

b
/ Solution: The graphs G and H both have eight vertices and 10 edges. They also both have four
! vertices of degree two and four of degree three. Because these invariants all agree, it is still
/h conceivable that these graphs are isomorphic.
However, G and H are not isomorphic. To see this, note that because deg(a) =2 in G, a
d must correspond to either ¢, u, x, or y in H, because these are the vertices of degree two in

H. However, each of these four vertices in H is adjacent to another vertex of degree two in H,
which is not true for a in G.

Another way to see that G and H are not isomorphic is to note that the subgraphs of G
and H made up of vertices of degree three and the edges connecting them must be isomorphic
2 if these two graphs are isomorphic (the reader should verify this). However, these subgraphs,

shown in Figure 11, are not isomorphic.

v

FIGURE 11 The To show that a function f from the vertex set of a graph G to the vertex set of a graph H isan
Subgraphs of G isomorphism, we need to show that /" preserves the presence and absence of edges. One helpful
and H Made Up of Wway to do this is to use adjacency matrices. In particular, to show that f is an isomorphism, we
Vertices of Degree can show that the adjacency matrix of G is the same as the adjacency matrix of H, when rows
Three and the and columns are labeled to correspond to the images under f of the vertices in G that are the
Edges Connecting labels of these rows and columns in the adjacency matrix of G. We illustrate how this is done
Them. in Example 11.

9-29

EXAMPLE 11

9.3 Representing Graphs and Graph Isomorphism 617

uy U Vi V3

us

Ug Ve

Uy Uz Vs V4

G H

FIGURE 12 Graphs G and H.

Determine whether the graphs G and H displayed in Figure 12 are isomorphic.

Solution: Both G and H have six vertices and seven edges. Both have four vertices of degree two
and two vertices of degree three. It is also easy to see that the subgraphs of G and H consisting
of all vertices of degree two and the edges connecting them are isomorphic (as the reader should
verify). Because G and H agree with respect to these invariants, it is reasonable to try to find
an isomorphism f.

We now will define a function f and then determine whether it is an isomorphism. Because
deg(u;) = 2 and because u, is not adjacent to any other vertex of degree two, the image of
must be either v4 or vg, the only vertices of degree two in H not adjacent to a vertex of degree
two. We arbitrarily set f(4;) = ve. [If we found that this choice did not lead to isomorphism,
we would then try f(u#;) = v4.] Because u; is adjacent to u;, the possible images of u, are
v3 and vs. We arbitrarily set f(u2) = v3. Continuing in this way, using adjacency of vertices
and degrees as a guide, we set f(u3) = vs, f(us) = vs, f(us) = vy, and f(ug) = v2. We now
have a one-to-one correspondence between the vertex set of G and the vertex set of H, namely,
fu) = ve, f(u2) = vs3, f(u3) = va, f(us) = vs, f(us) = vy, f(ug) = va2. To see whether f
preserves edges, we examine the adjacency matrix of G,

wmp[0o 1 0 1 0 0]
w{1 0 1 0 0 1
Ag = 13 0 1 0 1 0 0
usl1 0 1 0 1 o)
us| 0 0 0 1 0 1
usLO 1 0 0 1 0]

and the adjacency matrix of H with the rows and columns labeled by the images of the corre-
sponding vertices in G,

w[0 1 0 1 0 0
|1 0 1 0 0 1
A,=%|0 1 0 1 0 0
»s|1 0 1 0 1 0
w0 0 0o 1 0 1
wlo 1 0 0 1 0]

618 9/ Graphs

Links L

Exercises

9-30

Because Ag = Ay, it follows that f preserves edges. We conclude that f is an isomorphism,
so G and H are isomorphic. Note that if f turned out not to be an isomorphism, we would
not have established that G and H are not isomorphic, because another correspondence of the
vertices in G and H may be an isomorphism. <4

The best algorithms known for determining whether two graphs are isomorphic have expo-
nential worst-case time complexity (in the number of vertices of the graphs). However, linear
average-case time complexity algorithms are known that solve this problem, and there is some
hope that an algorithm with polynomial worst-case time complexity for determining whether
two graphs are isomorphic can be found. The best practical algorithm, called NAUTY, can be
used to determine whether two graphs with as many as 100 vertices are isomorphic in less than
1 second on a modern PC. The software for NAUTY can be downloaded over the Internet and
experimented with.

In Exercises 1-4 use an adjacency list to represent the given 12.

graph.

1.

a

1
0
1
1

—_ O O =
okt
SO oo

In Exercises 13—15 represent the given graph using an adja-
cency matrix.

b
d ¢ 13. a b 14. Z
c d c d

3.
15.
5. Represent the graph in Exercise 1 with an adjacency
matrix.
6. Represent the graph in Exercise 2 with an adjacency
matrix.
7. Represent the graph in Exercise 3 with an adjacency
matrix.
8. Represent the graph in Exercise 4 with an adjacency In Exercises 16—18 draw an undirected graph represented by
matrix. the given adjacency matrix.
9. Represent each of these graphs with an adjacency matrix.
~
a) Kq b) K4 ¢) Kz 16. 11 3 2 7.1 2 0 1
d) Cq4 e) Wy) O 3 0 4 2 030
In Exercises 10—-12 draw a graph with the given adjacency L2 40 (1) 3 } (l)
matrix.
18.10 1 3 0 4
10. [0 1 0 . fo 0 1 1 12130
1 01 0 010 31101
010 1 1 0 1 0 3 00 2
I 110 | 4 01 2 3

9-31

In Exercises 19-21 find the adjacency matrix of the given
directed multigraph.

19.

21.

In Exercises 22—24 draw the graph represented by the given
adjacency matrix.

24.

2.1 0 1] 231 2 1 0230
001 2 00 1221
11 1 0 2 2 2110

1 00 2

25. Is every zero—one square matrix that is symmetric and
has zeros on the diagonal the adjacency matrix of a sim-
ple graph?

26. Use an incidence matrix to represent the graphs in Exer-
cises 1 and 2.

27. Use an incidence matrix to represent the graphs in Exer-
cises 13-15.

*28. What is the sum of the entries in a row of the adjacency
matrix for an undirected graph? For a directed graph?

*29. Whatis the sum of the entries in a column of the adjacency
matrix for an undirected graph? For a directed graph?

30. What is the sum of the entries in a row of the incidence
matrix for an undirected graph?

31. What is the sum of'the entries in a column ofthe incidence
matrix for an undirected graph?

*32. Find an adjacency matrix for each of these graphs.
a) K, b) C, c) W, d) K,n e) Oy

*33. Find incidence matrices for the graphs in parts (a)—(d) of
Exercise 32.

In Exercises 3444 determine whether the given pair of graphs

is isomorphic. Exhibit an isomorphism or provide a rigorous

argument that none exists.

34. Vi vy

u U us Uy Us V3
—eo—o—o—o

V4 Vs

9.3 Representing Graphs and Graph Isomorphism

3s. v,
U
Vi V3
Uy U3
us Uy Vs V4
36- u Uy 14
v < 7v
us s 2
Uy us Vg V3
. v
37 L3 U l
V7 V2
Uy u3
v,
u6 Uy 6
us vs V4
38. u) Uy 121
q V2
Vs
l V3
Us Uy u3 A
39. u
Vl V)
Ug L]
Vs
Y6
Us Uz
V4 V3
Uy
40. Vi V2
Uy L]

¢

620 9/ Graphs

41. U Uy us Us Ug Ug
Uy Uz
Y1 Va V4 vs Ve Vs
V3 V7
42. Ug Uy
u Uy us Uy Us
ug L) “io
Ve %]
Vi 1% V3 Va4 Vs
¢ Yo Y10
43. Uy

Us Uy
44- U . Vi
Ug u, Vg vy
uq us V7 V3
Ug Uy Ve Vg
us Vs

45. Show that isomorphism of simple graphs is an equiva-
lence relation.

46. Suppose that G and H are isomorphic simple graphs.
Show that their complementary graphs G and H are also
isomorphic.

9-32

47. Describe the row and column of an adjacency matrix of a
graph corresponding to an isolated vertex.

48. Describe the row of an incidence matrix of a graph cor-
responding to an isolated vertex.

49. Show that the vertices of a bipartite graph with two or
more vertices can be ordered so that its adjacency matrix
has the form

5 8]

where the four entries shown are rectangular blocks.

A simple graph G is called self-complementary if G and G
are isomorphic.

50. Show that this graph is self-complementary.

a b

51. Find a self-complementary simple graph with five
vertices.

*52. Show that if G is a self-complementary simple graph with
v vertices, then v = 0 or 1 (mod 4).

53. For which integers n is C, self-complementary?

54. How many nonisomorphic simple graphs are there with
n vertices, when n is '

a) 27 b) 3? c) 4?
55. How many nonisomorphic simple graphs are there with
five vertices and three edges?

56. How many nonisomorphic simple graphs are there with
six vertices and four edges?

57. Are the simple graphs with the following adjacency ma-
trices isomorphic?

a) [0 © 01 1
00 1,100
11 100

b)0101“(0111
1001 100 1
000 1[']1 001
(1 11 0] |11 1 0]

ofo1 10 01 0 1
100 1 1000
100 1[']o o0 01
o1 1 0] |1 01 0]

9-33

58. Determine whether the graphs without loops with these
incidence matrices are isomorphic.

a1 o 1] 110
11|, |1 01
(11 0] [0 11

b1 100 0] 010071
1010 1|]|01 110
0001 1|1 00T10
01 110 |1 o010°1

59. Extend the definition of isomorphism of simple graphs to
undirected graphs containing loops and multiple edges.

60. Define isomorphism of directed graphs.

In Exercises 61-64 determine whether the given pair of di-
rected graphs are isomorphic. (See Exercise 60.)

61. U “2}) Vi Va2
usj Uy V3 V4

62. Uy Uy Vi Vi

Y

63- 3] Vi

.\ R\

LY Us V2 V3

9.4 Connectivity

94 Connectivity 621

64. u, Uy Us

L) V3

Vs V4

65. Show that if G and H are isomorphic directed graphs,
then the converses of G and H (defined in the preamble
of Exercise 61 of Section 9.2) are also isomorphic.

66. Show that the property that a graph is bipartite is an iso-
morphic invariant.

67. Find a pair of nonisomorphic graphs with the same de-
gree sequence such that one graph is bipartite, but the
other graph is not bipartite.

*68. How many nonisomorphic directed simple graphs are
there with n vertices, when n is
a) 2? b) 3? c) 47

*69. What is the product of the incidence matrix and its trans-
pose for an undirected graph? :

*70. How much storage is needed to represent a simple graph
with v vertices and e edges using
a) adjacency lists?
b) an adjacency matrix?
¢) an incidence matrix?

A devil’s pair for a purported isomorphism test is a pair

of nonisomorphic graphs that the test fails to show are not

isomorphic.

71. Find a devil’s pair for the test that checks the degree
sequence (defined in the preamble to Exercise 30 in Sec-
tion 9.2) in two graphs to make sure they agree.

Introduction

Many problems can be modeled with paths formed by traveling along the edges of graphs. For
instance, the problem of determining whether a message can be sent between two computers
using intermediate links can be studied with a graph model. Problems of efficiently planning
routes for mail delivery, garbage pickup, diagnostics in computer networks, and so on can be
solved using models that involve paths in graphs.

622 9/ Graphs

DEFINITION 1

EXAMPLE 1

9-34

Paths

Informally, a path is a sequence of edges that begins at a vertex of a graph and travels from
vertex to vertex along edges of the graph.
A formal definition of paths and related terminology is given in Definition 1.

Let n be a nonnegative integer and G an undirected graph. A path of length n from u to v

in G is a sequence of n edges ey, ..., e, of G such that ¢ is associated with {xg, x,}, e,
is associated with {x, x,}, and so on, with e, associated with {x,_1, x,}, where xo = » and
x, = v. When the graph is simple, we denote this path by its vertex sequence xo, x1, . . ., X»

(because listing these vertices uniquely determines the path). The path is a circuit if it begins
and ends at the same vertex, that is, if ¥ = v, and has length greater than zero. The path or
circuit is said to pass through the vertices x1, x», . .., x,—) ortraverse the edges e, e, . . ., €y.
A path or circuit is simple if it does not contain the same edge more than once.

When it is not necessary to distinguish between multiple edges, we will denote a path
er, e, ..., ey, Where e; is associated with {x;_;, x;} fori = 1,2, ..., n by its vertex sequence
Xo, X1, - - - , Xn. This notation identifies a path only up to the vertices it passes through. There
may be more than one path that passes through this sequence of vertices. Note that a path of
length zero consists of a single vertex.

Remark: There is considerable variation of terminology concerning the concepts defined
in Defintion 1. For instance, in some books, the term walk is used instead of path,
where a walk is defined to be an alternating sequence of vertices and edges of a graph,
Vo, €1, V1, €2, ..., Un—1, €n, Up, Where v;_; and v; are the endpoints of ¢; fori =1,2,...,n.
When this terminology is used, closed walk is used instead of circuit to indicate a walk that
begins and ends at the same vertex, and trail is used to denote a walk that has no repeated
edge (replacing the term simple path). When this terminology is used, the terminology path
is often used for a trail with no repeated vertices, conflicting with the terminology in Defi-
nition 1. Because of this variation in terminology, you will need to make sure which set of
definitions are used in a particular book or article when you read about traversing edges of a
graph. The text [GrYe06] is a good reference for the alternative terminology described in this
remark.

In the simple graph shown in Figure 1, a, d, ¢, f, e is a simple path of length 4, because {a, d},
{d, c}, {c, f}, and { [, e} are all edges. However, d, e, c, a is not a path, because {e, c} is not an
edge. Note that b, ¢, f, e, b is a circuit of length 4 because {b, c}, {c, f}, {f, e}, and {e, b} are
edges, and this path begins and ends at b. The path a, b, e, d, a, b, which is of length 5, is not

simple because it contains the edge {a, b} twice. <
a b c
d e f

FIGURE 1 A Simple Graph.

9-35

DEFINITION 2

EXAMPLE 2

ks B

EXAMPLE 3

Links

EXAMPLE 4

Links

94 Connectivity 623

Paths and circuits in directed graphs were introduced in Chapter 8. We now provide more
general definitions.

Let n be a nonnegative integer and G a directed graph. A path of lengthn fromu tovin G isa
sequence of edges e, e, .. ., e, of G such that ¢, is associated with (xo, x;), > is associated
with (x;, x»), and so on, with e, associated with (x,_;, x,), where xo = » and x,, = v. When
there are no multiple edges in the directed graph, this path is denoted by its vertex sequence
X0, X1, X2, - .., Xn. A path of length greater than zero that begins and ends at the same vertex
is called a circuit or cycle. A path or circuit is called simple if it does not contain the same
edge more than once.

Remark: Terminology other than that given in Definition 2 is often used for the concepts defined
there. In particular, the alternative terminology that uses walk, closed walk, trail, and path
(described in the remarks following Definition 1) may be used for directed graphs. See [GrYe06]
for details.

Note that the terminal vertex of an edge in a path is the initial vertex of the next edge in the
path. When it is not necessary to distinguish between multiple edges, we will denote a path
el e, ..., e, where e; is associated with (x;_1, x;) fori = 1,2, ..., n by its vertex sequence
Xo, X1, - .., Xn. The notation identifies a path only up to the vertices it passes through. There
may be more than one path that passes through this sequence of vertices.

Paths represent useful information in many graph models, as Examples 2—4 demonstrate.

Paths in Acquaintanceship Graphs Inan acquaintanceship graph there is a path between two
people if there is a chain of people linking these people, where two people adjacent in the chain
know one another. For example, in Figure 7 in Section 9.1, there is a chain of six people linking
Kamini and Ching. Many social scientists have conjectured that almost every pair of people in
the world are linked by a small chain of people, perhaps containing just five or fewer people.
This would mean that almost every pair of vertices in the acquaintanceship graph containing
all people in the world is linked by a path of length not exceeding four. The play Six Degrees of
Separation by John Guare is based on this notion. <

Paths in Collaboration Graphs Ina collaboration graph two vertices a and b, which represent
authors, are connected by a path when there is a sequence of authors beginning at a and ending at
b such that the two authors represented by the endpoints of each edge have written a joint paper. In
the collaboration graph of all mathematicians, the Erdds number of a mathematician m (defined
in terms of relations in Supplementary Exercise 14 in Chapter 8) is the length of the shortest
path between m and the vertex representing the extremely prolific mathematician Paul Erdos
(who died in 1996). That is, the Erdés number of a mathematician is the length of the shortest
chain of mathematicians that begins with Paul Erdos and ends with this mathematician, where
each adjacent pair of mathematicians have written a joint paper. The number of mathematicians
with each Erdos number as of early 2006, according to the Erdos Number Project, is shown in
Table 1. <

Paths in the Hollywood Graph In the Hollywood graph (see Example 4 in Section 9.1) two
vertices a and b are linked when there is a chain of actors linking a and b, where every two actors
adjacent in the chain have acted in the same movie. In the Hollywood graph, the Bacon number
of an actor c is defined to be the length of the shortest path connecting ¢ and the well-known
actor Kevin Bacon. As new movies are made, including new ones with Kevin Bacon, the Bacon

624 9/ Graphs

DEFINITION 3

EXAMPLE 5

9-36
TABLE 1 The Number TABLE 2 The Number
of Mathematicians of Actors with a Given
with a Given Erdés Bacon Number (as of
Number (as of early early 2006).
2006).
Bacon Number
Erdbs Number Number of People
Number of People 5 :
0 1 1 1,902
1 504 2 160,463
2 6,593 3 457,231
3 33,605 4 111,310
4 83,642 5 8,168
5 87,760 6 810
6 40,014 7 81
7 11,591 8 14
8 3,146
9 819
10 244
11 68
12 23
13 5

number of actors can change. In Table 2 we show the number of actors with each Bacon number
as of early 2006 using data from the Oracle of Bacon website. <

Connectedness In Undirected Graphs

When does a computer network have the property that every pair of computers can share
information, if messages can be sent through one or more intermediate computers? When a
graph is used to represent this computer network, where vertices represent the computers and
edges represent the communication links, this question becomes: When is there always a path
between two vertices in the graph?

An undirected graph is called connected if there is a path between every pair of distinct
vertices of the graph.

Thus, any two computers in the network can communicate if and only if the graph of this network
is connected.

The graph G, in Figure 2 is connected, because for every pair of distinct vertices there is a
path between them (the reader should verify this). However, the graph G, in Figure 2 is not
connected. For instance, there is no path in G, between vertices a and d. 4

We will need the following theorem in Chapter 10.

9-37

THEOREM 1

Linkis @

EXAMPLE 6

EXAMPLE 7

Lintis @

9.4 Connectivity 625

a b
H-
H, = N
a b -
¢ d e f\]
f d . j‘—’
C
g e d f H
h 8
G, G,
FIGURE 2 The Graphs G, and FIGURE 3 The Graph H and Its
G,. Connected Components H,, H,, and Hs.

There is a simple path between every pair of distinct vertices of a connected undirected
graph.

Proof: Let u and v be two distinct vertices of the connected undirected graph G = (V, E).
Because G is connected, there is at least one path between u and v. Let xo, x;, ..., X,
where xo = u and x, = v, be the vertex sequence of a path of least length. This path of least
length is simple. To see this, suppose it is not simple. Then x; = x; for some i and j with
0 <i < j. This means that there is a path from u to v of shorter length with vertex sequence
X0, X1, ..., Xi—1,Xj, ..., X, obtained by deleting the edges corresponding to the vertex sequence
Xiy oo .,Xj-].

A connected component of a graph G is a connected subgraph of G that is not a proper
subgraph of another connected subgraph of G. That is, a connected component of a graph G is a
maximal connected subgraph of G. A graph G that is not connected has two or more connected
components that are disjoint and have G as their union.

What are the connected components of the graph H shown in Figure 3?

Solution: The graph H is the union of three disjoint connected subgraphs H,, H,, and Hs, shown
in Figure 3. These three subgraphs are the connected components of H. 4

Connected Components of Call Graphs Two vertices x and y are in the same component of
atelephone call graph (see Example 7 in Section 9.1) when there is a sequence of telephone calls
beginning at x and ending at y. When a call graph for telephone calls made during a particular
day in the AT&T network was analyzed, this graph was found to have 53,767,087 vertices,
more than 170 million edges, and more than 3.7 million connected components. Most of these
components were small; approximately three-fourths consisted of two vertices representing pairs
of telephone numbers that called only each other. This graph has one huge connected component
with 44,989,297 vertices comprising more than 80% of the total. Furthermore, every vertex in
this component can be linked to any other vertex by a chain of no more than 20 calls. 4

Sometimes the removal of a vertex and all edges incident with it produces a subgraph with
more connected components than in the original graph. Such vertices are called cut vertices
(or articulation peints). The removal of a cut vertex from a connected graph produces a
subgraph that is not connected. Analogously, an edge whose removal produces a graph with
more connected components than in the original graph is called a cut edge or bridge.

626 9/ Graphs

EXAMPLE 8

DEFINITION 4

DEFINITION 5

EXAMPLE 9

9-38

Find the cut vertices and cut edges in the graph G shown in Figure 4.
Solution: The cut vertices of G are b, ¢, and e. The removal of one of these vertices (and its

adjacent edges) disconnects the graph. The cut edges are {a, b} and {c, e}. Removing either one
of these edges disconnects G. 4

Connectedness in Directed Graphs

There are two notions of connectedness in directed graphs, depending on whether the directions
of the edges are considered.

A directed graph is strongly connected if there is a path from a to b and from b to a whenever
a and b are vertices in the graph.

For a directed graph to be strongly connected there must be a sequence of directed edges
from any vertex in the graph to any other vertex. A directed graph can fail to be strongly
connected but still be in “one piece.” Definition 5 makes this notion precise.

A directed graph is weakly connected if there is a path between every two vertices in the
underlying undirected graph.

That is, a directed graph is weakly connected if and only if there is always a path between
two vertices when the directions of the edges are disregarded. Clearly, any strongly connected
directed graph is also weakly connected.

Are the directed graphs G and H shown in Figure S strongly connected? Are they weakly
connected?

Solution: G is strongly connected because there is a path between any two vertices in this
directed graph (the reader should verify this). Hence, G is also weakly connected. The graph
H is not strongly connected. There is no directed path from a to 4 in this graph. However, H is
weakly connected, because there is a path between any two vertices in the underlying undirected
graph of H (the reader should verify this).

b pt e h G H

FIGURE 4 The Graph G. FIGURE S The Directed Graphs G and H.

9-39

EXAMPLE 10

EXAMPLE 11

Links

EXAMPLE 12

9.4 Connectivity 627

The subgraphs of a directed graph G that are strongly connected but not contained in larger
strongly connected subgraphs, that is, the maximal strongly connected subgraphs, are called the
strongly connected components or strong components of G.

The graph H in Figure S has three strongly connected components, consisting of the vertex a;
the vertex e; and the graph consisting of the vertices b, ¢, and d and edges (b, ¢), (¢, d), and
d, b). <

The Strongly Connected Components of the Web Graph The Web graph introduced in
Example 8 of Section 9.1 represents Web pages with vertices and links with directed edges. A
snapshot of the Web in 1999 produced a Web graph with over 200 million vertices and over 1.5
billion edges. (See [Br00] for details.) The underlying undirected graph of this Web graph is
not connected and has a connected component that includes approximately 90% of the vertices
in the graph. The subgraph of the original directed graph corresponding to this connected
component of the underlying undirected graph (that is, with the same vertices and all directed
edges connecting vertices in this graph) has one very large strongly connected component and
many small ones. The former is called the giant strongly connected component (GSCC) of
the directed graph. A Web page in this component can be reached following links starting at any
other page in this component. The GSCC in the Web graph produced by this study was found to
have over 53 million vertices. The remaining vertices in the large connected component of the
undirected graph represent three different types of Web pages: pages that can be reached from a
page in the GSCC, but do not link back to these pages following a series of links; pages that link
back to pages in the GSCC following a series of links, but cannot be reached by following links
on pages in the GSCC; and pages that cannot reach pages in the GSCC and cannot be reached
from pages in the GSCC following a series of links. In this study, each of these three other sets
was found to have approximately 44 million vertices. (It is rather surprising that these three sets
are close to the same size.) <

Paths and Isomorphism

There are several ways that paths and circuits can help determine whether two graphs are
isomorphic. For example, the existence of a simple circuit of a particular length is a useful
invariant that can be used to show thattwo graphs are not isomorphic. In addition, paths can be
used to construct mappings that may be isomorphisms.

As we mentioned, a useful isomorphic invariant for simple graphs is the existence of a
simple circuit of length &k, where & is a positive integer greater than 2. (The proof that this is
an invariant is left as Exercise 50 at the end of this section.) Example 12 illustrates how this
invariant can be used to show that two graphs are not isomorphic.

Determine whether the graphs G and H shown in Figure 6 are isomorphic.

Solution: Both G and H have six vertices and eight edges. Each has four vertices of degree
three, and two vertices of degree two. So, the three invariants—number of vertices, number of
edges, and degrees of vertices—all agree for the two graphs. However, H has a simple circuit
of length three, namely, v;, v, v¢, v, whereas G has no simple circuit of length three, as
can be determined by inspection (all simple circuits in G have length at least four). Because
the existence of a simple circuit of length three is an isomorphic invariant, G and H are not
isomorphic. <

628

9 / Graphs

EXAMPLE 13

THEOREM 2

9-40

U Vi
Ue Uz Ve V2
Ly) Vi
Us us Vs V3 Z3] Us Vs Vo
Uy Vs Us Uy V4 V3
G H G H
FIGURE 6 The Graphs G and H. FIGURE 7 The Graphs G and H.

We have shown how the existence of a type of path, namely, a simple circuit of a particular
length, can be used to show that two graphs are not isomorphic. We can also use paths to find
mappings that are potential isomorphisms.

Determine whether the graphs G and H shown in Figure 7 are isomorphic.

Solution: Both G and H have five vertices and six edges, both have two vertices of degree three
and three vertices of degree two, and both have a simple circuit of length three, a simple circuit
of length four, and a simple circuit of length five. Because all these isomorphic invariants agree,
G and H may be isomorphic. To find a possible isomorphism, we can follow paths that go
through all vertices so that the corresponding vertices in the two graphs have the same degree.
For example, the paths u, u4, u3, uz, us in G and vs, vy, vy, vs, v4 in H both go through every
vertex in the graph; start at a vertex of degree three; go through vertices of degrees two, three,
and two, respectively; and end at a vertex of degree two. By following these paths through the
graphs, we define the mapping f with f(u;) = vs3, f(us) = v2, f(u3) = vy, f(u2) = vs, and
f(us) = v4. The reader can show that f is an isomorphism, so G and H are isomorphic, either
by showing that f preserves edges or by showing that with the appropriate orderings of vertices
the adjacency matrices of G and H are the same. <

Counting Paths Between Vertices

The number of paths between two vertices in a graph can be determined using its adjacency
matrix.

Let G be a graph with adjacency matrix A with respect to the ordering vy, vy, ..., v, (With
directed or undirected edges, with multiple edges and loops allowed). The number of different
paths of length » from v; to v;, where r is a positive integer, equals the (i, j)th entry of A”.

Proof: The theorem will be proved using mathematical induction. Let G be a graph with
adjacency matrix A (assuming an ordering vy, vz, ..., v, of the vertices of G). The number of
paths from v; to v; of length 1 is the (i, j)th entry of A, because this entry is the number of
edges from v; to v;.

Assume that the (i, j)th entry of A” is the number of different paths of length » from v; to
v;. This is the induction hypothesis. Because A™*! = A”A, the (i, j)th entry of A”*! equals

biiay; + bipazj + - - + binay;,

9-41 9.4 Connectivity 629
where b is the (7, k)th entry of A”. By the induction hypothesis, b;; is the number of paths of
length » from v; to vy.

A path of length r + 1 from v; to v; is made up of a path of length » from v; to some
intermediate vertex vy, and an edge from vy to v;. By the product rule for counting, the number
of such paths is the product of the number of paths of length » from v; to v;, namely, b;;, and
the number of edges from v, to v;, namely, a;;. When these products are added for all possible
intermediate vertices vy, the desired result follows by the sum rule for counting. d

EXAMPLE 14 How many paths of length four are there from a to d in the simple graph G in Figure 8?
a b Solution: The adjacency matrix of G (ordering the vertices as a, b, ¢, d) is
01 10
1 0 01
A=
- 1 0 0 1
d ¢ 01 10
g lr(a;[lljl?g 8 The Hence, the number of paths of length four from a to d is the (1, 4)th entry of A*. Because
8 0 0 8
A4—|0 8 80
0 8 8 0}’
8 0 0 8
Extra there are exactly eight paths of length four from a to d. By inspection of the graph, we see that
Examples a,b,a,b,d;a,b,a,c,d;a,b,d,b,d;a,b,d,c,d;a,c,a,b,d;a,c,a,c,d;a,c,d,b,d;and
a, c, d, c,d are the eight paths from a to d. <

Theorem 2 can be used to find the length of the shortest path between two vertices of a
graph (see Exercise 46), and it can also be used to determine whether a graph is connected (see
Exercises 51 and 52).

Exercises

1. Does each of these lists of vertices form a path in the ¢) a,d,b,e,a d) a,b,e,c,b,d,a
following graph? Which paths are simple? Which are
circuits? What are the lengths of those that are paths? a b .
a) a,e,b,c,b b) a,e,a,d,b,c,a
¢) e,b,a,d,b,e d) ¢,b,d,a,e,c
a b c
d e
In Exercises 3—5 determine whether the given graph is
d e connected.

2. Does each of these lists of vertices form a path in the
following graph? Which paths are simple? Which are cir-

cuits? What are the lengths of those that are paths?

a) a,b,e,c,b

b) a,d,a,d,a

630 9/ Graphs

4.

10.

11.

12.

%%

. Howmany connected components does each of the graphs

in Exercises 3—5 have? For each graph find each of its con-
nected components.

. What do the connected components of acquaintanceship

graphs represent?

. What do the connected components of a collaboration

graph represent?

. Explain why in the collaboration graph of mathematicians

a vertex representing a mathematician is in the same con-
nected component as the vertex representing Paul Erdés if
and only if that mathematician has a finite Erd6s number.
In the Hollywood graph (see Example 4 in Section 9.1),
when is the vertex representing an actor in the same
connected component as the vertex representing Kevin
Bacon?

Determine whether each of these graphs is strongly con-
nected and if not, whether it is weakly connected.

a) a b c
e d
b) a b
N\ A
c
/
e T d
)

Determine whether each of these graphs is strongly con-
nected and if not, whether it is weakly connected.

a) a b c

13.

14.

15.

9-42

b) b
a \ [4
It
;"
f ~d
e
¢) a b c

>

f e
What do the strongly connected components of a tele-
phone call graph represent?
Find the strongly connected components of each of these
graphs.

a) a b _c
- 2 -
)
e d
b) a_ bA c
- &
Y / Y
f‘ e d
c)
a ;b _c ;d e
A - 1 o o
B Y Y
i h g f

Find the strongly connected components of each of these
graphs.

a) a_ b _C
\ /
f e d

b) a_ b c d
A - -
Y Y

h T f e

9-43
¢) a b c d e
i h g f
16. Show that all vertices visited in a directed path connecting

17.

18.

19.

20.

21.

two vertices in the same strongly connected component
of a directed graph are also in this strongly connected
component.

Find the number of paths of length n between two different
vertices in K4 if n is

a) 2. b) 3. c) 4. d) s.

Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between these graphs.

U U Vi V2

Us Ug Vs Vg

ug Uy Vg V7

Uy Us V4 V3
G H

Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between them.

Uy Uy v Vy

ug /%) Vg V3

Uz Uy V7 V4

Ug Us Vg Vs
G H

Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between them.

LJ| L] Vi V2
us u3 V8 V3

U, Uy \4 V4

g us V6 Vs
G H

Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between them.

Uy U V]

LY L)
Us Uy V3
G H

94 Connectivity 631

22. Find the number of paths of length » between any two

adjacent vertices in K3 3 for the values of n in Exercise
17.

23. Find the numberofpaths of length n between any two non-

adjacent vertices in K3 3 for the values of n in Exercise
17.

24. Find the number of paths between ¢ and d in the graph in

Figure 1 of length

a) 2. b) 3. c)4. d)s. e) 6. 7.

25. Find the number of paths from a to e in the directed graph

*26.

in Exercise 2 of length

a) 2. b) 3. c)4. d) S. e)6. f)7.
Show that every connected graph with n vertices has at
least n — 1 edges.

27. Let G = (V, E) be a simple graph. Let R be the relation

on V consisting of pairs of vertices (u, v) such that there
is a path from u to v or such that ¥ = v. Show that R is
an equivalence relation.

*28. Show that in every simple graph there is a path from
any vertex of odd degree to some other vertex of odd
degree.

In Exercises 29-31 find all the cut vertices of the given
graph.
29. a d e 30. a f
5 s h b c d e
31. 4 b f
*r— [
e
[4 g
° ———o
d i h

32. Find all the cut edges in the graphs in Exercises 29-31.

*33

. Suppose that v is an endpoint of a cut edge. Prove that v
is a cut vertex if and only if this vertex is not pendant.

*34. Show that a vertex c in the connected simple graph G is

a cut vertex if and only if there are vertices # and v, both
different from ¢, such that every path between u and v
passes through c.

*35. Show that a simple graph with at least two vertices has at

least two vertices that are not cut vertices.

*36. Show that an edge in a simple graph is a cutedge if and

only if this edge is not part of any simple circuit in the
graph.

37. A communications link in a network should be provided

with a backup link if its failure makes it impossible for
some message to be sent. For each of the communications

632 9/ Graphs

networks shown here in (a) and (b), determine those links
that should be backed up.

Boston

a)

Chicago New York

San Francisco

Washington
Los Angeles
b) ' Bangor
Seattle Portland Burlington
/ Boston
San Denver Chicago New York
Francisco w Yorl
/ Washington
\
l Salt Lake Atlanta
Los City
Angeles

A vertex basis in a directed graph is a set of vertices such that
there is a path to every vertex in the directed graph not in the
set from some vertex in this set and there is no path from any
vertex in the set to another vertex in the set.

38.

39.

40.

*41.

¥42,

43,

44.

. ponents and these components have ny, nj, ...

Find a vertex basis for each of the directed graphs in Ex-
ercises 7-9 of Section 9.2.

What is the significance of a vertex basis in an influence
graph (described in Example 3 of Section 9.1)? Find a
vertex basis in the influence graph in this example.
Show that if a connected simple graph G is the union of
the graphs G| and G,, then G| and G, have at least one
common vertex.

Show that if a simple graph G has &k connected com-
, B Ver-
tices, respectively, then the number of edges of G does not
exceed

k
> Cm,2).
i=1

Use Exercise 41 to show that a simple graph with »n
vertices and k connected components has at most (n — k)
(n — k + 1)/2 edges. [Hint: First show that

k
> i <nt—(k=1)@2n k),
i=1

where n; is the number of vertices in the ith connected
component.]

Show that a simple graph G with n vertices is connected
if it has more than (n — 1)(n — 2)/2 edges.

Describe the adjacency matrix of a graph with n con-
nected components when the vertices of the graph are
listed so that vertices in each connected component are
listed successively.

45.

46.

47.

48.

£="49.

50.

51.

52.

53.

54.

*55.

9-44

How many nonisomorphic connected simple graphs are
there with n vertices when n is

a) 2?7 b) 3? c) 4? d) 5?
Explain how Theorem 2 can be used to find the length of
the shortest path from a vertex v to a vertex w in a graph.

Use Theorem 2 to find the length of the shortest path
between a and f in the graph in Figure 1.

Use Theorem 2 to find the length of the shortest path from
a to c in the directed graph in Exercise 2.

Let P; and P, be two simple paths between the vertices u
and v in the simple graph G that do not contain the same
set of edges. Show that there is a simple circuit in G.
Show that the existence of a simple circuit of length £,
where £ is a positive integer greater than 2, is an isomor-
phic invariant.

Explain how Theorem 2 can be used to determine whether
a graph is connected.

Use Exercise 51 to show that the graph G, in Figure 2
is connected whereas the graph G in that figure is not
connected.

Show that a simple graph G is bipartite if and only if it
has no circuits with an odd number of edges.

In an old puzzle attributed to Alcuin of York (735-804),
a farmer needs to carry a wolf, a goat, and a cabbage
across a river. The farmer only has a small boat, which
can carry the farmer and only one object (an animal or
a vegetable). He can cross the river repeatedly. However,
if the farmer is on the other shore, the wolf will eat the
goat, and, similarly, the goat will eat the cabbage. We can
describe each state by listing what is on each shore. For
example, we can use the pair (FG,WC) for the state where
the farmer and goat are on the first shore and the wolf and
cabbage are on the other shore. [The symbol @ is used
when nothing is on a shore, so that (FWGC, @) is the initial
state.]

a) Find all allowable states of the puzzle, where neither
the wolf and the goat nor the goat and the cabbage are
left on the same shore without the farmer.

b) Construct a graph such that each vertex of this graph
represents an allowable state and the vertices repre-
senting two allowable states are connected by an edge
if it is possible to move from one state to the other
using one trip of the boat.

¢) Explain why finding a path from the vertex represent-
ing (FWGC, 9) to the vertex representing (4, FWGC)
solves the puzzle. :

d) Find two different solutions of the puzzle, each using
seven crossings.

e) Suppose that the farmer must pay a toll of one dollar
whenever he crosses the river with an animal. Which
solution of the puzzle should the farmer use to pay the
least total toll?

Use a graph model and a path in your graph, as in
Exercise 54, to solve the jealous husbands problem. Two
married couples, each a husband and a wife, want to cross

9-45

ariver. They can only use a boat that can carry one or two
people from one shore to the other shore. Each husband is
extremely jealous and is not willing to leave his wife with
the other husband, either in the boat or on shore. How can
these four people reach the opposite shore?

56. Suppose that you have a three-gallon jug and a five-gallon
jug, and you may fill either jug from a water tap, you may

9.5 Euler and Hamilton Paths

9.5 Euler and Hamilton Paths 633

empty either jug, and you may transfer water from either
jug into the other jug. Use a path in a directed graph model
to show that you can end up with a jug containing exactly
one gallon. [Hint: Use an ordered pair (a, b) to indicate
how much water is in each of the jugs and represent these
ordered pairs by vertices. Add edges corresponding to the
allowable operations with the jugs.]

Links

DEFINITION 1

EXAMPLE 1

Introduction

Can we travel along the edges of a graph starting at a vertex and returning to it by traversing
each edge of the graph exactly once? Similarly, can we travel along the edges of a graph starting
at a vertex and returning to it while visiting each vertex of the graph exactly once? Although
these questions seem to be similar, the first question, which asks whether a graph has an Fuler
circuit, can be easily answered simply by examining the degrees of the vertices of the graph,
while the second question, which asks whether a graph has a Hamilton circuit, is quite difficult
to solve for most graphs. In this section we will study these questions and discuss the difficulty
of solving them. Although both questions have many practical applications in many different
areas, both arose in old puzzles. We will learn about these old puzzles as well as modern
practical applications.

Euler Paths and Circuits

The town of Konigsberg, Prussia (now called Kaliningrad and part of the Russian republic),
was divided into four sections by the branches of the Pregel River. These four sections in-
cluded the two regions on the banks of the Pregel, Kneiphof Island, and the region between the
two branches of the Pregel. In the eighteenth century seven bridges connected these regions.
Figure 1 depicts these regions and bridges.

The townspeople took long walks through town on Sundays. They wondered whether it was
possible to start at some location in the town, travel across all the bridges without crossing any
bridge twice, and return to the starting point.

The Swiss mathematician Leonhard Euler solved this problem. His solution, published in
1736, may be the first use of graph theory. Euler studied this problem using the multigraph
obtained when the four regions are represented by vertices and the bridges by edges. This
multigraph is shown in Figure 2.

The problem of traveling across every bridge without crossing any bridge more than once
can be rephrased in terms of this model. The question becomes: Is there a simple circuit in this
multigraph that contains every edge?

An Euler circuit in a graph G is a simple circuit containing evefy edge of G. An Euler path
in G is a simple path containing every edge of G.

Examples 1 and 2 illustrate the concept of Euler circuits and paths.

Which of the undirected graphs in Figure 3 have an Euler circuit? Of those that do not, which
have an Euler path?

634 9/ Graphs 9-46

C
A D
B
FIGURE 1 The Seven Bridges of Konigsberg. FIGURE 2 Multigraph Model

of the Town of Koénigsberg.

Solution: The graph G has an Euler circuit, for example, a, e, ¢, d, e, b, a. Neither of the graphs
G, or G3 has an Euler circuit (the reader should verify this). However, G3 has an Euler path,
namely, a, ¢, d, e, b, d, a, b. G, does not have an Euler path (as the reader should verify). <

EXAMPLE 2 Which of the directed graphs in Figure 4 have an Euler circuit? Of those that do not, which have
an Euler path?

Extra e Solution: The graph H; has an Euler circuit, for example, a, g, ¢, b, g, e, d, f, a. Neither H; nor
Examples d 3 has an Euler circuit (as the reader should verify). H3 has an Euler path, namely, ¢, a, b, ¢, d, b,
but H, does not (as the reader should verify).

NECESSARY AND SUFFICIENT CONDITIONS FOR EULER CIRCUITS AND PATHS
There are simple criteria for determining whether a multigraph has an Euler circuit or an Euler
path. Euler discovered them when he solved the famous Konigsberg bridge problem. We will
assume that all graphs discussed in this section have a finite number of vertices and edges.

What can we say if a connected multigraph has an Euler circuit? What we can show is that
every vertex must have even degree. To do this, first note that an Euler circuit begins with a
vertex a and continues with an edge incident with a, say {a, b}. The edge {a, b} contributes one
to deg(a). Each time the circuit passes through a vertex it contributes two to the vertex’s degree,
because the circuit enters via an edge incident with this vertex and leaves via another such edge.
Finally, the circuit terminates where it started, contributing one to deg(a). Therefore, deg(a)
must be even, because the circuit contributes one when it begins, one when it ends, and two
every time it passes through a (if it ever does). A vertex other than a has even degree because
the circuit contributes two to its degree each time it passes through the vertex. We conclude that
if a connected graph has an Euler circuit, then every vertex must have even degree.

a b
a b a b a b a b ' c d
e e Y A f ‘ c Y Y
d c d c c d e d c A a b
e d

G, G, Gs H, H, H,

FIGURE 3 The Undirected Graphs G4, G, and G3. FIGURE 4 The Directed Graphs Hy, H,, and H;.

9-47

9.5 Euler and Hamilton Paths 635

Is this necessary condition for the existence of an Euler circuit also sufficient? That is, must
an Euler circuit exist in a connected multigraph if all vertices have even degree? This question
can be settled affirmatively with a construction.

Suppose that G is a connected multigraph with at least two vertices and the degree of every
vertex of G is even. We will form a simple circuit that begins at an arbitrary vertex a of G. Let
xo = a. First, we arbitrarily choose an edge {x¢, x;} incident with a which is possible because
G is connected. We continue by building a simple path {x¢, x}, {x1, x2}, ..., {xn—1, X}, adding
edges to the path until we cannot add another edge to the path. This happens when we reach a
vertex for which we have already included all edges incident with that vertex in the path. For
instance, in the graph G in Figure 5 we begin at @ and choose in succession the edges {a, f},
{f.c}, {c, b}, and {b, a}.

The path we have constructed must terminate because the graph has a finite number of
edges, so we are guaranteed to eventually reach a vertex for which no edges are available to add
to the path. The path begins at a with an edge of the form {a, x}, and we now show that it must
terminate at a with an edge of the form {y, a}. To see that the path must terminate at @, note that
each time the path goes through a vertex with even degree, it uses only one edge to enter this
vertex, so because the degree must be at least two, at least one edge remains for the path to leave
the vertex. Furthermore, every time we enter and leave a vertex of even degree, there are an even
number of edges incident with this vertex that we have not yet used in our path. Consequently,
as we form the path, every time we enter a vertex other than a, we can leave it. This means that
path can end only at a. Next, note that the path we have constructed may use all the edges of
the graph, or it may not if we have returned to a for the last time before using all the edges.

An Euler circuit has been constructed if all the edges have been used. Otherwise, consider
the subgraph H obtained from G by deleting the edges already used and vertices that are not
incident with any remaining edges. When we delete the circuit a, f, ¢, b, a from the graph in
Figure 5, we obtain the subgraph labeled as H.

Because G is connected, H has at least one vertex in common with the circuit that has been
deleted. Let w be such a vertex. (In our example, c is the vertex.)

Every vertex in H has even degree (because in G all vertices had even degree, and for each
vertex, pairs of edges incident with this vertex have been deleted to form H). Note that H may
not be connected. Beginning at w, construct a simple path in H by choosing edges as long as
possible, as was done in G. This path must terminate at w. For instance, in Figure 5, ¢, d, e, ¢
is a path in H. Next, form a circuit in G by splicing the circuit in H with the original circuit in
G (this can be done because w is one of the vertices in this circuit). When this is done in the
graph in Figure 5, we obtain the circuit a, f, ¢, d, e, ¢, b, a.

Continue this process until all edges have been used. (The process must terminate because
there are only a finite number of edges in the graph.) This produces an Euler circuit. The

Linlis @

LEONHARD EULER (1707-1783) Leonhard Euler was the son of a Calvinist minister from the vicinity of
Basel, Switzerland. At 13 he entered the University of Basel, pursuing a career in theology, as his father wished.
At the university Euler was tutored by Johann Bernoulli of the famous Bernoulli family of mathematicians.
His interest and skills led him to abandon his theological studies and take up mathematics. Euler obtained
his master’s degree in philosophy at the age of 16. In 1727 Peter the Great invited him to join the Academy
at St. Petersburg. In 1741 he moved to the Berlin Academy, where he stayed until 1766. He then returned to
St. Petersburg, where he remained for the rest of his life.

Euler was incredibly prolific, contributing to many areas of mathematics, including number theory, com-
binatorics, and analysis, as well as its applications to such areas as music and naval architecture. He wrote
over 1100 books and papers and left so much unpublished work that it took 47 years after he died for all his work to be published.
During his life his papers accumulated so quickly that he kept a large pile of articles awaiting publication. The Berlin Academy
published the papers on top of this pile so later results were often published before results they depended on or superseded. Euler
had 13 children and was able to continue his work while a child or two bounced on his knees. He was blind for the last 17 years of
his life, but because of his fantastic memory this did not diminish his mathematical output. The project of publishing his collected
works, undertaken by the Swiss Society of Natural Science, is ongoing and will require more than 75 volumes.

636 9/ Graphs

THEOREM 1

9-48

a =)

c Lic d
f_’/

[

e e

G H

FIGURE 5 Constructing an Euler Circuit in G.

construction shows that if the vertices of a connected multigraph all have even degree, then the

graph has an Euler circuit.
We summarize these results in Theorem 1.

A connected multigraph with at least two vertices has an Euler circuit if and only if each of
its vertices has even degree.

We can now solve the Konigsberg bridge problem. Because the multigraph representing
these bridges, shown in Figure 2, has four vertices of odd degree, it does not have an Euler
circuit. There is no way to start at a given point, cross each bridge exactly once, and return to
the starting point.

Algorithm 1 gives the constructive procedure for finding Euler circuits given in the discus-
sion preceding Theorem 1. (Because the circuits in the procedure are chosen arbitrarily, there
is some ambiguity. We will not bother to remove this ambiguity by specifying the steps of the
procedure more precisely.)

ALGORITHM 1 Constructing Euler Circuits.

procedure Euler(G: connected multigraph with all vertices of
even degree)
circuit = a circuit in G beginning at an arbitrarily chosen
vertex with edges successively added to form a path that
returns to this vertex
H = G with the edges of this circuit removed
while H has edges
begin
subcircuit := a circuit in H beginning at a vertex in H that
also is an endpoint of an edge of circuit
H := H with edges of subcircuit and all isolated vertices
removed
circuit := circuit with subcircuit inserted at the appropriate
vertex
end {circuit is an Euler circuit}

Example 3 shows how Euler paths and circuits can be used to solve a type of puzzle.

9-49

EXAMPLE 3

THEOREM 2

EXAMPLE 4

9.5 Euler and Hamilton Paths 637

FIGURE 6 Mohammed’s Scimitars.

Many puzzles ask you to draw a picture in a continuous motion without lifting a pencil so that
no part of the picture is retraced. We can solve such puzzles using Euler circuits and paths.
For example, can Mohammeds scimitars, shown in Figure 6, be drawn in this way, where the
drawing begins and ends at the same point?

Solution: We can solve this problem because the graph G shown in Figure 6 has an Euler circuit.
Ithas such a circuit because all its vertices have even degree. We will use Algorithm 1 to construct
an Euler circuit. First, we form the circuit a, b, d, ¢, b, e, i, f, e, a. We obtain the subgraph H
by deleting the edges in this circuit and all vertices that become isolated when these edges are
removed. Then we form the circuit d, g, 4, j, i, h, k, g, f,d in H. After forming this circuit we
have used all edges in G. Splicing this new circuit into the first circuit at the appropriate place
produces the Euler circuit a, b,d, g, h, j, i, h, k, g, f,d, ¢, b, e, i, f, e, a. This circuit gives a

- way to draw the scimitars without lifting the pencil or retracing part of the picture. <

Another algorithm for constructing Euler circuits, called Fleury’s algorithm, is described in
the exercises at the end of this section.

We will now show that a connected multigraph has an Euler path (and not an Euler circuit) if
and only if it has exactly two vertices of odd degree. First, suppose that a connected multigraph
does have an Euler path from a to b, but not an Euler circuit. The first edge of the path contributes
one to the degree of a. A contribution of two to the degree of a is made every time the path
passes through a. The last edge in the path contributes one to the degree of . Every time the
path goes through b there is a contribution of two to its degree. Consequently, both a and b have
odd degree. Every other vertex has even degree, because the path contributes two to the degree
of a vertex whenever it passes through it.

Now consider the converse. Suppose that a graph has exactly two vertices of odd degree,
say a and b. Consider the larger graph made up of the original graph with the addition of an
edge {a, b}. Every vertex of this larger graph has even degree, so there is an Euler circuit. The
removal of the new edge produces an Euler path in the original graph. Theorem 2 summarizes
these results.

A connected multigraph has an Euler path but not an Euler circuit if and only if it has exactly
two vertices of odd degree.

Which graphs shown in Figure 7 have an Euler path?

Solution: G| contains exactly two vertices of odd degree, namely, b and d. Hence, it has an Euler
path that must have b and d as its endpoints. One such Euler path is d, a, b, ¢, d, b. Similarly,

638 9/ Graphs

Links

Links

DEFINITION 2

9-50

G, G, G,

FIGURE 7 Three Undirected Graphs.

G has exactly two vertices of odd degree, namely, b and d. So it has an Euler path that must
have b and d as endpoints. One such Euler path is b, a, g, f,e,d, ¢, g, b, ¢, f,d. G3 has no
Euler path because it has six vertices of odd degree. <

Returning to eighteenth-century Konigsberg, is it possible to start at some point in the
town, travel across all the bridges, and end up at some other point in town? This question can
be answered by determining whether there is an Euler path in the multigraph representing the
bridges in Konigsberg. Because there are four vertices of odd degree in this multigraph, there
is no Euler path, so such a trip is impossible.

Necessary and sufficient conditions for Euler paths and circuits in directed graphs are
discussed in the exercises at the end of this section.

Euler paths and circuits can be used to solve many practical problems. For example, many
applications ask for a path or circuit that traverses each street in a neighborhood, each road in
a transportation network, each connection in a utility grid, or each link in a communications
network exactly once. Finding an Euler path or circuit in the appropriate graph model can solve
such problems. For example, if a postman can find an Euler path in the graph that represents
the streets the postman needs to cover, this path produces a route that traverses each street of
the route exactly once. If no Euler path exists, some streets will have to be traversed more than
once. This problem is known as the Chinese postman problem in honor of Guan Meigu, who
posed it in 1962. See [MiR091] for more information on the solution of the Chinese postman
problem when no Euler path exists.

Among the other areas where Euler circuits and paths are applied is in layout of circuits, in
network multicasting, and in molecular biology, where Euler paths are used in the sequencing
of DNA.

Hamilton Paths and Circuits

We have developed necessary and sufficient conditions for the existence of paths and circuits
that contain every edge of a multigraph exactly once. Can we do the same for simple paths and
circuits that contain every vertex of the graph exactly once?

A simple pathin a graph G that passes through every vertex exactly once is called a Hamilton
path, and a simple circuit in a graph G that passes through every vertex exactly once is called
a Hamilton circuit. That is, the simple path xo, x1, ..., X,—1, X, in the graph G = (V, E)isa
Hamilton path if V = {xo, x1, ..., xs—1, s} and x; # x; for 0 <i < j < n, and the simple
circuit xg, X1, ..., Xn—1, Xn, Xo (With n > 0) is a Hamilton circuit if xo, xq, ..., X,-1,Xs iS5 2
Hamilton path.

9-51

EXAMPLE 5

Extra
Examples

Q

9.5 Euler and Hamilton Paths 639

o
<L

(@) (b)

FIGURE 8 Hamilton’s “A Voyage Round the FIGURE 9 A Solution to
World” Puzzle. the “A Voyage Round the
World” Puzzle.

This terminology comes from a game, called the Icosian puzzle, invented in 1857 by the
Irish mathematician Sir William Rowan Hamilton. It consisted of a wooden dodecahedron [a
polyhedron with 12 regular pentagons as faces, as shown in Figure 8(a)], with a peg at each
vertex of the dodecahedron, and string. The 20 vertices of the dodecahedron were labeled with
different cities in the world. The object of the puzzle was to start at a city and travel along the
edges of the dodecahedron, visiting each of the other 19 cities exactly once, and end back at the
first city. The circuit traveled was marked off using the strings and pegs.

Because the author cannot supply each reader with a wooden solid with pegs and string, we
will consider the equivalent question: Is there a circuit in the graph shown in Figure 8(b) that
passes through each vertex exactly once? This solves the puzzle because this graph is isomorphic
to the graph consisting of the vertices and edges of the dodecahedron. A solution of Hamilton’s
puzzle is shown in Figure 9.

Which of the simple graphs in Figure 10 have a Hamilton circuit or, if not, a Hamilton path?

Solution: G has a Hamilton circuit: a, b, ¢, d, e, a. There is no Hamilton circuit in G, (this can
be seen by noting that any circuit containing every vertex must contain the edge {a, b} twice),
but G, does have a Hamilton path, namely, a, b, ¢, d. G3 has neither a Hamilton circuit nor a
Hamilton path, because any path containing all vertices must contain one of the edges {a, b},
{e, 1}, and {c, d} more than once.

Is there a simple way to determine whether a graph has a Hamilton circuit or path? At first,
it might seem that there should be an easy way to determine this, because there is a simple way
to answer the similar question of whether a graph has an Euler circuit. Surprisingly, there are no
known simple necessary and sufficient criteria for the existence of Hamilton circuits. However,
many theorems are known that give sufficient conditions for the existence of Hamilton circuits.

a b a 4 a b g
e c b ° —e
d c d c e f
G, Gy G;
d

FIGURE 10 Three Simple Graphs.

640 9/ Graphs 9-52

a d e a d
c

b c b e
G H

FIGURE 11 Two Graphs That Do Not
Have a Hamilton Circuit.

Also, certain properties can be used to show that a graph has no Hamilton circuit. For instance,
a graph with a vertex of degree one cannot have a Hamilton circuit, because in a Hamilton
circuit, each vertex is incident with two edges in the circuit. Moreover, if a vertex in the graph
has degree two, then both edges that are incident with this vertex must be part of any Hamilton
circuit. Also, note that when a Hamilton circuit is being constructed and this circuit has passed
through a vertex, then all remaining edges incident with this vertex, other than the two used in
the circuit, can be removed from consideration. Furthermore, a Hamilton circuit cannot contain
a smaller circuit within it.

EXAMPLE 6 Show that neither graph displayed in Figure 11 has a Hamilton circuit.

Solution: There is no Hamilton circuit in G because G has a vertex of degree one, namely, e.
Now consider H. Because the degrees of the vertices a, b, d, and e are all two, every edge
incident with these vertices must be part of any Hamilton circuit. It is now easy to see that
no Hamilton circuit can exist in H, for any Hamilton circuit would have to contain four edges
incident with ¢, which is impossible. <

Limkes @

WILLIAM ROWAN HAMILTON (1805-1865) William Rowan Hamilton, the most famous Irish scien-
tist ever to have lived, was born in 1805 in Dublin. His father was a successful lawyer, his mother came
from a family noted for their intelligence, and he was a child prodigy. By the age of 3 he was an excel-
lent reader and had mastered advanced arithmetic. Because of his brilliance, he was sent off to live with
his uncle James, a noted linguist. By age 8 Hamilton had learned Latin, Greek, and Hebrew; by 10 he had
also learned Italian and French and he began his study of oriental languages, including Arabic, Sanskrit, and
Persian. During this period he took pride in knowing as many languages as his age. At 17, no longer de-
voted to learning new languages and having mastered calculus and much mathematical astronomy, he began
original work in optics, and he also found an important mistake in Laplace’s work on celestial mechanics.
Before entering Trinity College, Dublin, at 18, Hamilton had not attended school; rather, he received private tutoring. At Trinity, he
was a superior student in both the sciences and the classics. Prior to receiving his degree, because of his brilliance he was appointed
the Astronomer Royal of Ireland, beating out several famous astronomers for the post. He held this position until his death, living
and working at Dunsink Observatory outside of Dublin. Hamilton made important contributions to optics, abstract algebra, and
dynamics. Hamilton invented algebraic objects called quaternions as an example of a noncommutative system. He discovered the
appropriate way to multiply quaternions while walking along a canal in Dublin. In his excitement, he carved the formula in the stone
of a bridge crossing the canal, a spot marked today by a plaque. Later, Hamilton remained obsessed with quaternions, working to
apply them to other areas of mathematics, instead of moving to new areas of research.

In 1857 Hamilton invented “The Icosian Game” based on his work in noncommutative algebra. He sold the idea for 25 pounds
to a dealer in games and puzzles. (Because the game never sold well, this turned out to be a bad investment for the dealer.) The
“Traveler’s Dodecahedron,” also called “A Voyage Round the World,” the puzzle described in this section, is a variant of that game.

Hamilton married his third love in 1833, but his marriage worked out poorly, because his wife, a semi-invalid, was unable to
cope with his household affairs. He suffered from alcoholism and lived reclusively for the last two decades of his life. He died from
gout in 1865, leaving masses of papers containing unpublished research. Mixed in with these papers were a large number of dinner
plates, many containing the remains of desiccated, uneaten chops.

9-53

EXAMPLE 7

THEOREM 3

THEOREM 4

Links

9.5 Euler and Hamilton Paths 641

Show that K,, has a Hamilton circuit whenever n > 3.

Solution: We can form a Hamilton circuit in K, beginning at any vertex. Such a circuit can be
built by visiting vertices in any order we choose, as long as the path begins and ends at the same
vertex and visits each other vertex exactly once. This is possible because there are edges in K,
between any two vertices. <

Although no useful necessary and sufficient conditions for the existence of Hamilton circuits
are known, quite a few sufficient conditions have been found. Note that the more edges a graph
has, the more likely it is to have a Hamilton circuit. Furthermore, adding edges (but not vertices)
to a graph with a Hamilton circuit produces a graph with the same Hamilton circuit. So as we
add edges to a graph, especially when we make sure to add edges to each vertex, we make it
increasingly likely that a Hamilton circuit exists in this graph. Consequently, we would expect
there to be sufficient conditions for the existence of Hamilton circuits that depend on the degrees
of vertices being sufficiently large. We state two of the most important sufficient conditions here.
These conditions were found by Gabriel A. Dirac in 1952 and Oystein Ore in 1960.

DIRAC’S THEOREM If G is a simple graph with n vertices with » > 3 such that the
degree of every vertex in G is at least n/2, then G has a Hamilton circuit.

ORE’S THEOREM If G is a simple graph with » vertices with n > 3 such that deg(u) +
deg(v) > n for every pair of nonadjacent vertices # and v in G, then G has a Hamilton circuit.

The proof of Ore’s Theorem is outlined in Exercise 65 at the end of this section. Dirac’s Theorem
can be proved as a corollary to Ore’s Theorem because the conditions of Dirac’s Theorem imply
those of Ore’s Theorem.

Both Ore’s Theorem and Dirac’s Theorem provide sufficient conditions for a connected
simple graph to have a Hamilton circuit. However, these theorems do not provide necessary
conditions for the existence of a Hamilton circuit. For example, the graph Cs has a Hamilton
circuit but does not satisfy the hypotheses of either Ore’s Theorem or Dirac’s Theorem, as the
reader can verify.

The best algorithms known for finding a Hamilton circuit in a graph or determining that
no such circuit exists have exponential worst-case time complexity (in the number of vertices
of the graph). Finding an algorithm that solves this problem with polynomial worst-case time
complexity would be a major accomplishment because it has been shown that this problem is NP-
complete (see Section 3.3). Consequently, the existence of such an algorithm would imply that
many other seemingly intractable problems could be solved using algorithms with polynomial
worst-case time complexity.

Hamilton paths and circuits can be used to solve practical problems. For example, many
applications ask for a path or circuit that visits each road intersection in a city, each place
pipelines intersect in a utility grid, or each node in a communications network exactly once.
Finding a Hamilton path or circuit in the appropriate graph model can solve such problems. The
famous traveling salesman problem asks for the shortest route a traveling salesman should take
to visit a set of cities. This problem reduces to finding a Hamilton circuit in a complete graph
such that the total weight of its edges is as small as possible. We will return to this question in
Section 9.6.

642 9/ Graphs 9-54

e
G

FIGURE 12 Converting the Position of a Pointer
into Digital Form.

We now describe a less obvious application of Hamilton circuits to coding.

EXAMPLE 8 Gray Codes The position of a rotating pointer can be represented in digital form. One way to
do this is to split the circle into 2" arcs of equal length and to assign a bit string of length n to
each arc. Two ways to do this using bit strings of length three are shown in Figure 12.
The digital representation of the position of the pointer can be determined using a set of n
contacts. Each contact is used to read one bit in the digital representation of the position. This
is illustrated in Figure 13 for the two assignments from Figure 12.
When the pointer is near the boundary of two arcs, a mistake may be made in reading its
position. This may result in a major error in the bit string read. For instance, in the coding

Vit is 1 here

Second bit is 1 here

Third bit is 1 here

Second bit is 1 here

S

)

Third bit is 1 here

First bit is 1 here z/

Third bit is 1 here
First bit is 1 here

Third bit is 1 here Third bit is 1 here

©

Second bit is 1 here

FIGURE 13 The Digital Representation of the Position
of the Pointer.

9-55

Links

Exercises

9.5 Euler and Hamilton Paths 643

110 111

100 101

010

011

000 001

FIGURE 14 A Hamilton Circuit for Q5.

scheme in Figure 12(a), if a small error is made in determining the position of the pointer,
the bit string 100 is read instead of 011. All three bits are incorrect! To minimize the effect
of an error in determining the position of the pointer, the assignment of the bit strings to
the 2" arcs should be made so that only one bit is different in the bit strings represented by
adjacent arcs. This is exactly the situation in the coding scheme in Figure 12(b). An error in
determining the position of the pointer gives the bit string 010 instead of 011. Only one bit is
wrong.

A Gray code is a labeling of the arcs of the circle such that adjacent arcs are labeled with bit
strings that differ in exactly one bit. The assignment in Figure 12(b) is a Gray code. We can find
a Gray code by listing all bit strings of length n in such a way that each string differs in exactly
one position from the preceding bit string, and the last string differs from the first in exactly one
position. We can model this problem using the n-cube Q,. What is needed to solve this problem
is a Hamilton circuit in Q,. Such Hamilton circuits are easily found. For instance, a Hamilton
circuit for Q3 is displayed in Figure 14. The sequence of bit strings differing in exactly one bit
produced by this Hamilton circuit is 000, 001, 011, 010, 110, 111, 101, 100.

Gray codes are named after Frank Gray, who invented them in the 1940s at AT&T Bell
Laboratories to minimize the effect of errors in transmitting digital signals. <

In Exercises 1-8 determine whether the given graph has an 3. a b 4.
Euler circuit. Construct such a circuit when one exists. If
no Euler circuit exists, determine whether the graph has an
Euler path and construct such a path if one exists.

1. b c

644 9/ Graphs

6.
7.

a b c d

i h g e f

8. a b c d e

f 8 h i J

k 1 m n)

9. In Kaliningrad (the Russian name for Konigsberg) there
are two additional bridges, besides the seven that were
present in the eighteenth century. These new bridges con-
nect regions B and C and regions B and D, respectively.
Can someone cross all nine bridges in Kaliningrad exactly
once and return to the starting point?

10. Can someone cross all the bridges shown in this map ex-
actly once and return to the starting point?

11. When can the centerlines of the streets in a city be painted
without traveling a street more than once? (Assume that
all the streets are two-way streets.)

12. Devise a procedure, similar to Algorithm 1, for construct-
ing Euler paths in multigraphs.

In Exercises 13—15 determine whether the picture shown can

be drawn with a pencil in a continuous motion without lifting

the pencil or retracing part of the picture.

9-56

13. 14.

15.

*16. Show that a directed multigraph having no isolated ver-
tices has an Euler circuit if and only if the graph is weakly
connected and the in-degree and out-degree of each vertex
are equal.

*17. Show that a directed multigraph having no isolated ver-
tices has an Euler path but not an Euler circuit if and only if
the graph is weakly connected and the in-degree and out-
degree of each vertex are equal for all but two vertices,
one that has in-degree one larger than its out-degree and
the other that has out-degree one larger than its in-degree.

In Exercises 18-23 determine whether the directed graph
shown has an Euler circuit. Construct an Euler circuit if one
exists. If no Euler circuit exists, determine whether the di-
rected graph has an Euler path. Construct an Euler path if one
exists.

18. a b 19. a b
A
[
c d d c
20. a b c
\
[
d e
21.

9-57

*24.

25.

26.

27.

28.

29.

a b c
f - A
de= d »of
b h 1.
! k _l

Devise an algorithm for constructing Euler circuits in di-
rected graphs.

Devise an algorithm for constructing Euler paths in di-
rected graphs.

For which values of n do these graphs have an Euler
circuit?

a) K, b) Ch c) W, d) O,

For which values of n do the graphs in Exercise 26 have
an Euler path but no Euler circuit?

For which values of m and n does the complete bipartite
graph K,, , have an

a) Euler circuit?

b) Euler path?

Find the least number of times it is necessary to lift a
pencil from the paper when drawing each of the graphs in
Exercises 1-7 without retracing any part of the graph.

In Exercises 30-36 determine whether the given graph has a
Hamilton circuit. If it does, find such a circuit. If it does not,
give an argument to show why no such circuit exists.

30.

a d
c f
b 3
a b 32.a b
c

c
¢ °
e d d e f

33.

34.

3s.

36.

37.

38.

39.

40.

*41.

42,

43.

9.5 Euler and Hamilton Paths 645
a b g
: c d j:‘
a b c
i J k
Py — by 4 h
n 1
m
e f 8
a b
d
(4 e
a 2 c
d S f
8 Z i
Does the graph in Exercise 30 have a Hamilton path? If

so, find such a path. If it does not, give an argument to
show why no such path exists.
Does the graph in Exercise 31 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.
Does the graph in Exercise 32 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.
Does the graph in Exercise 33 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.
Does the graph in Exercise 34 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.
Does the graph in Exercise 35 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.
Does the graph in Exercise 36 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

646 9/ Graphs 9-58

4.

45.

*46.

47.

For which values of n do the graphs in Exercise 26 have c) d)
a Hamilton circuit?

For which values of m and n does the complete bipartite

graph K,, , have a Hamilton circuit?

Show that the Petersen graph, shown here, does not have

a Hamilton circuit, but that the subgraph obtained by 48
deleting a vertex v, and all edges incident with v, does

have a Hamilton circuit.

. Can you find a simple graph with » vertices with n > 3
that does not have a Hamilton circuit, yet the degree of
every vertex in the graph is at least (n — 1)/2?

a *49, Show that there is a Gray code of order n whenever n

is a positive integer, or equivalently, show that the n-

cube Q,,n > 1, always has a Hamilton circuit. [Hint:

Usemathematical induction. Show how to produce a Gray

¢ b code of order n from one of order n — 1.]
‘.' ;C Fleury’s algorithm for constructing Euler circuits begins
' ‘ ~ with an arbitrary vertex of a connected multigraph and forms
A a circuit by choosing edges successively. Once an edge is cho-
sen, it is removed. Edges are chosen successively so that each
d c edge begins where the last edge ends, and so that this edge is
not a cut edge unless there is no alternative.
For each of these graphs, determine (i) whether Dirac’s 50. Use Fleury’s algorithm to find an Euler circuit in the graph
Theorem can be used to show that the graph has a Hamil- G in Figure 5.
ton circuit, (/) whether Ore’s Theorem can be used to show *51. Express Fleury’s algorithm in pseudocode.

that the graph has a Hamilton circuit, and (iii) whether *%5)

the graph has a Hamilton circuit. . Prove that Fleury’s algorithm always produces an Euler

circuit.

*53. Give a variant of Fleury’s algorithm to produce Euler

a) b) paths.

54. A diagnostic message can be sent out over a computer
network to perform tests over all links and in all devices.
What sort of paths should be used to test all links? To test
all devices?

55. Showthatabipartite graph with an odd number of vertices

4 does not have a Hamilton circuit.

Lintis @

JULIUS PETER CHRISTIAN PETERSEN (1839-1910) Julius Petersen was born in the Danish town of
Sore. His father was a dyer. In 1854 his parents were no longer able to pay for his schooling, so he became an
apprentice in an uncle’s grocery store. When this uncle died, he left Petersen enough money to return to school.
After graduating, he began studying engineering at the Polytechnical School in Copenhagen, later deciding to
concentrate on mathematics. He published his first textbook, a book on logarithms, in 1858. When his inheritance
ran out, he had to teach to make a living, From 1859 until 1871 Petersen taught at a prestigious private high
school in Copenhagen. While teaching high school he continued his studies, entering Copenhagen University
in 1862. He married Laura Bertelsen in 1862; they had three children, two sons and a daughter.

Petersen obtained a mathematics degree from Copenhagen University in 1866 and finally obtained his
doctorate in 1871 from that school. After receiving his doctorate, he taught at a polytechnic and military academy. In 1887 he was
appointed to a professorship at the University of Copenhagen. Petersen was well known in Denmark as the author of a large series
of textbooks for high schools and universities. One of his books, Methods and Theories for the Solution of Problems of Geometrical
Construction, was translated into eight languages, with the English language version last reprinted in 1960 and the French version
reprinted as recently as 1990, more than a century after the original publication date.

Petersen worked in a wide range of areas, including algebra, analysis, cryptography, geometry, mechanics, mathematical
economics, and number theory. His contributions to graph theory, including results on regular graphs, are his best-known work.
He was noted for his clarity of exposition, problem-solving skills, originality, sense of humor, vigor, and teaching. One interesting
fact about Petersen was that he preferred not to read the writings of other mathematicians. This led him often to rediscover results
already proved by others, often with embarrassing consequences. However, he was often angry when other mathematicians did not
read his writings!

Petersen’s death was front-page news in Copenhagen. A newspaper of the time described him as the Hans Christian Andersen
of science—a child of the people who made good in the academic world.

9-59

A knight is a chess piece that can move either two spaces
horizontally and one space vertically or one space horizon-
tally and two spaces vertically. That is, a knight on square
(x, y) can move to any of the eight squares (x 2, y £ 1),
(x £ 1, y £ 2), if these squares are on the chessboard, as il-
lustrated here.

A knight’s tour is a sequence of legal moves by a knight start-
ing at some square and visiting each square exactly once. A
knight’s tour is called reentrant if there is a legal move that
takes the knight from the last square of the tour back to where
the tour began. We can model knight’s tours using the graph
that has a vertex for each square on the board, with an edge
connecting two vertices if a knight can legally move between
the squares represented by these vertices.

56. Draw the graph that represents thelegal moves of a knight

on a 3 x 3 chessboard.

57. Draw the graphthatrepresents the legal moves of a knight

on a3 x 4 chessboard.

58. a) Show that finding a knight’s tour on an m x n chess-
board is equivalent to finding a Hamilton path on the
graph representing the legal moves of a knight on that
board.

b) Show that finding areentrantknight’stouronanm x n
chessboard is equivalent to finding a Hamilton circuit
on the corresponding graph.

¥59. Show that there is a knight’s tour on a 3 x 4 chessboard.

¥60. Show thatthere is no knight’stouron a 3 x 3 chessboard.

9.6 Shortest-Path Problems

*61.
62.

63.

*64.

65.

9.6 Shortest-Path Problems 647

Show that there is no knight’s tour on a4 x 4 chessboard.

Show that the graph representing the legal moves of a
knight on an m x n chessboard, whenever m and n are
positive integers, is bipartite.

Show that there is no reentrant knight’s tour onan m x n
chessboard when m and n are both odd. [Hint: Use Exer-
cises 55, 58b, and 62.]

Show that there is a knight’s tour on an 8 x 8 chessboard.
[Hint: You can construct a knight’s tour using a method
invented by H. C. Warnsdorffin 1823: Startin any square,
and then always move to a square connected to the fewest
number of unused squares. Although this method may not
always produce a knight’s tour, it often does.]

The parts of this exercise outline a proof of Ore’s Theorem.
Suppose that G is a simple graph with n vertices, n > 3,
and deg(x) + deg(y) > n whenever x and y are nonadja-
cent vertices in G. Ore’s Theorem states that under these
conditions, G has a Hamilton circuit.

a) Show thatif G does not have a Hamilton circuit, then
there exists another graph H with the same vertices
as G, which can be constructed by adding edges to G
such that the addition of a single edge would produce
a Hamilton circuit in H. [Hint: Add as many edges as
possible at each successive vertex of G without pro-
ducing a Hamilton circuit.]

b) Show thatthere is a Hamilton path in H.

¢) Let vy, vs,...,v, be a Hamilton path in H. Show
that deg(v;) + deg(v,) > n and that there are at most
deg(v) vertices not adjacent to v, (including v, itself).

d) Let S bethesetof vertices preceding each vertex adja-
cent to v; in the Hamilton path. Show that S contains
deg(v;) vertices and v, ¢ S.

e) Show that S contains a vertex vg, which is adjacent
to v,, implying that there are edges connecting v; and
Vk+1 and v and v,.

f) Show that part (e) implies that v;, vy,..., V1,
Uk, Up, Un—1, - - - , Uk+1, V1 is @ Hamilton circuit in G.
Conclude from this contradiction that Ore’s Theorem
holds.

Introduction

Many problems can be modeled using graphs with weights assigned to their edges. As an
illustration, consider how an airline system can be modeled. We set up the basic graph model
by representing cities by vertices and flights by edges. Problems involving distances can be
modeled by assigning distances between cities to the edges. Problems involving flight time can
be modeled by assigning flight times to edges. Problems involving fares can be modeled by
assigning fares to the edges. Figure 1 displays three different assignments of weights to the
edges of a graph representing distances, flight times, and fares, respectively.

Graphs that have a number assigned to each edge are called weighted graphs. Weighted
graphs are used to model computer networks. Communications costs (such as the monthly cost

648 9/ Graphs

9-60

MILEAGE

San Francisco

34

060

Los Angeles

FLIGHT TIMES

San Francisco

Los Angeles

Boston

FARES 39

Chicago

San Francisco

$39

Los Angeles

Miami

FIGURE 1 Weighted Graphs Modeling an Airline System.

of leasing a telephone line), the response times of the computers over these lines, or the distance
between computers, can all be studied using weighted graphs. Figure 2 displays weighted graphs
that represent three ways to assign weights to the edges of a graph of a computer network,
corresponding to distance, response time, and cost.

Several types of problems involving weighted graphs arise frequently. Determining a path
of least length between two vertices in a network is one such problem. To be more specific, let
the length of a path in a weighted graph be the sum of the weights of the edges of this path.
(The reader should note that this use of the term length is different from the use of length to
denote the number of edges in a path in a graph without weights.) The question is: What is a
shortest path, that is, a path of least length, between two given vertices? For instance, in the
airline system represented by the weighted graph shown in Figure 1, what is a shortest path in air
distance between Boston and Los Angeles? What combinations of flights has the smallest total

9-61

&

9.6 Shortest-Path Problems 649

DISTANCE Boston

191

Chicago

San Francisco New York

957

Los Angeles

RESPONSE TIME Boston

35
San Franci New York
3
sec sec .
1 6"’60
Los Angeles
S sec

Dallas

LEASE RATES (PER MONTH) Boston

900
Chicago ¥ $300

New York

Dallas

FIGURE 2 Weighted Graphs Modeling a Computer Network.

flight time (that is, total time in the air, not including time between flights) between Boston and
Los Angeles? What is the cheapest fare between these two cities? In the computer network shown
in Figure 2, what is a least expensive set of telephone lines needed to connect the computers in
San Francisco with those in New York? Which set of telephone lines gives a fastestresponse time
for communications between San Francisco and New York? Which set of lines has a shortest
overall distance? '

Another important problem involving weighted graphs asks for a circuit of shortest total
length that visits every vertex of a complete graph exactly once. This is the famous traveling
salesman problem, which asks for an order in which a salesman should visit each of the cities
on his route exactly once so that he travels the minimum total distance. We will discuss the
traveling salesman problem later in this section.

A Shortest-Path Algorithm

There are several different algorithms that find a shortest path between two vertices in a weighted
graph. We will present an algorithm discovered by the Dutch mathematician Edsger Dijkstra in
1959. The version we will describe solves this problem in undirected weighted graphs where all
the weights are positive. It is easy to adapt it to solve shortest-path problems in directed graphs.
Before giving a formal presentation of the algorithm, we will give a motivating example.

650

9 / Graphs

EXAMPLE 1

Linlts @

9-62

FIGURE 3 A Weighted Simple Graph.

What is the length of a shortest path between @ and z in the weighted graph shown in Figure 3?

Solution: Although a shortest path is easily found by inspection, we will develop some ideas
useful in understanding Dijkstra’s algorithm. We will solve this problem by finding the length
of a shortest path from a to successive vertices, until z is reached.

The only paths starting at a that contain no vertex other than a (until the terminal vertex
is reached) are a, b and a, d. Because the lengths of a, b and a, d are 4 and 2, respectively, it
follows that d is the closest vertex to a.

We can find the next closest vertex by looking at all paths that go through only a and 4 (until
the terminal vertex is reached). The shortest such path to b is still a, b, with length 4, and the
shortest such path to e is a, d, e, with length 5. Consequently, the next closest vertex to a is b.

To find the third closest vertex to a, we need to examine only paths that go through only
a, d, and b (until the terminal vertex is reached). There is a path oflength 7 to ¢, namely, a, b, c,
and a path of length 6 to z, namely, q, d, e, z. Consequently, z is the next closest vertex to a,
and the length of a shortest path to z is 6. <

Example 1 illustrates the general principles used in Dijkstra’s algorithm. Note that a shortest
path from a to z could have been found by inspection. However, inspection is impractical for
both humans and computers for graphs with large numbers of edges.

We will now consider the general problem of finding the length of a shortest path between
a and z in an undirected connected simple weighted graph. Dijkstra’s algorithm proceeds by
finding the length of a shortest path from a to a first vertex, the length of a shortest path from a
to a second vertex, and so on, until the length of a shortest path from a to z is found.

The algorithm relies on a series of iterations. A distinguished set of vertices is constructed
by adding one vertex at each iteration. A labeling procedure is carried out at each iteration. In
this labeling procedure, a vertex w is labeled with the length of a shortest path from a to w that
contains only vertices already in the distinguished set. The vertex added to the distinguished set
is one with a minimal label among those vertices not already in the set.

EDSGER WYBE DIJKSTRA (1930-2002) Edsger Dijkstra, born in the Netherlands, began programming
computers in the early 1950s while studying theoretical physics at the University of Leiden. In 1952, realizing that
he was more interested in programming than in physics, he quickly completed the requirements for his physics
degree and began his career as a programmer, even though programming was not a recognized profession. (In
1957, the authorities in Amsterdam refused to accept “programming” as his profession on his marriage license.
However, they did accept “theoretical physicist” when he changed his entry to this.)

Dijkstra was one of the most forceful proponents of programming as a scientific discipline. He has made
fundamental contributions to the areas of operating systems, including deadlock avoidance; programming
languages, including the notion of structured programming; and algorithms. In 1972 Dijkstra received the Turing

Award from the Association for Computing Machinery, one of the most prestigious awards in computer science. Dijkstra became
a Burroughs Research Fellow in 1973, and in 1984 he was appointed to a chair in Computer Science at the University of Texas,

9-63

9.6 Shortest-Path Problems 651

We now give the details of Dijkstra’s algorithm. It begins by labeling @ with 0 and the
other vertices with co. We use the notation Ly(a) = 0 and Ly(v) = oo for these labels before
any iterations have taken place (the subscript 0 stands for the “Oth” iteration). These labels are
the lengths of shortest paths from a to the vertices, where the paths contain only the vertex a.
(Because no path from a to a vertex different from a exists, 0o is the length of a shortest path
between a and this vertex.)

Dijkstra’s algorithm proceeds by forming a distinguished set of vertices. Let S; denote this
set after & iterations of the labeling procedure. We begin with Sy = @. The set S; is formed from
Sx—1 by adding a vertex u not in S;_; with the smallest label. Once u is added to S;, we update
the labels of all vertices not in Sy, so that L, (v), the label of the vertex v at the kth stage, is the
length of a shortest path from a to v that contains vertices only in Sy (that is, vertices that were
already in the distinguished set together with u).

Let v be a vertex not in S;. To update the label of v, note that L;(v) is the length of a shortest
path from a to v containing only vertices in S;. The updating can be carried out efficiently when
this observation is used: A shortest path from a to v containing only elements of Sy is either a
shortest path from a to v that contains only elements of S;_; (that is, the distinguished vertices
not including u), or it is a shortest path from a to u at the (k — 1)st stage with the edge (u, v)
added. In other words,

Li(a,v) = min{L;_,(a, v), Ly—(a, u) + w(u, v)}.

This procedure is iterated by successively, adding vertices to the distinguished set until z is
added. When z is added to the distinguished set, its label is the length of a shortest path from a
to z. Dijkstra’s algorithm is given in Algorithm 1. Later we will give a proof that this algorithm
is correct.

ALGORITHM 1 Dijkstra’s Algorithm.

procedure Dijkstra(G: weighted connected simple graph, with
all weights positive)

{G has vertices a = v, v1, ..., v, = z and weights w(v;, v;)
where w(v;, v;) = oo if {v;, v} is not an edge in G}

fori:=1ton
L(v;)) = o0

L(@):=0

S:=0

{the labels are now initialized so that the label of @ is 0 and all
other labels are 0o, and S is the empty set}

whilez ¢ S

begin
u = avertex not in S with L(x) minimal
S =S U {u}

for all vertices v not in S
if L(u) + w(u, v) < L(v) then L(v) = L(u) + w(u, v)
{this adds a vertex to S with minimal label and updates the
labels of vertices not in S}
end {L(z) = length of a shortest path from a to z}

Example 2 illustrates how Dijkstra’s algorithm works. Afterward, we will show that this
algorithm always produces the length of a shortest path between two vertices in a weighted
graph.

652 9/ Graphs

9-64

d oo b 3(a)

d 10(a, 0

e 12(a, o)

@ 2 (a)
®) ©

® 3@ @8(c,b)
z 14(a,c, b,d)
© 2 e 12(a,0) © 2@ e 10(a,c, b, d)
(@ ()
@ 3(a,) @ 8 (a,c, b) @ 3(a, ¢) @ 8 (a,c, b)
4 6 4 6
0@ z 13(a,c,b,de) 0@ @13 (a, ¢, b d,e)
2 3 2 3
© 2@ (@10@cb.d © 2@ (@10G@.cb.d
® (8

FIGURE 4 Using Dijkstra’s Algorithm to Find a Shortest Path from a to z.

EXAMPLE 2 Use Dijkstra’s algorithm to find the length of a shortest path between the vertices a and z in the

weighted graph displayed in Figure 4(a).

Solution: The steps used by Dijkstra’s algorithm to find a shortest path between a and z are shown
in Figure 4. At each iteration of the algorithm the vertices of the set Sy are circled. A shortest
path from a to each vertex containing only vertices in S is indicated for each iteration. The
algorithm terminates when z is circled. We find that a shortest path froma tozisa, ¢, b, d, e, z,
with length 13. : <

Remark: In performing Dijkstra’s algorithm it is sometimes more convenient to keep track of
labels of vertices in each step using a table instead of redrawing the graph for each step.

Next, we use an inductive argument to show that Dijkstra’s algorithm produces the length of
a shortest path between two vertices a and z in an undirected connected weighted graph. Take
as the induction hypothesis the following assertion: At the kth iteration

(i) the label of every vertex v in S is the length of a shortest path from a to this vertex, and

(i7) the label of every vertex not in S is the length of a shortest path from a to this vertex that
contains only (besides the vertex itself) vertices in S.

When & = 0, before any iterations are carried out, S = @, so the length of a shortest path from
a to a vertex other than a is 0o. Hence, the basis case is true.

Assume that the inductive hypothesis holds for the kth iteration. Let v be the vertex added
to S at the (kK + 1)st iteration, so v is a vertex not in S at the end of the kth iteration with the
smallest label (in the case of ties, any vertex with smallest label may be used).

9-65

THEOREM 1

THEOREM 2

Links

9.6 Shortest-Path Problems 653

From the inductive hypothesis we see that the vertices in S before the (k + 1)st iteration are
labeled with the length of a shortest path from a. Also, v must be labeled with the length of a
shortest path to it from a. If this were not the case, at the end of the kth iteration there would be a
path of length less than L ;(v) containing a vertex notin S [because L;(v) is the length of a shortest
path from a to v containing only vertices in S after the kth iteration]. Let u be the first vertex not
in S in such a path. There is a path with length less than L (v) from a to u containing only vertices
of S. This contradicts the choice of v. Hence, (i) holds at the end of the (k + 1)st iteration.

Let u be a vertex not in S after £ + 1 iterations. A shortest path from a to # containing
only elements of S either contains v or it does not. If it does not contain v, then by the inductive
hypothesis its length is L;(u). If it does contain v, then it must be made up of a path from a to
v of shortest possible length containing elements of S other than v, followed by the edge from
v to u. In this case, its length would be L;(v) + w(v, u). This shows that (ii) is true, because
Lit1(u) = min{L(u), Li(v) + w(v, u)}.

Theorem 1 has been proved.

Dijkstra’s algorithm finds the length of a shortest path between two vertices in a connected
simple undirected weighted graph.

We can now estimate the computational complexity of Dijkstra’s algorithm (in terms of
additions and comparisons). The algorithm uses no more than n — 1 iterations, because one
vertex is added to the distinguished set at each iteration. We are done if we can estimate the
number of operations used for each iteration. We can identify the vertex not in S; with the
smallest label using no more than» — 1 comparisons. Then we use an addition and a comparison
to update the label of each vertex not in S;. It follows that no more than 2(n — 1) operations are
used at each iteration, because there are no more than » — 1 labels to update at each iteration.
Because we use no more than n — 1 iterations, each using no more than 2(n — 1) operations,
we have Theorem 2.

Dijkstra’s algorithm uses O(n?) operations (additions and comparisons) to find the length of
a shortest path between two vertices in a connected simple undirected weighted graph with
n vertices.

The Traveling Salesman Problem

We now discuss an important problem involving weighted graphs. Consider the following prob-
lem: A traveling salesman wants to visit each of n cities exactly once and return to his starting
point. For example, suppose that the salesman wants to visit Detroit, Toledo, Saginaw, Grand
Rapids, and Kalamazoo (see Figure 5). In which order should he visit these cities to travel the
minimum total distance? To solve this problem we can assume the salesman starts in Detroit
(because this must be part of the circuit) and examine all possible ways for him to visit the other
four cities and then return to Detroit (starting elsewhere will produce the same circuits). There
are a total of 24 such circuits, but because we travel the same distance when we travel a circuit in
reverse order, we need only consider 12 different circuits to find the minimum total distance he
must travel. We list these 12 different circuits and the total distance traveled for each circuit. As
can be seen from the list, the minimum total distance of 458 miles is traveled using the circuit
Detroit—Toledo—Kalamazoo—Grand Rapids—Saginaw—Detroit (or its reverse).

654 9/ Graphs 9-66

Saginaw
56

Kalamazoo O

O Detroit

Toledo

FIGURE 5 The Graph Showing the Distances between Five Cities.

Route Total Distance (miles)
Detroit—Toledo—Grand Rapids—Saginaw—Kalamazoo—Detroit 610
Detroit—Toledo—Grand Rapids—Kalamazoo—Saginaw—Detroit 516
Detroit—Toledo—Kalamazoo—Saginaw—Grand Rapids—Detroit 588
Detroit-Toledo—Kalamazoo—Grand Rapids—Saginaw—Detroit 458
Detroit—Toledo—Saginaw—Kalamazoo—Grand Rapids—Detroit 540
Detroit—Toledo—Saginaw—Grand Rapids—Kalamazoo—Detroit 504
Detroit—Saginaw—Toledo—Grand Rapids—Kalamazoo—Detroit 598
Detroit—Saginaw—Toledo—Kalamazoo—Grand Rapids—Detroit 576
Detroit—Saginaw—Kalamazoo-Toledo—Grand Rapids—Detroit 682
Detroit—Saginaw—Grand Rapids—Toledo—Kalamazoo—Detroit 646
Detroit—Grand Rapids—Saginaw—Toledo—Kalamazoo—Detroit 670
Detroit—Grand Rapids—Toledo—Saginaw—Kalamazoo—Detroit 728

We just described an instance of the traveling salesman problem. The traveling salesman
problem asks for the circuit of minimum total weight in a weighted, complete, undirected graph
that visits each vertex exactly once and returns to its starting point. This is equivalent to asking
for a Hamilton circuit with minimum total weight in the complete graph, because each vertex
is visited exactly once in the circuit.

The most straightforward way to solve an instance of the traveling salesman problem is
to examine all possible Hamilton circuits and select one of minimum total length. How many
circuits do we have to examine to solve the problem if there are »n vertices in the graph? Once
a starting point is chosen, there are (n — 1)! different Hamilton circuits to examine, because
there are n — 1 choices for the second vertex, n — 2 choices for the third vertex, and so on.
Because a Hamilton circuit can be traveled in reverse order, we need only examine (n — 1)!/2
circuits to find our answer. Note that (n — 1)!/2 grows extremely rapidly. Trying to solve a
traveling salesman problem in this way when there are only a few dozen vertices is impractical.
For example, with 25 vertices, a total of 24!/2 (approximately 3.1 x 10?*) different Hamilton
circuits would have to be considered. If it took just one nanosecond (10~° second) to examine
each Hamilton circuit, a total of approximately ten million years would be required to find a
minimum-length Hamilton circuit in this graph by exhaustive search techniques.

9-67

Exercises

9.6 Shortest-Path Problems 655

Because the traveling salesman problem has both practical and theoretical importance, a
great deal of effort has been devoted to devising efficient algorithms that solve it. However,
no algorithm with polynomial worst-case time complexity is known for solving this problem.
Furthermore, if a polynomial worst-case time complexity algorithm were discovered for the trav-
eling salesman problem, many other difficult problems would also be solvable using polynomial
worst-case time complexity algorithms (such as determining whether a proposition in » variables
is a tautology, discussed in Chapter 1). This follows from the theory of NP-completeness. (For
more information about this, consult [GaJo79].)

A practical approach to the traveling salesman problem when there are many vertices to visit
is to use an approximation algorithm. These are algorithms that do not necessarily produce the
exact solution to the problem but instead are guaranteed to produce a solution that is close to an
exact solution. That is, they may produce a Hamilton circuit with total weight W’ such that W <
W’ < cW, where W is the total length of an exact solution and c is a constant. For example, there
is an algorithm with polynomial worst-case time complexity that works if the weighted graph
satisfies the triangle inequality such that ¢ = 3/2. For general weighted graphs forevery positive
real number k no algorithm is known that will always produce a solution at most & times a best so-
lution. If suchan algorithm existed, this would show that the class P would be the same as the class
NP, perhaps the most famous open question about the complexity of algorithms (see Section 3.3).

In practice, algorithms have been developed that can solve traveling salesman problems with
as many as 1000 vertices within 2% of an exact solution using only a few minutes of computer
time. For more information about the traveling salesman problem, including history, applications,
and algorithms, see the chapter on this topic in Applications of Discrete Mathematics [MiR091]
also available on the website for this book.

1. For each of these problems about a subway system, de- 4.

scribe a weighted graph model that can be used to solve
the problem.

a) What is the least amount of time required to travel
between two stops?

b) What is the minimum distance that can be traveled to
reach a stop from another stop?

¢) What is the least fare required to travel between two
stops if fares between stops are added to give the total
fare?

In Exercises 2—4 find the length of a shortest path between a
and z in the given weighted graph.

. Find a shortest path between a and z in each of the

weighted graphs in Exercises 2—4.

. Find the length of a shortest path between these pairs of

vertices in the weighted graph in Exercise 3.

a) aandd
b) aand f
¢) cand [
d) bandz

. Find shortest paths in the weighted graph in Exercise 3

between the pairs of vertices in Exercise 6.

. Find a shortest path (in mileage) between each of the

following pairs of cities in the airline system shown in
Figure 1.

a) New York and Los Angeles
b) Boston and San Francisco
¢) Miami and Denver

d) Miami and Los Angeles

656 9/ Graphs

9. Find a combination of flights with the least total air time

10.

11.

12.

13.

14.

15.

16.

17.

between the pairs of cities in Exercise 8, using the flight
times shown in Figure 1.

Find a least expensive combination of flights connecting
the pairs of cities in Exercise 8, using the fares shown in
Figure 1.

Find a shortest route (in distance) between computer cen-
ters in each of these pairs of cities in the communications
network shown in Figure 2.

a) Boston and Los Angeles

b) New York and San Francisco

¢) Dallas and San Francisco

d) Denver and New York

Find a route with the shortest response time between the
pairs of computer centers in Exercise 11 using the re-
sponse times given in Figure 2.

Find a least expensive route, in monthly lease charges, be-
tween the pairs of computer centers in Exercise 11 using
the lease charges given in Figure 2.

Explain how to find a path with the least number of
edges between two vertices in an undirected graph by
considering it as a shortest path problem in a weighted
graph.

Extend Dijkstra’s algorithm for finding the length of a
shortest path between two vertices in a weighted simple
connected graph so that the length of a shortest path be-
tween the vertex a and every other vertex of the graph is
found.

Extend Dijkstra’s algorithm for finding the length of a
shortest path between two vertices in a weighted simple
connected graph so that a shortest path between these ver-
tices is constructed.

The weighted graphs in the figures here show some
major roads in New Jersey. Part (a) shows the dis-
tances between cities on these roads; part (b) shows the
tolls.

18.

19.

20.

Q

9-68

Newark

$0.60

Woodbridge

a) Find a shortest route in distance between Newark and
Camden, and between Newark and Cape May, using
these roads.

b) Find a least expensive route in terms of total tolls
using the roads in the graph between the pairs of cities
in part (a) of this exercise.

Is a shortest path between two vertices in a weighted graph
unique if the weights of edges are distinct?

What are some applications where it is necessary to find
the length of a longest simple path between two vertices
in a weighted graph?

What is the length of a longest simple path in the
weighted graph in Figure 4 between a and z? Between ¢
and z?

Floyd’s algorithm, displayed as Algorithm 2, can be used to
find the length of a shortest path between all pairs of vertices

in a weighted connected simple graph. However, this algo-
rithm cannot be used to construct shortest paths. (We assign
an infinite weight to any pair of vertices not connected by an
edge in the graph.)

21.

*22.

*23.

*24.

Use Floyd’s algorithm to find the distance between all
pairs of vertices in the weighted graph in Figure 4(a).
Prove that Floyd’s algorithm determines the shortest dis-
tance between all pairs of vertices in a weighted simple
graph.

Give a big-O estimate of the number of operations (com-
parisons and additions) used by Floyd’s algorithm to deter-
mine the shortest distance between every pair of vertices
in a weighted simple graph with » vertices.

Show that Dijkstra’s algorithm may not work if edges can
have negative weights.

9-69

ALGORITHM 2 Floyd’s Algorithm.

procedure Floyd(G: weighted simple graph)
{G has vertices vy, vy, ..., v, and weights w(v;,)
with w(v;, y) = oo if (v;,) is not an edge}
fori :==1ton
for j =1ton
d(vi, y) = w(vi, y)
fori =1ton
for j =1ton
fork=1ton
if d(y, v;) + d(vi, v) < d(y, ve)
then d(y;, v) :=
d(y, v;) +d(vi, v)
{d(v;, y) is the length of a shortest path between v;
and v}

25. Solve the traveling salesman problem for this graph by
finding the total weight of all Hamilton circuits and de-
termining a circuit with minimum total weight.

a 3 b

d 7 c

26. Solve the traveling salesman problem for this graph by
finding the total weight of all Hamilton circuits and de-
termining a circuit with minimum total weight.

a 3 b

9.7 Planar Graphs

9.7 Planar Graphs 657

27. Find a route with the least total airfare that visits each
of the cities in this graph, where the weight on an edge
is the least price available for a flight between the two
cities.

Los Angeles Denver

28. Find a route with the least total airfare that visits each
of the cities in this graph, where the weight on an edge
is the least price available for a flight between the two
cities.

Seattle $409

29. Construct a weighted undirected graph such that the to-
tal weight of a circuit that visits every vertex at least
once is minimized for a circuit that visits some vertices
more than once. [Hint: There are examples with three
vertices.]

30. Show that the problem of finding a circuit of minimum
total weight that visits every vertex of a weighted graph
at least once can be reduced to the problem of finding a
circuit of minimum total weight that visits each vertex of a
weighted graph exactly once. Do so by constructing a new
weighted graph with the same vertices and edges as the
original graph but whose weight of the edge connecting
the vertices u and v is equal to the minimum total weight
of a path from u to v in the original graph.

Introduction

Consider the problem of joining three houses to each of three separate utilities, as shown in
) Figure 1. Is it possible to join these houses and utilities so that none of the connections cross?
Links This problem can be modeled using the complete bipartite graph K3 3. The original question
can be rephrased as: Can K3 3 be drawn in the plane so that no two of its edges cross?
In this section we will study the question of whether a graph can be drawn in the plane
without edges crossing. In particular, we will answer the houses-and-utilities problem.
There are always many ways to represent a graph. When is it possible to find at least one
way to represent this graph in a plane without any edges crossing?

658 9/ Graphs 9-70

FIGURE 1 Three Houses and Three Utilities.

DEFINITION 1 A graph is called planar if it can be drawn in the plane without any edges crossing (where
a crossing of edges is the intersection of the lines or arcs representing them at a point other
than their common endpoint). Such a drawing is called a planar representation of the graph.

A graph may be planar even if it is usually drawn with crossings, because it may be possible
to draw it in a different way without crossings.

EXAMPLE1 Is K4 (shown in Figure 2 with two edges crossing) planar?

Solution: K, is planar because it can be drawn without crossings, as shown in Figure 3. <

EXAMPLE 2 Is Q3, shown in Figure 4, planar?

Solution: Q5 is planar, because it can be drawn without any edges crossing, as shown
in Figure 5. <

We can show that a graph is planar by displaying a planar representation. It is harder to
show that a graph is nonplanar. We will give an example to show how this can be done in an ad
hoc fashion. Later we will develop some general results that can be used to do this.

FIGURE 2 The FIGURE 3 K4Drawn FIGURE 4 The FIGURE 5 A Planar
Graph K,. with No Crossings. Graph Q;. Representation of Q3.

9-71

9.7 Planar Graphs 659

Vi Vs Vi Vs

P, - . Ry,
R, R, Vs R,
R22

V4 V2 Va V2
V4 V5 V6 . (a) (b)
FIGURE 6 The Graph K3 ;. FIGURE 7 Showing that K3 3 Is Nonplanar.

EXAMPLE 3 Is K3 3, shown in Figure 6, planar?

Solution: Any attempt to draw K3 3 in the plane with no edges crossing is doomed. We now
show why. In any planar representation of K3 3, the vertices v; and v, must be connected to both
v4 and vs. These four edges form a closed curve that splits the plane into two regions, R; and R;,
as shown in Figure 7(a). The vertex v; is in either R} or R,. When v; is in R, the inside of
the closed curve, the edges between v; and v4 and between v; and vs separate R, into two
subregions, R,; and Ry,, as shown in Figure 7(b).

Next, note that there is no way to place the final vertex vg without forcing a crossing. For
if vg is in R, then the edge between vg and v; cannot be drawn without a crossing. If vg is in
R31, then the edge between v, and vg cannot be drawn without a crossing. If vg is in R;;, then
the edge between v; and v¢ cannot be drawn without a crossing.

A similar argument can be used when v; is in R;. The completion of this argument is left
for the reader (see Exercise 10 at the end of this section). It follows that K3 3 is not planar. <«

Example 3 solves the utilities-and-houses problem that was described at the beginning of
this section. The three houses and three utilities cannot be connected in the plane without a
crossing. A similar argument can be used to show that K5 is nonplanar. (See Exercise 11 at the
end of this section.)

Planarity of graphs plays animportant role in the design of electronic circuits. We can model
a circuit with a graph by representing components of the circuit by vertices and connections
between them by edges. We can print a circuit on a single board with no connections crossing
if the graph representing the circuit is planar. When this graph is not planar, we must turn to
more expensive options. For example, we can partition the vertices in the graph representing
the circuit into planar subgraphs. We then construct the circuit using multiple layers. (See the
preamble to Exercise 30 to learn about the thickness of a graph.) We can construct the circuit
using insulated wires whenever connections cross. In this case, drawing the graph with the fewest
possible crossings is important. (See the preamble to Exercise 26 to learn about the crossing
number of a graph.)

Euler’s Formula

A planar representation of a graph splits the plane into regions, including an unbounded region.
For instance, the planar representation of the graph shown in Figure 8 splits the plane into six
regions. These are labeled in the figure. Euler showed that all planar representations of a graph
split the plane into the same number of regions. He accomplished this by finding a relationship
among the number of regions, the number of vertices, and the number of edges of a planar
graph.

660 9/ Graphs

THEOREM 1
Rl
r—0
23] Vi

FIGURE 9 The
Basis Case of the
Proof of Euler’s
Formula.

9-72

R,

FIGURE 8 The Regions of
the Planar Representation of a
Graph.

EULER’S FORMULA Let G be a connected planar simple graph with e edges and v
vertices. Let » be the number of regions in a planar representation of G. Thenr = e — v + 2.

Proof: First, we specify a planar representation of G. We will prove the theorem by constructing
a sequence of subgraphs G, G, ..., G, = G, successively adding an edge at each stage. This
is done using the following inductive definition. Arbitrarily pick one edge of G to obtain G.
Obtain G, from G, by arbitrarily adding an edge that is incident with a vertex already in G,,—1,
adding the other vertex incident with this edge if it is not already in G,_;. This construction
is possible because G is connected. G is obtained after e edges are added. Let r,, e,, and v,
represent the number of regions, edges, and vertices of the planar representation of G, induced
by the planar representation of G, respectively.

The proof will now proceed by induction. The relationship r; = e; — v; + 2 is true for G,
because e; = 1, v; = 2, and r; = 1. This is shown in Figure 9.

Now assume that r, = e, — v, + 2. Let {a,41, b,+1} be the edge that is added to G, to
obtain G,+;. There are two possibilities to consider. In the first case, both a,.; and b, are
already in G,. These two vertices must be on the boundary of a common region R, or else
it would be impossible to add the edge {a,+1, bn+1} to G, without two edges crossing (and
Gy is planar). The addition of this new edge splits R into two regions. Consequently, in this
case,r,+1 =rn + 1,e,41 = e, + 1, and v,y = v,. Thus, each side of the formula relating the
number of regions, edges, and vertices increases by exactly one, so this formula is still true. In
other words, 7,41 = €41 — Vn4+1 + 2. This case is illustrated in Figure 10(a).

In the second case, one of the two vertices of the new edge is not already in G,. Suppose
thata,, is in G, but that b, is not. Adding this new edge does not produce any new regions,
because b,;; must be in a region that has a,;; on its boundary. Consequently, 7,41 = 7.
Moreover, e, = e, + 1 and v,; = v, + 1. Each side of the formula relating the number

Apii

bn+1
(a) (b)

FIGURE 10 Adding an Edge to G, to Produce G,;.

9-73

EXAMPLE 4

COROLLARY 1

COROLLARY 2

9.7 Planar Graphs 661

of regions, edges, and vertices remains the same, so the formula is still true. In other words,
Fnil = €ns1 — Uny1 + 2. This case is illustrated in Figure 10(b).

We have completed the induction argument. Hence, r, = e, — v, + 2 for all n. Because the
original graph is the graph G,, obtained after e edges have been added, the theorem is true. <

Euler’s formula is illustrated in Example 4.

Suppose that a connected planar simple graph has 20 vertices, each of degree 3. Into how many
regions does a representation of this planar graph split the plane?

Solution: This graph has 20 vertices, each of degree 3, so v = 20. Because the sum of the degrees
of the vertices, 3v = 3 - 20 = 60, is equal to twice the number of edges, 2e, we have 2e = 60,
or e = 30. Consequently, from Euler’s formula, the number of regions is

r=e—v+2=30-20+2=12. <

Euler’s formula can be used to establish some inequalities that must be satisfied by planar
graphs. One such inequality is given in Corollary 1.

If G is a connected planar simple graph with e edges and v vertices, where v > 3, then
e<3v-—6.

Before we prove Corollary 1 we will use it to prove the following useful result.

If G is a connected planar simple graph, then G has a vertex of degree not exceeding five.

Proof: If G has one or two vertices, the result is true. If G has at least three vertices, by
Corollary 1 we know that e < 3v — 6, so 2e < 6v — 12. If the degree of every vertex were
at least six, then because 2e =), _,, deg(v) (by the Handshaking Theorem), we would have
2e > 6v. But this contradicts the inequality 2e < 6v — 12. It follows that there must be a vertex
with degree no greater than five. <

The proof of Corollary 1 is based on the concept of the degree of a region, which is defined
to be the number of edges on the boundary of this region. When an edge occurs twice on the
boundary (so that it is traced out twice when the boundary is traced out), it contributes two to the
degree. The degrees of the regions of the graph shown in Figure 11 are displayed in the figure.

The proof of Corollary 1 can now be given.

Proof: A connected planar simple graph drawn in the plane divides the plane into regions,
say r of them. The degree of each region is at least three. (Because the graphs discussed here
are simple graphs, no multiple edges that could produce regions of degree two, or loops that
could produce regions of degree one, are permitted.) In particular, note that the degree of the
unbounded region is at least three because there are at least three vertices in the graph.

Note that the sum of the degrees of the regions is exactly twice the number of edges in
the graph, because each edge occurs on the boundary of a region exactly twice (either in two

662 9/ Graphs

EXAMPLE 5

COROLLARY 3

9-74

FIGURE 11 The Degrees of Regions.

different regions, or twice in the same region). Because each region has degree greater than or
equal to three, it follows that

2¢e=)" deg(R) >3

all regions R
Hence,
2/3)e=>r.
Using r = e — v + 2 (Euler’s formula), we obtain
e—v+2<(2/3)e.
It follows that e/3 < v — 2. This shows thate < 3v — 6. d

This corollary can be used to demonstrate that K5 is nonplanar.

Show that K5 is nonplanar using Corollary 1.

Solution: The graph Ks has five vertices and 10 edges. However, the inequality e < 3v — 6 is
not satisfied for this graph because e = 10 and 3v — 6 = 9. Therefore, K is not planar. <

- It was previously shown that K3 3 is not planar. Note, however, that this graph has six vertices
and nine edges. This means that the inequalitye = 9 < 12 = 3 . 6 — 6 is satisfied. Consequently,
the fact that the inequality e < 3v — 6 is satisfied does not imply that a graph is planar. However,
the following corollary of Theorem 1 can be used to show that K3 3 is nonplanar.

If a connected planar simple graph has e edges and v vertices with v > 3 and no circuits of
length three, then e < 2v — 4.

The proof of Corollary 3 is similar to that of Corollary 1, except that in this case the fact that
there are no circuits of length three implies that the degree of a region must be at least four. The
details of this proof are left for the reader (see Exercise 15 at the end of this section).

9-75

9.7 Planar Graphs 663

G,

c d e

FIGURE 12 Homeomorphic Graphs.

EXAMPLE 6 Use Corollary 3 to show that K3 3 is nonplanar.
Solution: Because K3 3 has no circuits of length three (this is easy to see because it is bipartite),

Corollary 3 can be used. K3 3 has six vertices and nine edges. Because e = 9 and 2v — 4 = §,
Corollary 3 shows that K3 3 is nonplanar. 4

Kuratowski’s Theorem

We have seen that K3 3 and K5 are not planar. Clearly, a graph is not planar if it contains either
of these two graphs as a subgraph. Surprisingly, all nonplanar graphs must contain a subgraph
that can be obtained from K3 3 or K5 using certain permitted operations.

If a graph is planar, so will be any graph obtained by removing an edge {«, v} and adding a
new vertex w together with edges {#, w} and {w, v}. Such an operation is called an elementary
subdivision. The graphs G, = (Vi, E;) and G, = (V,, E) are called homeomorphic if they
can be obtained from the same graph by a sequence of elementary subdivisions.

EXAMPLE 7 Show that the graphs G, G,, and G5 displayed in Figure 12 are all homeomorphic.

Solution: These three graphs are homeomorphic because all three can be obtained from G, by
elementary subdivisions. G can be obtained from itself by an empty sequence of elementary
subdivisions. To obtain G, from G| we can use this sequence of elementary subdivisions: (i)
remove the edge {a, c}, add the vertex f, and add the edges {a, f} and { f, c}; (ii) remove the
edge {b, c}, add the vertex g, and add the edges {b, g} and {g, c}; and (iii) remove the edge
{b, g}, add the vertex 4, and add the edges {g, £} and {b, h}. We leave it to the reader to determine
the sequence of elementary subdivisions needed to obtain G3 from G. <

The Polish mathematician Kazimierz Kuratowski established Theorem 2 in 1930, which
characterizes planar graphs using the concept of graph homeomorphism.

C;M”"“
s &

KAZIMIERZ KURATOWSKI (1896-1980) Kazimierz Kuratowski, the son of a famous Warsaw lawyer,
attended secondary school in Warsaw. He studied in Glasgow, Scotland, from 1913 to 1914 but could not return
there after the outbreak of World War L In 1915 he entered Warsaw University, where he was active in the Polish
patriotic student movement. He published his first paper in 1919 andreceived his Ph.D. in 1921. He wasan active
member of the group known as the Warsaw School of Mathematics, working in the areas of the foundations
of set theory and topology. He was appointed associate professor at the Lwow Polytechnical University, where
he stayed for seven years, collaborating with the important Polish mathematicians Banach and Ulam. In 1930,
while at Lwow, Kuratowski completed his work characterizing planar graphs.

In 1934 he returned to Warsaw University as a full professor. Until the start of World War II, he was active
in research and teaching. During the war, because of the persecution of educated Poles, Kuratowski went into hiding under an
assumed name and taught at the clandestine Warsaw University. After the war he helped revive Polish mathematics, serving as
director of the Polish National Mathematics Institute. He wrote over 180 papers and three widely used textbooks.

664 9/ Graphs

THEOREM 2

EXAMPLE 8

Extra g
Examples d

EXAMPLE 9

9-76

FIGURE 13 The Undirected Graph G, a Subgraph H Homeomorphic to Ks, and Ks.

A graph is nonplanar if and only if it contains a subgraph homeomorphic to K3 3 or K.

Itisclear that a graph containing a subgraph homeomorphic to K3 3 or K5 isnonplanar. However,
the proof of the converse, namely that every nonplanar graph contains a subgraph homeomorphic
to K33 or Ks, is complicated and will not be given here. Examples 8 and 9 illustrate how
Kuratowski’s Theorem is used.

Determine whether the graph G shown in Figure 13 is planar.

Solution: G has a subgraph H homeomorphic to Ks. H is obtained by deleting 4, j, and k£ and
all edges incident with these vertices. H is homeomorphic to K5 because it can be obtained
from K5 (with vertices a, b, ¢, g, and i) by a sequence of elementary subdivisions, adding the
vertices d, e, and f. (The reader should construct such a sequence of elementary subdivisions.)
Hence, G is nonplanar. <

Is the Petersen graph, shown in Figure 14(a), planar? (The Danish mathematician Julius Petersen
studied this graph in 1891; it is often used to illustrate various theoretical properties of graphs.)

Solution: The subgraph H of the Petersen graph obtained by deleting b and the three edges
that have b as an endpoint, shown in Figure 14(b), is homeomorphic to K3 3, with vertex sets

(a) (b H (©) Kj;

FIGURE 14 (a) The Petersen Graph, (b) a Subgraph H Homeomorphic to K3 3, and (¢) K3 3.

9-77 9.7 Planar Graphs 665
{f,d, j} and {e, i, h}, because it can be obtained by a sequence of elementary subdivisions,
deleting {d, h} and adding {c, #} and {c, d}, deleting {e, f/} and adding {a, e} and {a, f}, and
deleting {7, j} and adding {g, i} and {g, j}. Hence, the Petersen graph is not planar. 4

Exercises

1. Canfive houses be connected to two utilities without con- 10. Complete the argument in Example 3.
nections crossing? 11. Show that K5 is nonplanar using an argument similar to

In Exercises 2—4 draw the given planar graph without any

crossings. 12.

2. * 3
/ 13.
14

. Suppose that a connected planar graph has 30 edges. If a

15.
16.

*17.

18.

In Exercises 5-9 determine whether the givengraphis planar.
If so, draw it so that no edges cross.

19.

that given in Example 3.

Suppose that a connected planar graph has eight vertices,
each of degree three. Into how many regions is the plane
divided by a planar representation of this graph?
Suppose that a connected planar graph has six vertices,
each of degree four. Into how many regions is the plane
divided by a planar representation of this graph?

planar representation of this graph divides the plane into
20 regions, how many vertices does this graph have?

Prove Corollary 3.

Suppose that a connected bipartite planar simple graph
has e edges and v vertices. Show thate < 2v — 4ifv > 3.
Suppose that a connected planar simple graph with e edges
and v vertices contains no simple circuits of length 4 or
less. Show thate < (5/3)v — (10/3) if v > 4.

Suppose that a planar graph has k connected components,
e edges, and v vertices. Also suppose that the plane is
divided into 7 regions by a planar representation of the
graph. Find a formula for r in terms of e, v, and k.
Which of these nonplanar graphs have the property that
the removal of any vertex and all edges incident with that
vertex produces a planar graph?

a) Ks b)) K¢ ¢ K33 d) K3,

5. a 6. a b c
b c
In Exercises 20-22 determine whether the given graph is
homeomorphic to K3 3.
¢ s » d e f P

666 9/ Graphs

22,

*28.

In Exercises 23-25 use Kuratowski’s Theorem to determine

whether the given graph is planar.

23. a b

24,

c d

25.

9.8 Graph Coloring

**29.

*33,

34.

3s.

*36.

*37.

9-78

2y The crossing number of a simple graph is the minimum num-
ber of crossings that can occur when this graph is drawn in the
plane where no three arcs representing edges are permitted to
cross at the same point.

26.
**27.

Show that K3 3 has 1 as its crossing number.

Find the crossing numbers of each of these nonplanar
graphs.

a) Ks b) K ¢) K7
d) K34 e) Kia) Kss

Find the crossing number of the Petersen graph.

Show that if m and » are even positive integers, the cross-
ing number of K,, , is less than or equal to mn(m — 2)
(n — 2)/16. [Hint: Place m vertices along the x-axis so
that they are equally spaced and symmetric about the ori-
gin and place n vertices along the y-axis so that they are
equally spaced and symmetric about the origin. Now con-
nect each of the m vertices on the x-axis to each of the
vertices on the y-axis and count the crossings.]

The thickness of a simple graph G is the smallest number of
planar subgraphs of G that have G as their union.

30.
*31.
32.

Show that K3 3 has 2 as its thickness.
Find the thickness of the graphs in Exercise 27.

Show that if G is a connected simple graph with v ver-
tices and e edges, then the thickness of G is at least
[e/(3v — 6)].

Use Exercise 32 to show that the thickness of K,, is at
least [(n + 7)/6] whenever n is a positive integer.

Show that if G is a connected simple graph with v ver-
tices and e edges and no circuits of length three, then the
thickness of G is at least [e/(2v — 4)].

Use Exercise 34 to show that the thickness of K, , is at
least [mn/(2m + 2n — 4)] whenever m and n are positive
integers.

Draw K5 on the surface of a torus (a doughnut-shaped
solid) so that no edges cross.

Draw K33 on the surface of a torus so that no edges
Cross.

Links

Introduction

Problems related to the coloring of maps of regions, such as maps of parts of the world, have
generated many results in graph theory. When a map* is colored, two regions with a common
border are customarily assigned different colors. One way to ensure that two adjacent regions
never have the same color is to use a different color for each region. However, this is inefficient,

*We will assume that all regions in a map are connected. This eliminates any problems presented by such geographical entities

oo nAI_ L

9-79

DEFINITION 1

DEFINITION 2

9.8 Graph Coloring 667

FIGURE 1 Two Maps.

FIGURE 2 Dual Graphs of the Maps in Figure 1.

and on maps with many regions it would be hard to distinguish similar colors. Instead, a small
number of colors should be used whenever possible. Consider the problem of determining the
least number of colors that can be used to color a map so that adjacent regions never have
the same color. For instance, for the map shown on the left in Figure 1, four colors suffice,
but three colors are not enough. (The reader should check this.) In the map on the right in Figure
1, three colors are sufficient (but two are not).

Each map in the plane can be represented by a graph. To set up this correspondence,
each region of the map is represented by a vertex. Edges connect two vertices if the regions
represented by these vertices have a common border. Two regions that touch at only one point
are not considered adjacent. The resulting graph is called the dual graph of the map. By the way
in which dual graphs of maps are constructed, it is clear that any map in the plane has a planar
dual graph. Figure 2 displays the dual graphs that correspond to the maps shown in Figure 1.

The problem of coloring the regions of a map is equivalent to the problem of coloring the
vertices of the dual graph so that no two adjacent vertices in this graph have the same color. We
now define a graph coloring.

A coloring of a simple graph is the assignment of a color to each vertex of the graph so that
no two adjacent vertices are assigned the same color.

A graph can be colored by assigning a different color to each of its vertices. However, for most
graphs a coloring can be found that uses fewer colors than the number of vertices in the graph.
What is the least number of colors necessary?

The chromatic number of a graph is the least number of colors needed for a coloring of this
graph. The chromatic number of a graph G is denoted by x (G). (Here j is the Greekletter chi.)

668

9 / Graphs

THEOREM 1

=5
Linits

EXAMPLE 1

Extra
Examples ‘Q@

T
s R

9-80

Note that asking for the chromatic number of a planar graph is the same as asking for the
minimum number of colors required to color a planar map so that no two adjacent regions are
assigned the same color. This question has been studied for more than 100 years. The answer is
provided by one of the most famous theorems in mathematics.

THE FOURCOLOR THEOREM The chromatic number of a planar graph is no greater
than four.

The Four Color Theorem was originally posed as a conjecture in the 1850s. It was finally
proved by the American mathematicians Kenneth Appel and Wolfgang Haken in 1976. Prior to
1976, many incorrect proofs were published, often with hard-to-find errors. In addition, many
futile attempts were made to construct counterexamples by drawing maps that require more than
four colors. (Proving the Five Color Theorem is not that difficult; see Exercise 36.)

Perhaps the most notorious fallacious proof in all of mathematics is the incorrect proof of
the Four Color Theorem published in 1879 by a London barrister and amateur mathematician,
Alfred Kempe. Mathematicians accepted his proof as correct until 1890, when Percy Heawood
found an error that made Kempe’s argument incomplete. However, Kempe’s line of reasoning
turned out to be the basis of the successful proof given by Appel and Haken. Their proof relies
on a careful case-by-case analysis carried out by computer. They showed that if the Four Color
Theorem were false, there would have to be a counterexample of one of approximately 2000
different types, and they then showed that none of these types exists. They used over 1000 hours
of computer time in their proof. This proof generated a large amount of controversy, because
computers played such an important role in it. For example, could there be an error in a computer
program that led to incorrect results? Was their argument really a proof if it depended on what
could be unreliable computer output?

Note that the Four Color Theorem applies only to planar graphs. Nonplanar graphs can have
arbitrarily large chromatic numbers, as will be shown in Example 2.

Two things are required to show that the chromatic number of a graph is k. First, we must
show that the graph can be colored with k& colors. This can be done by constructing such a
coloring. Second, we must show that the graph cannot be colored using fewer than & colors.
Examples 14 illustrate how chromatic numbers can be found.

What are the chromatic numbers of the graphs G and H shown in Figure 3?

Solution: The chromatic number of G is at least three, because the vertices a, b, and ¢ must
be assigned different colors. To see if G can be colored with three colors, assign red to a, blue
to b, and green to ¢. Then, d can (and must) be colored red because it is adjacent to b and c.
Furthermore, e can (and must) be colored green because it is adjacent only to vertices colored
red and blue, and f can (and must) be colored blue because it is adjacent only to vertices colored
red and green. Finally, g can (and must) be colored red because it is adjacent only to vertices

ALFRED BRAY KEMPE (1849-1922) Kempe was a barrister and a leading authority on ecclesiastical law.
However, having studied mathematics at Cambridge University, he retained his interest in it, and later in life
he devoted considerable time to mathematical research. Kempe made contributions to kinematics, the branch
of mathematics dealing with motion, and to mathematical logic. However, Kempe is best remembered for his
fallacious proof of the Four Color Theorem.

9-81

EXAMPLE 2

Links

9.8 Graph Coloring 669

AN cf

FIGURE 3 The Simple Graphs G and H.

b Blue e Green b Blue Green e

AN

c Green fBlue ¢ Green . f Blue
FIGURE 4 Colorings of the Graphs G and H.

colored blue and green. This produces a coloring of G using exactly three colors. Figure 4
displays such a coloring.

The graph H is made up of the graph G with an edge connecting a and g. Any attempt to
color H using three colors must follow the same reasoning as that used to color G, except at the
last stage, when all vertices other than g have been colored. Then, because g is adjacent (in H)
to vertices colored red, blue, and green, a fourth color, say brown, needs to be used. Hence, H
has a chromatic number equal to 4. A coloring of H is shown in Figure 4. |

What is the chromatic number of K,,?

Solution: A coloring of K, can be constructed using »n colors by assigning a different color
to each vertex. Is there a coloring using fewer colors? The answer is no. No two vertices can
be assigned the same color, because every two vertices of this graph are adjacent. Hence, the
chromatic number of K, = n. That is, x(K,) = n. (Recall that K, is not planar when n > 5, so

HISTORICAL NOTE In 1852, an ex-student of Augustus De Morgan, Francis Guthrie, noticed that the
counties in England could be colored using four colors so that no adjacent counties were assigned the same
color. On this evidence, he conjectured that the Four Color Theorem was true. Francis told his brother Frederick,
at that time a student of De Morgan, about this problem. Frederick in turn asked his teacher De Morgan about
his brother’s conjecture. De Morgan was extremely interested in this problem and publicized it throughout the
mathematical community. In fact, the first written reference to the conjecture can be found in a letter from
De Morgan to Sir William Rowan Hamilton. Although De Morgan thought Hamilton would be interested in
this problem, Hamilton apparently was not interested in it, because it had nothing to do with quaternions.

HISTORICAL NOTE Although a simpler proof of the Four Color Theorem was found by Robertson, Sanders,
Seymour, and Thomas in 1996, reducing the computational part of the proof to examining 633 configurations,
no proof that does not rely on extensive computation has yet been found.

670

9 / Graphs

EXAMPLE 3

EXAMPLE 4

9-82

a Red b Blue
a Red b Red cRed
Brown e ¢ Green m
d Yellow d Blue e Blue fBlue g Blue
FIGURE 5 A Coloring of Ks. FIGURE 6 A Coloring of K3 4.

this result does not contradict the Four Color Theorem.) A coloring of Ks using five colors is
shown in Figure 5. <

What is the chromatic number of the complete bipartite graph K, ,, where m and » are positive
integers?

Solution: The number of colors needed may seem to depend on m and n. However, as Theorem
4 in Section 9.2 tells us, only two colors are needed, because K, , is a bipartite graph. Hence,
X (Km.n) = 2. This means that we can color the set of m vertices with one color and the set of
n vertices with a second color. Because edges connect only a vertex from the set of m vertices
and a vertex from the set of n vertices, no two adjacent vertices have the same color. A coloring
of K3 4 with two colors is displayed in Figure 6. <

What is the chromatic number of the graph C,, where n > 3? (Recall that C, is the cycle with
n vertices.)

Solution: We will first consider some individual cases. To begin, let n = 6. Pick a vertex and
coloritred. Proceed clockwise in the planar depiction of C¢ shown in Figure 7. It is necessary to
assign a second color, say blue, to the next vertex reached. Continue in the clockwise direction;
the third vertex can be colored red, the fourth vertex blue, and the fifth vertex red. Finally, the
sixth vertex, which is adjacent to the first, can be colored blue. Hence, the chromatic number of
Cs is 2. Figure 7 displays the coloring constructed here.

Next, let n = 5 and consider Cs. Pick a vertex and color it red. Proceeding clockwise, it
is necessary to assign a second color, say blue, to the next vertex reached. Continuing in the
clockwise direction, the third vertex can be colored red, and the fourth vertex can be colored blue.

FIGURE 7 Colorings of Cs and Cg.

9-83

Links

EXAMPLE 5

9.8 Graph Coloring 671

The fifth vertex cannot be colored either red or blue, because it is adjacent to the fourth vertex
and the first vertex. Consequently, a third color is required for this vertex. Note that we would
have also needed three colors if we had colored vertices in the counterclockwise direction.
Thus, the chromatic number of Cs is 3. A coloring of Cs using three colors is displayed in
Figure 7.

In general, two colors are needed to color C, when # is even. To construct such a coloring,
simply pick a vertex and color it red. Proceed around the graph in a clockwise direction (using
a planar representation of the graph) coloring the second vertex blue, the third vertex red, and
so on. The nth vertex can be colored blue, because the two vertices adjacent to it, namely the
(n — 1)st and the first vertices, are both colored red.

When 7 is odd and » > 1, the chromatic number of C, is 3. To see this, pick an initial
vertex. To use only two colors, it is necessary to alternate colors as the graph is traversed in
a clockwise direction. However, the nth vertex reached is adjacent to two vertices of different
colors, namely, the first and (» — 1)st. Hence, a third color must be used.

We have shown that x(C,) = 2 if n is an even positive integer with n > 4 and x(C,) =3
if n is an odd positive integer with n > 3. <

The best algorithms known for finding the chromatic number of a graph have exponential
worst-case time complexity (in the number of vertices of the graph). Even the problem of finding
an approximation to the chromatic number of a graph is difficult. It has been shown that if there
were an algorithm with polynomial worst-case time complexity that could approximate the
chromatic number of a graph up to a factor of 2 (that is, construct a bound that was no more
than double the chromatic number of the graph), then an algorithm with polynomial worst-case
time complexity for finding the chromatic number of the graph would also exist.

Applications of Graph Colorings

Graph coloring has a variety of applications to problems involving scheduling and assignments.
(Note that because no efficient algorithm is known for graph coloring, this does not lead to
efficient algorithms for scheduling and assignments.) Examples of such applications will be
given here. The first application deals with the scheduling of final exams.

Scheduling Final Exams How can the final exams at a university be scheduled so that no
student has two exams at the same time?

Solution: This scheduling problem can be solved using a graph model, with vertices representing
courses and with an edge between two vertices if there is a common student in the courses they
represent. Each time slot for a final exam is represented by a different color. A scheduling of
the exams corresponds to a coloring of the associated graph.

For instance, suppose there are seven finals to be scheduled. Suppose the courses are num-
bered 1 through 7. Suppose that the following pairs of courses have common students: 1 and 2,
land3,1and4,1and7,2and3,2and 4,2 and 5,2and 7,3 and 4,3 and 6,3 and 7,4 and 5,
4 and 6, 5 and 6, 5 and 7, and 6 and 7. In Figure 8 the graph associated with this set of classes
is shown. A scheduling consists of a coloring of this graph.

Because the chromatic number of this graph is 4 (the reader should verify this), four time
slots are needed. A coloring of the graph using four colors and the associated schedule are
shown in Figure 9. <

Now consider an application to the assignment of television channels.

672 9/ Graphs

9-84

1 Red
1 -/N‘
Brown 7 2 Blue
2 Time Period Courses

I 1,6
11 2
111 3,5

6 3 Red 6 3 Green v 4,7

5 4 S Green 4 Brown
FIGURE 8 The Graph FIGURE 9 Using a Coloring to Schedule Final Exams.

Representing the Scheduling
of Final Exams.

EXAMPLE 6

EXAMPLE 7

Exercises

Frequency Assignments Television channels 2 through 13 are assigned to stations in North
America so that no two stations within 150 miles can operate on the same channel. How can the
assignment of channels be modeled by graph coloring?

Solution: Construct a graph by assigning a vertex to each station. Two vertices are con-
nected by an edge if they are located within 150 miles of each other. An assignment of
channels corresponds to a coloring of the graph, where each color represents a different
channel. |

An application of graph coloring to compilers is considered in Example 7.

Index Registers In efficient compilers the execution of loops is speeded up when frequently
used variables are stored temporarily in index registers in the central processing unit, instead
of in regular memory. For a given loop, how many index registers are needed? This problem
can be addressed using a graph coloring model. To set up the model, let each vertex of a graph
represent a variable in the loop. There is an edge between two vertices if the variables they
represent must be stored in index registers at the same time during the execution of the loop.
Thus, the chromatic number of the graph gives the number of index registers needed, because
different registers must be assigned to variables when the vertices representing these variables
are adjacent in the graph. <

InExercises 1-4 construct the dual graph for the map shown. 2.
Then find the number of colors needed to color the map so
that no two adjacent regions have the same color.

o, =~

1.

B

9-85

In Exercises 5-11 find the chromatic number of the given
graph.

12.

13.
14.

15.
16.

17.

18.

19.

9.8 Graph Coloring 673

For the graphs in Exercises 5-11, decide whether it is
possible to decrease the chromatic number by removing
a single vertex and all edges incident with it.

Which graphs have a chromatic number of 1?

What is the least number of colors needed to color a map
of the United States? Do not consider adjacent states that
meet only ata corner. Suppose that Michigan is one region.
Consider the vertices representing Alaska and Hawaii as
isolated vertices.

What is the chromatic number of W,?

Show that a simple graph that has a circuit with an odd
number of vertices in it cannot be colored using two
colors.

Schedule the final exams for Math 115, Math 116, Math
185, Math 195, CS 101, CS 102, CS 273, and CS 473,
using the fewest number of different time slots, if there
are no students taking both Math 115 and CS 473,
both Math 116 and CS 473, both Math 195 and CS 101,
both Math 195 and CS 102, both Math 115 and Math 116,
both Math 115 and Math 185, and both Math 185 and
Math 195, but there are students in every other combina-
tion of courses.

How many different channels are needed for six stations
located at the distances shown in the table, if two stations
cannot use the same channel when they are within 150
miles of each other?

1 2 3 4 5 6
1| — | 8 | 175200 | 50 | 100
218 | — | 125|175 | 100 | 160
311751125 | — | 100 | 200 | 250
41200 | 175 | 100 | — | 210 | 220
5] 50] 100|200 | 210 | — | 100
6 | 100 | 160 | 250 | 220 | 100 | —

The mathematics department has six committees each
meeting once a month. How many different meeting times
must be used to ensure that no member is scheduled to
attend two meetings at the same time if the committees
are C| = {Arlinghaus, Brand, Zaslavsky}, C; = {Brand,
Lee, Rosen}, C; = {Arlinghaus, Rosen, Zaslavsky},
C4={Lee, Rosen, Zaslavsky}, Cs = {Arlinghaus,
Brand}, and C¢ = {Brand, Rosen, Zaslavsky}?

674 9/ Graphs

20. A zoo wants to set up natural habitats in which to exhibit
its animals. Unfortunately, some animals will eat some of
the others when given the opportunity. How can a graph
model and a coloring be used to determine the number of
different habitats needed and the placement ofthe animals
in these habitats?

An edge coloring of a graph is an assignment of colors to
edges so that edges incident with a common vertex are as-
signed different colors. The edge chromatic number of a
graph is the smallest number of colors that can be used in an
edge coloring of the graph.

21. Find the edge chromatic number of each of the graphs in
Exercises 5-11.

¥22. Find the edge chromatic numbers of
a) K,. b) Km u.
c) Cp. d) W,.

23. Seven variables occur in a loop of a computer program.
The variables and the steps during which they must be
stored are ¢: steps 1 through 6; u: step 2; v: steps 2 through
4; w: steps 1,3, and 5; x: steps 1 and 6; y: steps 3 through
6; and z: steps 4 and 5. How many different index registers
are needed to store these variables during execution?

24. What can be said about the chromatic number of a graph
that has K, as a subgraph?

This algorithm can be used to color a simple graph: First, list
the vertices vy, vs, v3, ..., v, in order of decreasing degree
so that deg(v;) > deg(v;) > - - - > deg(v,). Assign color 1 to
v; and to the next vertex in the list not adjacent to v; (if one
exists), and successively to each vertex in the list not adjacent
to a vertex already assigned color 1. Then assign color 2 to
the first vertex in the list not already colored. Successively
assign color 2 to vertices in the list that have not already been
colored and are not adjacent to vertices assigned color 2. If
uncolored vertices remain, assign color 3 to the first vertex in
the list not yet colored, and use color 3 to successively color
those vertices not already colored and not adjacent to vertices
assigned color 3. Continue this process until all vertices are
colored.

25. Construct a coloring of the graph shown using this

26. Use pseudocode to describe this coloring algorithm.
27. Show that the coloring produced in this algorithm may
use more colors than are necessary to color a graph.

A connected graph G is called chromatically k-critical if the
chromatic number of G is k, but for every edge e of G, the

9-86

chromatic number of the graph obtained by deleting this edge
from G is k — 1.

28. Show that C,, is chromatically 3-critical whenever n is an
odd positive integer, n > 3.

29. Show that W, is chromatically 4-critical whenever n is an
odd integer, n > 3.

30. Show that W, is not chromatically 3-critical.

31. Show that if G is a chromatically k-critical graph, then
the degree of every vertex of G is at least k£ — 1.

A k-tuple coloring of a graph G is an assignment of a set
of k different colors to each of the vertices of G such that no
two adjacent vertices are assigned a common color. We de-
note by x;(G) the smallest positive integer n such that G has
a k-tuple coloring using n colors. For example, x2(Cs) = 4.
To see this, note that using only four colors we can assign
two colors to each vertex of Cj4, as illustrated, so that no two
adjacent vertices are assigned the same color. Furthermore,
no fewer than four colors suffice because the vertices v; and
v, each must be assigned two colors, and a common color
cannot be assigned to both v; and v,. (For more information
about k-tuple coloring, see [MiR091].)

{red, blue} v, v, {green, yellow}

{green, yellow} v, v3 {red, blue}

32. Find these values:

a) x2(K3) b) x2(Ka4) ©) x2(Wa)
d) x2(Cs) e) x2(K34) D x3(Ks)
*g) x3(Cs) h) x3(Kass)
*33. Let G and H be the graphs displayed in Figure 3. Find

a) x2(G). b) x2(H).

) x3(G). d) x3(H).

34. What is x4(G) if G is a bipartite graph and £ is a positive

integer?

35. Frequencies for mobile radio (or cellular) telephones are
assigned by zones. Each zone is assigned a set of fre-
quencies to be used by vehicles in that zone. The same
frequency cannot be used in zones where interference is
a problem. Explain how a k-tuple coloring can be used to
assign k frequencies to each mobile radio zone in a region.

*36. Show that every planar graph G can be colored using six
or fewer colors. [Hint: Use mathematical induction on
the number of vertices of the graph. Apply Corollary 2 of
Section 9.7 to find a vertex v with deg(v) < 5. Consider
the subgraph of G obtained by deleting v and all edges
incident with it.]

**37. Show that every planar graph G can be colored using

five or fewer colors. [Hint: Use the hint provided for
Exercise 36.]

9-87

The famous Art Gallery Problem asks how many guards are
needed to see all parts of an art gallery, where the gallery is the
interior and boundary of a polygon with n sides. To state this
problem more precisely, we need some terminology. A point
x inside or on the boundary of a simple polygon P covers or
sees a point y inside or on P if all points on the line segment
xy are in the interior or on the boundary of P. Wesay that a set
of points is a guarding set of a simple polygon P if for every
point y inside P or on the boundary of P there is a point x in
this guarding set that sees y. Denote by G(P) the minimum
number of points needed to guard the simple polygon P. The
Art Gallery Problem asks for the function g(n), which is the
maximum value of G(P) over all simple polygons with n ver-
tices. That is, g(n) is the minimum positive integer for which
it is guaranteed that a simple polygon with n vertices can be
guarded with g(n) or fewer guards.
38. Show that g(3) = 1 and g(4) = 1 by showing that all tri-
angles and quadrilaterals can be guarded using one point.
‘39. Show that g(5) = 1. That is, show that all pentagons can
be guarded using one point. [Hint: Show thatthere are ei-
ther 0, 1, or 2 vertices with an interior angle greater than
180 degrees and that in each case, one guard suffices.]
‘40. Show that g(6) = 2 by first using Exercises 38 and 39 as
well as Lemma 1 in Section 4.2 to show that g(6) <2

Key Terms and Results

Key Terms and Results 675

and then find a simple hexagon for which two guards are
needed.

*41. Show that g(n) > |n/3]. [Hint: Consider the polygon
with 3k vertices that resembles a comb with k£ prongs,
such as the polygon with 15 sides shown here.]

*42. Solve the Art Gallery Problem by proving the Art Gallery
Theorem, which states that at most |n/3] guards are
needed to guard the interior and boundary of a simple
polygon with n vertices. [Hint: Use Theorem 1 in Section
4.2 to triangulate the simple polygon into n — 2 triangles.
Then show that it is possible to color the vertices of the
triangulated polygon using three colors so that no two ad-
jacent vertices have the same color. Use induction and
Exercise 23 in Section 4.2. Finally, put guards at all ver-
tices that are colored red, where red is the color used least
in the coloring of the vertices. Show that placing guards
at these points is all that is needed.]

TERMS

undirected edge: an edge associated to a set {u, v}, where u
and v are vertices '

directed edge: an edge associated to an ordered pair (u, v),
where u and v are vertices

multiple edges: distinct edges connecting the same vertices

multiple directed edges: distinct directed edges associated
with the same ordered pair (u,v),where u and v are vertices

loop: an edge connecting a vertex with itself

undirected graph: a set of vertices and a set of undirected
edges each of which is associated with a set of one or two
of these vertices

simple graph: an undirected graph with no multiple edges or
loops

multigraph: an undirected graph that may contain multiple
edges but no loops

pseudograph: an undirected graph that may contain multiple
edges and loops

directed graph: a set of vertices together with a set of directed
edges each of which is associated with an ordered pair of
vertices

directed multigraph: a graph with directed edges that may
contain multiple directed edges

simple directed graph: a directed graph without loops or mul-
tiple directed edges

adjacent: two vertices are adjacent if there is an edge between
them

incident: an edge is incident with a vertex if the vertex is an
endpoint of that edge

deg (v) (degree of the vertex v in an undirected graph):
the number of edges incident with v with loops counted
twice

deg™ (v) (the in-degree of the vertex v in a graph with di-
rected edges): the number of edges with v as their terminal
vertex

degt (v) (the out-degree of the vertex v in a graph with di-
rected edges): the number of edges with v as their initial
vertex

underlying undirected graph of a graph with directed
edges: the undirected graph obtained by ignoring the di-
rections of the edges

K, (complete graph on n vertices): the undirected graph with
n vertices where each pair of vertices is connected by an
edge

bipartite graph: a graph with vertex set that can be partitioned
into subsets V| and V; such that each edge connects a vertex
in V| and a vertex in V,

Ko » (complete bipartite graph): the graph with vertex set
partitioned into a subset of m elements and a subset of n
elements such that two vertices are connected by an edge if
and only if one is in the first subset and the other is in the
second subset

676 9/ Graphs

C, (cycle of size n), n>3: the graph with. n vertices
vy, V2, ..., Uy and edges {vy, vz}, {v2, v3}, ..., {Un=1, Un),
{vn, v1}

W, (wheel of size n), n > 3: the graph obtained from C, by
adding a vertex and edges from this vertex to the original
vertices in C,

O, (n-cube), n > 1: the graph that has the 2" bit strings of
length n as its vertices and edges connecting every pair of
bit strings that differ by exactly one bit

isolated vertex: a vertex of degree zero

pendant vertex: a vertex of degree one

regular graph: a graph where all vertices have the same
degree

subgraph of a graph G = (V, E): a graph (W, F), where W
is a subset of V and F is a subset of E

G, UG, (union of G; and G,): the graph (V; U V;,
E| U E,), where G| = (V}, E|) and G, = (V,, E,)

adjacency matrix: a matrix representing a graph using the
adjacency of vertices

incidence matrix: a matrix representing a graph using the in-
cidence of edges and vertices

isomorphic simple graphs: the simple graphs G, = (V, E})
and G, = (V,, E,) are isomorphic if there is a one-to-one
correspondence f from V) to V, suchthat { f(v)), f(v2)} €
E; if and only if {v;, v;} € E) forall v; and v, in V;

invariant: a property that isomorphic graphs either both have
or both do not have

path from u to v in an undirected graph: a sequence of
edges ey, ey, ..., e,, Where ¢; is associated to {x;, x;;} for
i=0,1,...,n,where xo =uand x,y; = v

path from « to v in a graph with directed edges: a sequence
of edges ey, ey, ..., e,, Where e; is associated to (x;, X;+1)
fori =0,1,...,n,where xo =u and x,4+; = v

simple path: a path that does not contain an edge more than
once '

circuit: a path oflength n > 1 that begins and ends at the same
vertex

connected graph: an undirected graph with the property that
there is a path between every pair of vertices

connected component of a graph G: a maximal connected
subgraph of G

strongly connected directed graph: a directed graph with the
property that there is a directed path from every vertex to
every vertex

strongly connected component of a directed graph G: a
maximal strongly connected subgraph of G

Euler circuit: a circuit that contains every edge of a graph
exactly once

Review Questions

9-88

Euler path: a paththat contains every edge of a graph exactly
once

Hamilton path: a path in a simple graph that passes through
each vertex exactly once :

Hamilton circuit: a circuit in a simple graph that passes
through each vertex exactly once

weighted graph: a graph with numbers assigned to its edges

shortest-path problem: the problem of determining the path
in a weighted graph such that the sum of the weights of
the edges in this path is a minimum over all paths between
specified vertices

traveling salesman problem: the problem that asks for the
circuit of shortest total length that visits every vertex of the
graph exactly once

planar graph: a graph that can be drawn in the plane with no
crossings

regions of a representation of a planar graph: the regions
the plane is divided into by the planar representation of the
graph

elementary subdivision: the removal of an edge {u, v} of an
undirected graph and the addition of a new vertex w together
with edges {#, w} and {w, v}

homeomorphic: two undirected graphs are homeomorphic if
they can be obtained from the same graph by a sequence of
elementary subdivisions

graph coloring: an assignment of colors to the vertices of a
graph so that no two adjacent vertices have the same color

chromatic number: the minimum number of colors needed in
a coloring of a graph

RESULTS

There is an Euler circuit in a connected multigraph if and only
if every vertex has even degree.

There is an Euler path in a connected multigraph if and only if
at most two vertices have odd degree.

Dijkstra’s algorithm: a procedure for finding a shortest path
between two vertices in a weighted graph (see Section 9.6).

Euler’s formula: » = e — v + 2 where r, e, and v are the num-
ber of regions of a planar representation, the number of
edges, and the number of vertices, respectively, of a planar
graph.

Kuratowski’s Theorem: A graph is nonplanar if and only if it
contains a subgraph homeomorphic to K33 or Ks. (Proof
beyond scope of this book.)

The Four Color Theorem: Every planar graph can be colored
using no more than four colors. (Proof far beyond the scope
of this book!)

1. a) Define a simple graph, a multigraph, a pseudograph,
a directed graph, and a directed multigraph.

b) Use an example to show how each of the types of

graphin part(a) can be used in modeling. Forexample,

explain how to model different aspects of a computer
network or airline routes.
2. Give at least four examples of how graphs are used in
modeling.

9-89

10.

11.

12.

. What is the relationship between the sum of the degrees

of the vertices in an undirected graph and the number of
edges in this graph? Explain why this relationship holds.

. Why must there be an even number of vertices of odd

degree in an undirected graph?

. What is the relationship between the sum of the in-degrees

and the sum of the out-degrees of the vertices in a directed
graph? Explain why this relationship holds.

. Describe the following families of graphs.

a) K,, the complete graph on n vertices

b) K, »,the complete bipartite graph on m and n vertices
¢) C,, the cycle with n vertices

d) W,, the wheel of size n

e) O, the n-cube

. How many vertices and how many edges are there in each

of the graphs in the families in Question 6?

. a) What is a bipartite graph?

b) Which of the graphs K,, C,, and W,, are bipartite?
¢) How can you determine whether an undirected graph
is bipartite?

. a) Describe three different methods that can be used to

represent a graph.

b) Draw a simple graph with at least five vertices and
eight edges. Illustrate how it can be represented using
the methods you described in part (a).

a) What does it mean for two simple graphs to be
isomorphic?

b) What is meant by an invariant with respect to isomor-
phism for simple graphs? Give at least five examples
of such invariants.

¢) Give an example of two graphs that have the same
numbers of vertices, edges, and degrees of vertices,
but that are not isomorphic.

d) Is a set of invariants known that can be used to ef-
ficiently determine whether two simple graphs are
isomorphic?

a) What does it mean for a graph to be connected?

b) What are the connected components of a graph?

a) Explain how an adjacency matrix can be used to rep-
resent a graph.

b) How can adjacency matrices be used to determine
whether a function from the vertex set of a graph G to
the vertex set of a graph H is an isomorphism?

Supplementary Exercises

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Supplementary Exercises 677

¢) How can the adjacency matrix of a graph be used to
determine the number of paths of length », where is
a positive integer, between two vertices of a graph?

a) Define an Euler circuit and an Euler path in an undi-
rected graph.

b) Describe the famous Ko6nigsberg bridge problem and
explain how to rephrase it in terms of an Euler
circuit.

¢) How canitbe determined whetheranundirected graph
has an Euler path?

d) How can it be determined whether an undirected graph
has an Euler circuit?

a) Define a Hamilton circuit in a simple graph.

b) Give some properties of a simple graph that imply that
it does not have a Hamilton circuit.

Give examples of at least two problems that can be solved

by finding the shortest path in a weighted graph.

a) Describe Dijkstra’s algorithm for finding the shortest
path in a weighted graph between two vertices.

b) Draw a weighted graph with at least 10 vertices and
20 edges. Use Dijkstra’s algorithm to find the short-
est path between two vertices of your choice in the
graph.

a) What does it mean for a graph to be planar?

b) Give an example of a nonplanar graph.

a) What is Euler’s formula for planar graphs?

b) How can Euler’s formula for planar graphs be used to
show that a simple graph is nonplanar?

State Kuratowski’s Theorem on the planarity of graphs

and explain how it characterizes which graphs are

planar.

a) Define the chromatic number of a graph.

b) What is the chromatic number of the graph K, when
n is a positive integer?

¢) What is the chromatic number of the graph C, when
n is a positive integer greater than 2?

d) What is the chromatic number ofthe graph K, , when
m and n are positive integers?

State the Four Color Theorem. Are there graphs that can-

not be colored with four colors?

Explain how graph coloring can be used in modeling. Use

at least two different examples.

1.

2.

How many edges does a 50-regular graph with 100 ver-
tices have?

How many nonisomorphic subgraphs does K3 have?

In Exercises 3—5 determine whether the given pair of graphs
is isomorphic.

678 9/ Graphs

*5.

Uy Uy us Uy
us Ug U7 ug
Vi V2
Ve V7
Vs Vg
V4 V3
Uy
ug U
Uz u3
Ug Uy
us
Vi
Vg \7]
V7 V3
Ve V4
Vs
Vi V2
Vs Ve
Vg V7
V4 V3
u
ug Uy
up us
u6 u4

9-90

The complete m-partite graph K, ,, .., has vertices par-
titioned into m subsets of ny, n,, ..., n, elements each, and
vertices are adjacent if and only if they are in different subsets
in the partition.

6.

*7.

*8.

Draw these graphs.

a) K23 b) K2 ©) Kizas

How many vertices and how many edges does the com-
plete m-partite graph K, ,,....n, have?

a) Prove or disprove that there are always two vertices
with the same degree in a finite simple graph having
at least two vertices.

b) Do the same as in part (a) for finite multigraphs.

Let G = (V, E)be a simple graph. The subgraph induced by
a subset W of the vertex set V is the graph (W, F), where the
edge set F contains an edge in E if and only if both endpoints
of this edge are in W.

9.

10.

Consider the graph shown in Figure 3 of Section 9.4. Find
the subgraphs induced by

a) {a,b,c}. b) {a, e g}.

¢) {b,c, f. g h}.

Let n be a positive integer. Show that a subgraph induced
by a nonempty subset of the vertex set of K, is a complete
graph.

=Y A clique in a simple undirected graph is a complete subgraph
that is not contained in any larger complete subgraph. In Ex-
ercises 11-13 find all cliques in the graph shown.

11.

12.

13.

a b c

9-91

A dominating set of vertices in a simple graph is a set of
vertices such that every other vertex is adjacent to at least
one vertex of this set. A dominating set with the least num-
ber of vertices is called a minimum dominating set. In Ex-
ercises 14-16 find a minimum dominating set for the given
graph.

14. 15.
a b a e
c d
e
c d b f
16. a b c d
e f 8 h
i J k 1

A simple graph can be used to determine the minimum number
of queens on a chessboard that control the entire chessboard.
Ann x n chessboard has n? squaresinann x n configuration.
A queen in a given position controls all squares in the same
row, the same column, and on the two diagonals containing
this square, as illustrated. The appropriate simple graph has
n? vertices, one for each square, and two vertices are adjacent
if a queen in the square represented by one of the vertices
controls the square represented by the other vertex.

The Squares
Controlled
by a Queen

17. Construct the simple graph representing the n x n chess-
board with edges representing the control of squares by
queens for

b) n =4.

18. Explain how the concept of a minimum dominating set
applies to the problem of determining the minimum num-
ber of queens controlling an » x n chessboard.

a) n=23.

Supplementary Exercises 679

**19. Find the minimum number of queens controllingann x n

chessboard for

a) n=3. b) n =4. ¢) n=>5.

Suppose that G| and H, are isomorphic and that G, and

H, are isomorphic. Prove or disprove that G; U G, and

H, U H; are isomorphic.

21. Show thateach of these properties is an invariant that iso-
morphic simple graphs either both have or both do not
have.

a) connectedness
b) the existence of a Hamilton circuit
c) the existence of an Euler circuit
d) having crossing number C
e) having n isolated vertices
f) being bipartite
22. How can the adjacency matrix of G be found from the
adjacency matrix of G, where G is a simple graph?

20

23. How many nonisomorphic connected bipartite simple

graphs are there with four vertices?
*24. How many nonisomorphic simple connected graphs with

five vertices are there
a) with no vertex of degree more than two?
b) with chromatic number equal to four?
¢) that are nonplanar?

A directed graph is self-converse if it is isomorphic to its

converse.

25. Determine whether the following graphs are self-
converse.

a) a b

26. Show that if the directed graph G is self-converse and
H is a directed graph isomorphic to G, then H is also
self-converse.

Anorientation ofanundirected simple graph isan assignment
of directions to its edges such that the resulting directed graph
is strongly connected. When an orientation of an undirected
graph exists, this graph is called orientable. In Exercises 27—
29 determine whether the given simple graph is orientable.

680 9/ Graphs

27. a b c
e d
28. a4 f
b c d e
29, a b e
c
d f
[
h 8

30. Because traffic is growing heavy in the central part of a
city, traffic engineers are planning to change all the streets,
which are currently two-way, into one-way streets. Ex-
plain how to model this problem.

*31. Show that a graph is not orientable if it has a cut edge.
A tournament is a simple directed graph such that if ¥ and
v are distinct vertices in the graph, exactly one of (u, v) and
(v, u) is an edge of the graph.

*38.

*39,

*40.

41.

42.
43.
44,

*45.

9-92

width is the minimum over all listings of the vertices of

the maximum difference in the indices assigned to adja-

cent vertices. Find the band widths of these graphs.

a) Ks b) K3 ©) K3

d) K33 e Os fH Cs

The distance between two distinct vertices v; and v, of

a connected simple graph is the length (number of edges)

of the shortest path between v; and v,. The radius of a

graph is the minimum overall vertices v of the maximum

distance from v to another vertex. The diameter of a graph
is the maximum distance between two distinct vertices.

Find the radius and diameter of

a) K6. b) K4'5. c) Q3. d) C6.

a) Show that if the diameter of the simple graph G is at
least four, then the diameter of its complement G is
no more than two.

b) Show that if the diameter of the simple graph G is at
least three, then the diameter of its complement G is
no more than three.

Suppose that a multigraph has 2m vertices of odd degree.

Show thatany circuit that contains every edge of the graph

must contain at least m edges more than once.

Find the second shortest path between the vertices a and
z in Figure 3 of Section 9.6.

Devise an algorithm for finding the second shortest path
between two vertices in a simple connected weighted
graph.

Find the shortest path between the vertices a and z that
passes through the vertex e in the weighted graph in Fig-
ure 4 in Section 9.6.

Devise an algorithm for finding the shortest path between
two vertices in a simple connected weighted graph that
passes through a specified third vertex.

Show that if G is a simple graph with at least 11 vertices,
then either G or G, the complement of G, is nonplanar.

32.

33.

*34.
35.

36.

*37.

How many different tournaments are there with n
vertices?

What is the sum of the in-degree and out-degree of a ver-
tex in a tournament?

Show that every tournament has a Hamilton path.

Given two chickens in a flock, one of them is dominant.
This defines the pecking order of the flock. How can a
tournament be used to model pecking order?

Suppose that G is a connected multigraph with 2k ver-
tices of odd degree. Show that there exist k£ subgraphs that
have G as their union, where each of these subgraphs has
an Euler path and where no two of these subgraphs have
an edge in common. [Hint: Add k edges to the graph con-
necting pairs of vertices of odd degree and use an Euler
circuit in this larger graph.]

Let G be a simple graph with n vertices. The band
width of G, denoted by B(G), is the minimum, over
all permutations, ay, ay, ..., a, of the vertices of G, of
max{|i — j||ai and a; are adjacent}. That is, the band

A set of vertices in a graph is called independent if no two
vertices in the set are adjacent. The independence number of
agraph is the maximum number of vertices in an independent
set of vertices for the graph.
*46. What is the independence number of
a) K,? b) C,? c) 0,? d) Kpn,n?
Show that the number of vertices in a simple graph is less
than or equal to the product of the independence number
and the chromatic number of the graph.
Show that the chromatic number of a graph is less than
or equal to v — i 4+ 1, where v is the number of vertices
in the graph and i is the independence number of this
graph.
Suppose that to generate a random simple graph with n
vertices we first choose a real number p with0 < p < 1.
For each of the C(n, 2) pairs of distinct vertices we gener-
ate a random number x between Oand 1. If 0 < x < p, we
connect these two vertices with an edge; otherwise these
vertices are not connected.

47.

48.

49,

9-93

a) What is the probability that a graph with m edges
where 0 < m < C(n, 2) is generated?

b) What is the expected number of edges in a randomly
generated graph with n vertices if each edge is in-
cluded with probability p?

¢) Show that if p = 1/2 then every simple graph with n
vertices is equally likely to be generated.

A property retained whenever additional edges are added to
a simple graph (without adding vertices) is called monotone
increasing, and a property that is retained whenever edges are
removed from a simple graph (without removing vertices) is
called monotone decreasing.

50.

For each of these properties, determine whether it is
monotone increasing and determine whether it is mono-
tone decreasing.

Computer Projects

51.

**52.

Computer Projects 681

a) The graph G is connected.

b) The graph G is not connected.

¢) The graph G has an Euler circuit.

d) The graph G has a Hamilton circuit.

e) The graph G is planar.

f) The graph G has chromatic number four.

g) The graph G has radius three.

h) The graph G has diameter three.

Show that the graph property P is monotone increasing if
and only if the graph property Q is monotone decreasing
where Q is the property of not having property P.

Suppose that P is a monotone increasing property o fsim-
ple graphs. Show that the probability a random graph with
n vertices has property P is a monotonic nondecreasing
function of p, the probability an edge is chosen to be in
the graph.

Write programs with these input and output.

10.

11.

. Given the vertex pairs associated to the edges of an undi-

rected graph, find the degree of each vertex.

. Given the ordered pairs of vertices associated to the edges

of a directed graph, determine the in-degree and out-
degree of each vertex.

. Given the list of edges of a simple graph, determine

whether the graph is bipartite.

. Given the vertex pairs associated to the edges of a graph,

construct an adjacency matrix for the graph. (Produce a
version that works when loops, multiple edges, or directed
edges are present.)

. Givenan adjacency matrix of a graph, list the edges of this

graph and give the number of times each edge appears.

. Given the vertex pairs associated to the edges of an undi-

rected graph and the number of times each edge appears,
construct an incidence matrix for the graph.

. Given an incidence matrix of an undirected graph, list its

edges and give the number of times each edge appears.

. Given a positive integer n, generate an undirected graph

by producing an adjacency matrix for the graph so that
all simple graphs are equally likely to be generated.

. Given a positive integer n, generate a directed graph by

producing an adjacency matrix for the graph so that all
directed graphs are equally likely to be generated.

Given the lists of edges of two simple graphs with no
more than six vertices, determine whether the graphs are
isomorphic.

Given an adjacency matrix of a graph and a positive inte-
ger n, find the number of paths of length n between two

*12.

13.

*14.

**15.

**16.

17.

18.

19.

20.

vertices. (Produce a version that works for directed and
undirected graphs.)

Given the list of edges of a simple graph, determine
whether it is connected and find the number of connected
components if it is not connected.

Given the vertex pairs associated to the edges of a multi-
graph, determine whether it has an Euler circuit and, if
not, whether it has an Euler path. Construct an Euler path
or circuit if it exists.

Giventhe ordered pairs of vertices associated to the edges
of a directed multigraph, construct an Euler path or Euler
circuit, if such a path or circuit exists.

Giventhe list of edges of a simple graph, produce a Hamil-
ton circuit, or determine that the graph does not have such
a circuit.

Giventhelist of edges of a simple graph, produce a Hamil-
ton path, or determine that the graph does not have such
a path.

Given the list of edges and weights of these edges of a
weighted connected simple graph and two vertices in this
graph, find the length of a shortest path between them
using Dijkstra’s algorithm. Also, find a shortest path.
Given the list of edges of an undirected graph, find a color-
ing of this graph using the algorithm given in the exercise
set of Section 9.8.

Given a list of students and the courses that they are en-
rolled in, construct a schedule of final exams.

Given the distances between pairs of television stations,
assign frequencies to these stations.

682 9/ Graphs

Computations and Explorations

9-94

Use a computational program or programs you have written to do these exercises.

1.

Display all the simple graphs with four vertices.

2. Display a full set of nonisomorphic simple graphs with

six vertices.

. Display a full set of nonisomorphic directed graphs with

four vertices.

. Generate at random 10 different simple graphs each with

20 vertices so that each such graph is equally likely to be
generated.

Construct a Gray code where the code words are bit strings
of length six.

. Construct knight’s tours on chessboards of various sizes.
. Determine whether each of the graphs you generated in

Exercise 4 of this set is planar. If you can, determine the
thickness of each of the graphs that are not planar.

. Determine whether each of the graphs you generated in

Exercise 4 of this set is connected. If a graph is not con-
nected, determine the number of connected components
of the graph.

Writing Projects

9.

10.

11.

**12.

*13.

**14.

Generate at random simple graphs with 10 vertices. Stop
when you have constructed one with an Euler circuit. Dis-
play an Euler circuit in this graph.

Generate at random simple graphs with 10 vertices. Stop
when you have constructed one with a Hamilton circuit.
Display a Hamilton circuit in this graph.

Find the chromatic number of each of the graphs you
generated in Exercise 4 of this set.

Find the shortest path a traveling salesperson can take to
visit each of the capitals of the 50 states in the United
States, traveling by air between cities in a straight line.
Estimate the probability that a randomly generated sim-
ple graph with n vertices is connected for each posi-
tive integer n not exceeding ten by generating a set of
random simple graphs and determining whether each is
connected.

Work on the problem of determining whether the cross-
ing number of K (7, 7) is 77, 79, or 81. It is known that it
equals one of these three values.

Respond to these questions with essays using outside sources.

1.

10.

Describe the origins and development of graph theory
prior to the year 1900.

. Discuss the applications of graph theory to the study of

ecosystems.

. Discuss the applications of graphtheory to sociology and

psychology.

. Discuss what can be learned by investigating the proper-

ties of the Web graph.

. Describe algorithms for drawing a graph on paper or on

a display given the vertices and edges of the graph. What
considerations arise in drawing a graph so that it has the
best appearance for understanding its properties?

. What are some of the capabilities that a software tool

for inputting, displaying, and manipulating graphs should
have? Which of these capabilities do available tools have?

. Describe some of the algorithms available for determining

whether two graphs are isomorphic and the computational
complexity of these algorithms. What is the most efficient
such algorithm currently known?

. Describe how Euler paths can be used to help determine

DNA sequences.

. Define de Bruijn sequences and discuss how they arise

in applications. Explain how de Bruijn sequences can be
constructed using Euler circuits.

Describe the Chinese postman problem and explain how
to solve this problem.

11

12

13.

14.

15.

16.

17.

18.

19.

. Describe some of the different conditions that imply that
a graph has a Hamilton circuit.

. Describe some of the strategies and algorithms used to

solve the traveling salesman problem.

Describe several different algorithms for determining

whether a graph is planar. What is the computational com-

plexity of each of these algorithms?

In modeling, very large scale integration (VLSI) graphs
are sometimes embedded in a book, with the vertices on
the spine and the edges on pages. Define the book number
of a graph and find the book number of various graphs
including K, forn = 3,4, 5, and 6.

Discuss the history of the Four Color Theorem.

Describe the role computers played in the proof of the
Four Color Theorem. How can we be sure that a proof
that relies on a computer is correct?

Describe and compare several different algorithms for
coloring a graph, in terms of whether they produce a col-
oring withthe least number of colors possible and in terms
of their complexity.

Explain how graph multicolorings can be used in a variety
of different models.

Explain how the theory of random graphs can be used in
nonconstructive existence proofs of graphs with certain
properties.

10.1 Introduction
to Trees

10.2 Applications
of Trees

10.3 Tree Traversal

10.4 Spanning
Trees

10.5 Minimum

Spanning
Trees

Trees

A connected graph that contains no simple circuits is called a tree. Trees were used as long
ago as 1857, when the English mathematician Arthur Cayley used them to count certain
types of chemical compounds. Since that time, trees have been employed to solve problems in
a wide variety of disciplines, as the examples in this chapter will show.

Trees are particularly useful in computer science, where they are employed in a wide range
of algorithms. For instance, trees are used to construct efficient algorithms for locating items in
a list. They can be used in algorithms, such as Huffman coding, that construct efficient codes
saving costs in data transmission and storage. Trees can be used to study games such as checkers
and chess and can help determine winning strategies for playing these games. Trees can be used
to model procedures carried out using a sequence of decisions. Constructing these models can
help determine the computational complexity of algorithms based on a sequence of decisions,
such as sorting algorithms.

Procedures for building trees containing every vertex of a graph, including depth-first
search and breadth-first search, can be used to systematically explore the vertices of a graph.
Exploring the vertices of a graph via depth-first search, also known as backtracking, allows for
the systematic search for solutions to a wide variety of problems, such as determining how eight
queens can be placed on a chessboard so that no queen can attack another.

We can assign weights to the edges of a tree to model many problems. For example, using
weighted trees we can develop algorithms to construct networks containing the least expensive
set of telephone lines linking different network nodes.

10.1 Introduction to Trees

Linlis @

DEFINITION 1

EXAMPLE 1

10-1

In Chapter 9 we showed how graphs can be used to model and solve many problems. In this
chapter we will focus on a particular type of graph called a tree, so named because such
graphs resemble trees. For example, family trees are graphs that represent genealogical charts.
Family trees use vertices to represent the members of a family and edges to represent parent—
child relationships. The family tree of the male members of the Bernoulli family of Swiss
mathematicians is shown in Figure 1. The undirected graph representing a family tree (restricted
to people of just one gender and with no inbreeding) is an example of a tree.

A tree is a connected undirected graph with no simple circuits.

Because a tree cannot have a simple circuit, a tree cannot contain multiple edges or loops.
Therefore any tree must be a simple graph.

Which of the graphs shown in Figure 2 are trees?

Solution: G| and G, are trees, because both are connected graphs with no simple circuits. G3 is
not a tree because e, b, a, d, e is a simple circuit in this graph. Finally, G, is not a tree because
it is not connected. <

683

684 10/ Trees 10-2

Nikolaus
(1623-1708)

/ \

Jacob I Nikolaus Johann I
(1654-1705) (1662-1716) (1667-1748)

Nikolaus I Nikolaus II Daniel Johann II
(1687-1759) (1695-1726) (1700-1782) (1710-1790)

/ N\

Johann III Jacob II
(1746-1807) (1759-1789)

FIGURE 1 The Bernoulli Family of Mathematicians.

Any connected graphthat contains no simple circuits is a tree. Whataboutgraphs containing
no simple circuits that are not necessarily connected? These graphs are called forests and have
the property that each of their connected components is a tree. Figure 3 displays a forest.

Trees are often defined as undirected graphs with the property that there is a unique simple
path between every pair of vertices. Theorem 1 shows that this alternative definition is equivalent
to our definition.

THEOREM1 Anundirected graph is a tree if and only if there is a unique simple path between any two of
its vertices.

Proof: First assume that T is a tree. Then T is a connected graph with no simple circuits. Let
x and y be two vertices of T. Because T is connected, by Theorem 1 of Section 9.4 there is a
simple path between x and y. Moreover, this path must be unique, for if there were a second
such path, the path formed by combining the first path from x to y followed by the path from y
to x obtained by reversing the order of the second path from x to y would form a circuit. This

a b a b a b a b
d
c d .
c d c d
e f e f e f e f
G, G, G, G,

FIGURE 2 Examples of Trees and Graphs That Are Not Trees.

10-3

DEFINITION 2

10.1 Introduction to Trees 685

This is one graph with three connected components.

FIGURE 3 Example of a Forest.

implies, using Exercise 49 of Section 9.4, that there is a simple circuit in 7. Hence, there is a
unique simple path between any two vertices of a tree.

Now assume thatthere is a unique simple path between any two vertices of a graph 7. Then
T is connected, because there is a path between any two of its vertices. Furthermore, T can have
no simple circuits. To see that this is true, suppose T had a simple circuit that contained the
vertices x and y. Then there would be two simple paths between x and y, because the simple
circuit is made up of a simple path from x to y and a second simple path from y to x. Hence, a
graph with a unique simple path between any two vertices is a tree. d

In many applications of trees, a particular vertex of a tree is designated as the root. Once
we specify a root, we can assign a direction to each edge as follows. Because there is a unique
path from the root to each vertex of the graph (by Theorem 1), we direct each edge away from
the root. Thus, a tree together with its root produces a directed graph called a rooted tree.

A rooted tree is a tree in which one vertex has been designated as the root and every edge is
directed away from the root.

Rooted trees can also be defined recursively. Refer to Section 4.3 to see how this can be done.
We can change an unrooted tree into a rooted tree by choosing any vertex as the root. Note that
different choices of the root produce different rooted trees. For instance, Figure 4 displays the
rooted trees formed by designating a to be the root and c to be the root, respectively, in the tree
T. We usually draw a rooted tree with its root at the top of the graph. The arrows indicating the

With root a With root ¢
a

FIGURE 4 A Tree and Rooted Trees Formed by Designating Two Roots.

686 10/ Trees

EXAMPLE 2

Extra >
Examples

é

DEFINITION 3

s

10-4

FIGURE S A Rooted Tree T. FIGURE 6 The
Subtree Rooted at g.

directions of the edges in a rooted tree can be omitted, because the choice of root determines
the directions of the edges.

The terminology for trees has botanical and genealogical origins. Suppose that T is a rooted
tree. If v is a vertex in T other than the root, the parent of v is the unique vertex « such that there
is a directed edge from u to v (the reader should show that such a vertex is unique). When u is
the parent of v, v is called a child of u. Vertices with the same parent are called siblings. The
ancestors of a vertex other than the root are the vertices in the path from the root to this vertex,
excluding the vertex itself and including the root (that is, its parent, its parent’s parent, and so
on, until the root is reached). The descendants of a vertex v are those vertices that have v as an
ancestor. A vertex of a tree is called a leaf if it has no children. Vertices that have children are
called internal vertices. The root is an internal vertex unless it is the only vertex in the graph,
in which case it is a leaf.

If a is a vertex in a tree, the subtree with a as its root is the subgraph of the tree consisting
of a and its descendants and all edges incident to these descendants.

In the rooted tree T (with root a) shown in Figure 5, find the parent of ¢, the children of g, the
siblings of 4, all ancestors of e, all descendants of b, all internal vertices, and all leaves. What
is the subtree rooted at g?

Solution: The parent of ¢ is b. The children of g are 4, i, and j. The siblings of 4 are i and ;.
The ancestors of e are ¢, b, and a. The descendants of b are ¢, d, and e. The internal vertices
are a, b, c, g, h, and j. The leaves are d, e, f, i, k, I, and m. The subtree rooted at g is shown
in Figure 6. <

Rooted trees with the property that all of their internal vertices have the same number of
children are used in many different applications. Later in this chapter we will use such trees to
study problems involving searching, sorting, and coding.

A rooted tree is called an m-ary tree if every internal vertex has no more than m children.
The tree is called a full m-ary tree if every internal vertex has exactly m children. An m-ary
tree with m = 2 is called a binary tree.

10-5

10.1 Introduction to Trees 687

FIGURE 7 Four Rooted Trees.

EXAMPLE 3

EXAMPLE 4

Are the rooted trees in Figure 7 full m-ary trees for some positive integer m?

Solution: T is a full binary tree because each of its internal vertices has two children. T is a
full 3-ary tree because each of its internal vertices has three children. In 75 each internal vertex
has five children, so T3 is a full 5-ary tree. T} is not a full m-ary tree for any m because some of
its internal vertices have two children and others have three children. <

An ordered rooted tree is a rooted tree where the children of each internal vertex are
ordered. Ordered rooted trees are drawn so that the children of each internal vertex are shown
in order from left to right. Note that a representation of a rooted tree in the conventional way
determines an ordering for its edges. We will use such orderings of edges in drawings without
explicitly mentioning that we are considering a rooted tree to be ordered.

In an ordered binary tree (usually called just a binary tree), if an internal vertex has two
children, the first child is called the left child and the second child is called the right child.
The tree rooted at the left child of a vertex is called the left subtree of this vertex, and the tree
rooted at the right child of a vertex is called the right subtree of the vertex. The reader should
note that for some applications every vertex of a binary tree, other than the root, is designated
as aright or a left child of its parent. This is done even when some vertices have only one child.
We will make such designations whenever it is necessary, but not otherwise.

Ordered rooted trees can be defined recursively. Binary trees, a type of ordered rooted trees,
were defined this way in Section 4.3.

What are the left and right children of d in the binary tree T shown in Figure 8(a) (where the
order is that implied by the drawing)? What are the left and right subtrees of ¢?

Solution: The left child of d is f andthe right child is g. We show the left and right subtrees of
c in Figures 8(b) and 8(c), respectively. |

(b) (©)

FIGURE 8 A Binary Tree T and Left and Right Subtrees of the Vertex c.

688

10/ Trees

EXAMPLE 5

b

Links

e

10-6

|
U T
H—T—H H—T—C—(ll—H
H—C—H H H

| H—C—H
H—C—H |

| H

H

Butane Isobutane

FIGURE 9 The Two Isomers of Butane.

Just as in the case of graphs, there is no standard terminology used to describe trees, rooted
trees, ordered rooted trees, and binary trees. This nonstandard terminology occurs because trees
are used extensively throughout computer science, which is a relatively young field. The reader
should carefully check meanings given to terms dealing with trees whenever they occur.

Trees as Models

Trees are used as models in such diverse areas as computer science, chemistry, geology, botany,
and psychology. We will describe a variety of such models based on trees.

Saturated Hydrocarbons and Trees Graphs can be used to represent molecules, where atoms
are represented by vertices and bonds between them by edges. The English mathematician Arthur
Cayley discovered trees in 1857 when he was trying to enumerate the isomers of compounds of
the form C,H,,,, which are called saturated hydrocarbons.

In graph models of saturated hydrocarbons, each carbon atom is represented by a vertex
of degree 4, and each hydrogen atom is represented by a vertex of degree 1. There are 3n + 2
vertices in a graph representing a compound of the form C,H5,1,. The number of edges in such a
graph is half the sum of the degrees of the vertices. Hence, there are (4n + 2n 4+ 2)/2 =3n + 1
edges in this graph. Because the graph is connected and the number of edges is one less than
the number of vertices, it must be a tree (see Exercise 15 at the end of this section).

The nonisomorphic trees with n vertices of degree 4 and 2n + 2 of degree 1 represent the
different isomers of C,H,,,. For instance, when n = 4, there are exactly two nonisomorphic
trees of this type (the reader should verify this). Hence, there are exactly two different isomers
of C4Hj¢. Their structures are displayed in Figure 9. These two isomers are called butane and
isobutane. 4

ARTHUR CAYLEY (1821-1895) Arthur Cayley, the son of a merchant, displayed his mathematical talents
at an early age with amazing skill in numerical calculations. Cayley entered Trinity College, Cambridge, when
he was 17. While in college he developed a passion for reading novels. Cayley excelled at Cambridge and
was elected to a 3-year appointment as Fellow of Trinity and assistant tutor. During this time Cayley began
his study of n-dimensional geometry and made a variety of contributions to geometry and to analysis. He
also developed an interest in mountaineering, which he enjoyed during vacations in Switzerland. Because no
position as a mathematician was available to him, Cayley left Cambridge, entering the legal profession and
gaining admittance to the bar in 1849. Although Cayley limited his legal work to be able to continue his
mathematics research, he developed a reputation as a legal specialist. During his legal career he was able to

write more than 300 mathematical papers. In 1863 Cambridge University established a new post in mathematics and offered it to
Cayley. He took this job, even though it paid less money than he made as a lawyer.

10-7 10.1 Introduction to Trees 689
President
VP VP VP VP
R&D Marketing Services Finance
Director Director Director AVP AVP C.hlef Dlreclp r Director Director
Software Hardware . Field Material .
Research Sales | | Marketing . Accounting MIS
Development | | Development Operations Management :

FIGURE 10 An Organizational Tree for a Computer Comp,any,

EXAMPLE 6 Representing Organizations

EXAMPLE 7

EXAMPLE 8

The structure of a large organization can be modeled using a
rooted tree. Each vertex in this tree represents a position in the organization. An edge from one
vertex to another indicates that the person represented by the initial vertex is the (direct) boss
of the person represented by the terminal vertex. The graph shown in Figure 10 displays such a
tree. In the organization represented by this tree, the Director of Hardware Development works
directly for the Vice President of R&D. <

Computer File Systems Files in computer memory can be organized into directories. A
directory can contain both files and subdirectories. The root directory contains the entire file
system. Thus, a file system may be represented by a rooted tree, where the root represents the
root directory, internal vertices represent subdirectories, and leaves represent ordinary files or
empty directories. One such file system is shown in Figure 11. In this system, the file khr is in
the directory rje. (Note that links to files where the same file may have more than one pathname
can lead to circuits in computer file systems.) <

Tree-Connected Parallel Processors In Example 16 of Section 9.2 we described several in-
terconnection networks for parallel processing. A tree-connected network is another important

The root is the root directory /
Internal vertices are directories

/ ’ w files
usr

bin spool Is mail wh junk
ed nroff vikhr opr uucp
printer file

FIGURE 11 A Computer File System.

690 10/ Trees

Py P,

P, Ps P, P,

FIGURE 12 A
Tree-Connected
Network of Seven
Processors.

THEOREM 2

Links

THEOREM 3

10-8

way to interconnect processors. The graph representing such a network is a complete binary tree.
Such a network interconnects n = 2% — 1 processors, where & is a positive integer. A processor
represented by the vertex v that is not a root or a leaf has three two-way connections—one to
the processor represented by the parent of v and two to the processors represented by the two
children of v. The processor represented by the root has two two-way connections to the proces-
sors represented by its two children. A processor represented by a leaf v has a single two-way
connection to the parent of v. We display a tree-connected network with seven processors in
Figure 12.

We will illustrate how a tree-connected network can be used for parallel computation. In
particular, we will show how the processors in Figure 12 can be used to add eight numbers, using
three steps. In the first step, we add x; and x; using P4, x3 and x4 using Ps, xs and x¢ using Ps,
and x7 and xg using P-. In the second step, we add x; + x, and x3 + x4 using P, and x5 + x¢
and x7 + xg using Ps. Finally, in the third step, we add x; + x3 + x3 + x4 and x5 + x6 + x7 + x3
using P;. The three steps used to add eight numbers compares favorably to the seven steps
required to add eight numbers serially, where the steps are the addition of one number to the
sum of the previous numbers in the list. <

Properties of Trees

We will often need results relating the numbers of edges and vertices of various types in trees.

A tree with n vertices has n — 1 edges.

Proof: We will use mathematical induction to prove this theorem. Note that for all the trees
here we can choose a root and consider the tree rooted.

BASIS STEP: When n = 1, a tree with n = 1 vertex has no edges. It follows that the theorem
is true forn = 1.

INDUCTIVE STEP: The induction hypothesis states that every tree with k vertices has k — 1
edges, where k is a positive integer. Suppose that a tree T has k + 1 vertices and that v is a leaf
of T (which must exist because the tree is finite), and let w be the parent of v. Removing from
T the vertex v and the edge connecting w to v produces a tree T’ with k vertices, because the
resulting graph is still connected and has no simple circuits. By the induction hypothesis, T’
has k£ — 1 edges. It follows that T has k edges because it has one more edge than T’, the edge
connecting v and w. This completes the induction step. 4

The number of vertices in a full m-ary tree with a specified number of internal vertices
is determined, as Theorem 3 shows. As in Theorem 2, we will use n to denote the number of
vertices in a tree.

A full m-ary tree with i internal vertices contains n = mi + 1 vertices.

Proof: Every vertex, except the root, is the child of an internal vertex. Because each of the i
internal vertices has m children, there are mi vertices in the tree other than the root. Therefore,
the tree contains n = mi + 1 vertices. <

10-9

THEOREM 4

EXAMPLE 9

FIGURE 13 A
Rooted Tree.

EXAMPLE 10

10.1 Introduction to Trees 691

Suppose that T is a full m-ary tree. Let i be the number of internal vertices and / the number
of leaves in this tree. Once one of n, i, and / is known, the other two quantities are determined.
Theorem 4 explains how to find the other two quantities from the one that is known.

A full m-ary tree with

(i) n vertices hasi = (n — 1)/m internal vertices and/ = [(m — 1)n + 1]/m leaves,
(ii) i internal vertices has n = mi + 1 vertices and / = (m — 1)i + 1 leaves,
(iii) lleaveshasn = (ml — 1)/(m — 1) verticesandi = (I — 1)/(m — 1)internal vertices.

Proof:Letn represent the number of vertices, i the number of internal vertices, and/ the number
of leaves. The three parts of the theorem can all be proved using the equality given in Theorem
3, that is, n = mi + 1, together with the equality n = I + i, which is true because each vertex
is either a leaf or an internal vertex. We will prove part (i) here. The proofs of parts (if) and
(iii) are left as exercises for the reader.

Solving fori in n = mi + 1 gives i = (n — 1)/ m. Then inserting this expression for i into
the equationn =/ +i showsthat/ =n—i=n—(m—1)/m =[(m — Dn+ 1]/ m. d

Example 9 illustrates how Theorem 4 can be used.

Suppose that someone starts a chain letter. Each person who receives the letter is asked to send
it on to four other people. Some people do this, but others do not send any letters. How many
people have seen the letter, including the first person, if no one receives more than one letter
and if the chain letter ends after there have been 100 people who read it but did not send it out?
How many people sent out the letter?

Solution: The chain letter can be represented using a 4-ary tree. The internal vertices correspond
to people who sent out the letter, and the leaves correspond to people who did not send it out.
Because 100 people did not send out the letter, the number of leaves in this rooted tree is/ = 100.
Hence, part (iii) of Theorem 4 shows that the number of people who have seen the letter is
n=(4-100—1)/(4 — 1) = 133. Also, the number of internal vertices is 133 — 100 = 33, so
33 people sent out the letter. -4

It is often desirable to use rooted trees that are “balanced” so that the subtrees at each vertex
contain paths of approximately the same length. Some definitions will make this concept clear.
The level of a vertex v in a rooted tree is the length of the unique path from the root to this
vertex. The level of the root is defined to be zero. The height of a rooted tree is the maximum
of the levels of vertices. In other words, the height of a rooted tree is the length of the longest
path from the root to any vertex.

Find the level of each vertex in the rooted tree shown in Figure 13. What is the height of this
tree?

Solution: The root a is at level 0. Vertices b, j, and & are at level 1. Vertices c, e, f, and / are at

level 2. Vertices d, g, i, m, and n are at level 3. Finally, vertex 4 is at level 4. Because the largest
level of any vertex is 4, this tree has height 4. 4

A rooted m-ary tree of height % is balanced if all leaves are at levels 2 or 2 — 1.

692 10/ Trees

10-10

FIGURE 14 Some Rooted Trees.

EXAMPLE 11

THEOREM 5

Which of the rooted trees shown in Figure 14 are balanced?

Solution: T) is balanced, because all its leaves are at levels 3 and 4. However, T is not balanced,
because it has leaves at levels 2, 3, and 4. Finally, T3 is balanced, because all its leaves are at
level 3. |

The results in Theorem 5 relate the height and the number of leaves in m-ary trees.

There are at most m”* leaves in an m-ary tree of height 4.

Proof: The proof uses mathematical induction on the height. First, consider m-ary trees of
height 1. These trees consist of a root with no more than m children, each of which is a leaf.
Hence, there are no more than m! = m leaves in an m-ary tree of height 1. This is the basis step
of the inductive argument.

Now assume that the result is true for all m-ary trees of height less than 4; this is the
inductive hypothesis. Let T be an m-ary tree of height 4. The leaves of T are the leaves of the
subtrees of T obtained by deleting the edges from the root to each of the vertices at level 1, as
shown in Figure 15. -

Each ofthese subtrees has height less than or equal to 2 — 1. So by the inductive hypothesis,
each of these rooted trees has at most m”~! leaves. Because there are at most m such subtrees,
each with a maximum of m”~! leaves, there are at most m - m*~! = m” leaves in the rooted
tree. This finishes the inductive argument.

Ist 2nd 3rd (m — 1)st mth
subtree subtree subtree subtree subtree
of height of height of height of height of height
<h-1 <h-1 <h-1 <h-1 <h-1

FIGURE 15 The Inductive Step of the Proof.

10-11

COROLLARY 1

Exercises

10.1 Introduction to Trees 693

If an m-ary tree of height 4 has / leéves, then k1 > [log,, 1. If the m-ary tree is full and
balanced, then # = [log,, /1. (We are using the ceiling function here. Recall that [x] is the
smallest integer greater than or equal to x.)

Proof: We know that / < m" from Theorem 5. Taking logarithms to the base m shows that
log,, | < h.Because 4 is an integer, we have & > [log,, /1. Now suppose that the tree is balanced.
Then each leaf is at level 4 or 4 — 1, and because the height is A, there is at least one leaf at
level A. It follows that there must be more than m”*~! leaves (see Exercise 30 at the end of this
section). Because ! < m*, we have m"~! <[< m". Taking logarithms to the base m in this
inequality gives # — 1 < log,, I < h. Hence, h = [log,, I]. q

1. Which of these graphs are trees? 3. Answer these questions about the rooted tree illustrated.

2. Which of these graphs are trees?

a)

e)

X
XA

b)

a) Which vertex is the root?

b) Which vertices are internal?

¢) Which vertices are leaves?

d) Which vertices are children of j?

e) Which vertex is the parent of /?

f) Which vertices are siblings ofo?

g) Which vertices are ancestors of m?
h) Which vertices are descendants of b?

. Answer the same questions as listed in Exercise 3 for the
rooted tree illustrated.

b)

N

694

5.

6

N

o

10

11.

*12.

*13.

*14

*15.

16.

17.
18.

19

20.

21.

22,

10/ Trees

Is the rooted tree in Exercise 3 a full m-ary tree for some

positive integer m?

I's the rooted tree in Exercise 4 a full m-ary tree for some

positive integer m?

What is the level of each vertex of the rooted tree in

Exercise 3?

What is the level of each vertex of the rooted tree in

Exercise 4?

Draw the subtree of the tree in Exercise 3 that is rooted at

a) a. b) c. c) e.

Draw the subtree of the tree in Exercise 4 that is rooted at

a) a. b) c. c) e

a) How many nonisomorphic unrooted trees are there

with three vertices?

How many nonisomorphic rooted trees are there

with three vertices (using isomorphism for directed

graphs)?

How many nonisomorphic unrooted trees are there

with four vertices?

How many nonisomorphic rooted trees are there with

four vertices (using isomorphism for directed graphs)?

How many nonisomorphic unrooted trees are there

with five vertices?

b) How many nonisomorphic rooted trees are there with
five vertices (using isomorphism for directed graphs)?

b)

a)
b)

a)

Show that a simple graph is a tree if and only if it is con-
nected, but the deletion of any of its edges produces a
graph that is not connected.

Let G be a simple graph with n vertices. Show that G is
atreeif and only if G is connected and has n — 1 edges.
[Hint: For the “if” part, use Exercise 14 and Theorem 2.]
Which complete bipartite graphs K, ,, where m and n
are positive integers, are trees?

How many edges does a tree with 10,000 vertices have?

How many vertices does a full 5-ary tree with 100 internal
vertices have?

How many edges does a full binary tree with 1000 internal
vertices have?

How many leaves does a full 3-ary tree with 100 vertices
have? '

Suppose 1000 people enter a chess tournament. Use a
rooted tree model of the tournament to determine how
many games must be played to determine a champion, if
aplayer is eliminated after one loss and games are played
until only one entrant has not lost. (Assume there are no
ties.)

A chain letter starts when a person sends a letter to five
others. Each person who receives the letter either sends it
to five other people who have never received it or does not
send it to anyone. Suppose that 10,000 people send out
the letter before the chain ends and that no one receives
more than one letter. How many people receive the letter,
and how many do not send it out?

10-12

23. A chain letter starts with a person sending a letter out to

*24

*25

*26.

10 others. Each person is asked to send the letter out to
10 others, and each letter contains a list of the previous six
people in the chain. Unless there are fewer than six names
in the list, each person sends one dollar to the first person
in this list, removes the name of this person from the list,
moves up each of the other five names one position, and
inserts his or her name at the end of this list. If no person
breaks the chain and no one receives more than one letter,
how much money will a person in the chain ultimately
receive?

Either draw a full m-ary tree with 76 leaves and height 3,
where m is a positive integer, or show that no such tree
exists.

Either draw a full m-ary tree with 84 leaves and height 3,
where m is a positive integer, or show that no such tree
exists.

A full m-ary tree T has 81 leaves and height 4.

a) Give the upper and lower bounds for m.
b) Whatis m if T is also balanced?

A complete m-ary tree is a full m-ary tree, where every leaf
is at the same level.

27. Construct a complete binary tree of height 4 and a com-

plete 3-ary tree of height 3.

28. How many vertices and how many leaves does a complete

29.

£="30

31

32.

33

34

m-ary tree of height 4 have?

Prove

a) part (ii) of Theorem 4.

b) part (iii) of Theorem 4.

Show that a full m-ary balanced tree of height 4 has more
than m”~! leaves.

How many edges are there in a forest of ¢ trees containing
a total of n vertices?

Explain how a tree can be used to represent the table of
contents of a book organized into chapters, where each
chapter is organized into sections, and each section is
organized into subsections.

How many different isomers do these saturated hydro-
carbons have?

a) C3Hs b) CsHi, ¢) CeHiq
What does each of these represent in an organizational
tree?

a) the parent of a vertex

b) a child of a vertex

¢) a sibling of a vertex

d) the ancestors of a vertex

e) the descendants of a vertex
f) the level of a vertex

g) the height of the tree

35. Answer the same questions as those given in Exercise 34

for a rooted tree representing a computer file system.

36. a) Draw the complete binary tree with 15 vertices that

represents a tree-connected network of 15 processors.

10-13

b) Show how 16 numbers can be added using the 15
processors in part (a) using four steps.

37. Let n be a power of 2. Show that » numbers can be added
in logn steps using a tree-connected network of n — 1
processors.

*38. A labeled tree is a tree where each vertex is assigned a
label. Two labeled trees are considered isomorphic when
there is an isomorphism between them that preserves the
labels of vertices. How many nonisomorphic trees are
there with three vertices labeled with different integers
from the set {1, 2, 3}? How many nonisomorphic trees
are there with four vertices labeled with different integers
from the set {1, 2, 3, 4}?

The eccentricity of a vertex in an unrooted tree is the length
of the longest simple path beginning at this vertex. A vertex is
called a center if no vertex in the tree has smaller eccentricity
than this vertex. In Exercises 3941 find every vertex that is
a center in the given tree.

39.

10.2 Applications of Trees

10.2 Applications of Trees 695

42. Show thata center should be chosen as the root to produce
arooted tree of minimal height from an unrooted tree.

*43. Show that a tree has either one center or two centers that
are adjacent.

44. Show that every tree can be colored using two colors.

The rooted Fibonacci trees 7, are defined recursively in the
following way. T; and T» are both the rooted tree consisting
of a single vertex, and for n = 3,4, ..., the rooted tree T, is
constructed from a root with T,,_; as its left subtree and T,,_,
as its right subtree.

45. Draw the first seven rooted Fibonacci trees.

*46. How many vertices, leaves, and internal vertices does
the rooted Fibonacci tree 7, have, where n is a positive
integer? What is its height?

47. What is wrong with the following “proof™ using mathe-
matical induction of the statement that every tree with n
vertices has a path of length n — 1. Basis step: Every tree
with one vertex clearly has a path of length 0. Inductive
step: Assume that a tree with n vertices has a path of
length n — 1, which has u as its terminal vertex. Add a
vertex v and the edge from u to v. The resulting tree has
n + 1 vertices and has a path of length »n. This completes
the induction step.

I5"*48. Show that the average depth of a leaf in a binary tree with

n vertices is Q(logn).

Introduction

We will discuss three problems that can be studied using trees. The first problem is: How should
items in a list be stored so that an item can be easily located? The second problem is: What
series of decisions should be made to find an object with a certain property in a collection of
objects of a certain type? The third problem is: How should a set of characters be efficiently

coded by bit strings?

Binary Search Trees

> Searching for items in a list is one of the most important tasks that arises in computer science.
Links & Our primary goal is to implement a searching algorithm that finds items efficiently when the

696

10/ Trees

EXAMPLE 1

10-14

items are totally ordered. This can be accomplished through the use of a binary search tree,
which is a binary tree in which each child of a vertex is designated as a right or left child, no
vertex has more than one right child or left child, and each vertex is labeled with a key, which
is one of the items. Furthermore, vertices are assigned keys so that the key of a vertex is both -
larger than the keys of all vertices in its left subtree and smaller than the keys of all vertices in
its right subtree.

This recursive procedure is used to form the binary search tree for a list of items. Start
with a tree containing just one vertex, namely, the root. The first item in the list is assigned as
the key of the root. To add a new item, first compare it with the keys of vertices already in the
tree, starting at the root and moving to the left if the item is less than the key of the respective
vertex if this vertex has a left child, or moving to the right if the item is greater than the key of
the respective vertex if this vertex has a right child. When the item is less than the respective
vertex and this vertex has no left child, then a new vertex with this item as its key is inserted as
a new left child. Similarly, when the item is greater than the respective vertex and this vertex
has no right child, then a new vertex with this item as its key is inserted as a new right child. We
illustrate this procedure with Example 1.

Form a binary search tree for the words mathematics, physics, geography, zoology, meteorology,
geology, psychology, and chemistry (using alphabetical order).

Solution: Figure 1 displays the steps used to construct this binary search tree. The word mathe-
matics is the key of the root. Because physics comes after mathematics (in alphabetical order),
add a right child of the root with key physics. Because geography comes before mathemat-
ics, add a left child of the root with key geography. Next, add a right child of the vertex with
key physics, and assign it the key zoology, because zoology comes after mathematics and after
physics. Similarly, add a left child of the vertex with key physics and assign this new vertex the
key meteorology. Add a right child of the vertex with key geography and assign this new vertex
the key geology. Add a left child of the vertex with key zoology and assign it the key psychology.

mathematics
°

mathematics mathematics mathematics

physics
physics geography physics : geography

zoology

zoology > mathematics
physics > mathematics geography < mathematics zoology > physics

mathematics

physics

geography

meteorology > mathematics geology < mathematics psychology > physics chemistry < mathematics

meteorology zoology meteorology meteorology

meteorology < physics

mathematics mathematics mathematics
geography geography
~ ~

physics

physics > geology mPhysics
/

chemistry /

psychology meteorology psychology
psychology > mathematics

geology zoology geology zoology zoology

geology > geography psychology < zoology chemistry < geography

FIGURE 1 Constructing a Binary Search Tree.

10-15

EXAMPLE 2

10.2 Applications of Trees 697

Add a left child of the vertex with key geography and assign it the key chemistry. (The reader
should work through all the comparisons needed at each step.) <

Once we have a binary search tree, we need a way to locate items in the binary search tree,
as well as a way to add new items. Algorithm 1, an insertion algorithm, actually does both of
these tasks, even though it may appear that it is only designed to add vertices to a binary search
tree. That is, Algorithm 1 is a procedure that locates an item x in a binary search tree if it is
present, and adds a new vertex with x as its key if x is not present. In the pseudocode, v is the
vertex currently under examination and label(v) represents the key of this vertex. The algorithm
begins by examining the root. If the x equals the key of v, then the algorithm has found the
location of x and terminates; if x is less than the key of v, we move to the left child of v and
repeat the procedure; and if x is greater than the key of v, we move to the right child of v and
repeat the procedure. If at any step we attempt to move to a child that is not present, we know
that x is not present in the tree, and we add a new vertex as this child with x as its key.

ALGORITHM 1 Locating and Adding Items to a Binary Search Tree.

procedure insertion(T: binary search tree, x: item)
v:=rootof T
{a vertex not present in T has the value null}
while v # null and label(v) # x
begin
if x < label(v) then
if left child of v # null then v := left child of v
else add new vertex as a left child of v and set v := null
else
if right child of v # null then v := right child of v
else add new vertex as a right child of v to T and set v := null
end
ifroot of T = null then add a vertex v to the tree and label it with x
else if v is null or /abel(v) # x then label new vertex with x and let v be this new vertex
{v = location of x}

Example 2 illustrates the use of Algorithm 1 to insert a new item into a binary search tree.

Use Algorithm 1 to insert the word oceanography into the binary search tree in Example 1.

Solution: Algorithm 1 begins with v, the vertex under examination, equal to the root of T, so
label(v) = mathematics. Because v # null and label(v) = mathematics < oceanography, we
next examine the right child of the root. This right child exists, so we set v, the vertex under
examination, to be this right child. At this step we have v # null and label(v) = physics >
oceanography, so we examine the left child of v. This left child exists, so we set v, the vertex under
examination, to this left child. At this step, we also have v # null and label(v) = metereology <
oceanography, so we try to examine the right child of v. However, this right child does not exist,
so we add a new vertex as the right child of v (which at this point is the vertex with the key
metereology) and we set v := null. We now exit the while loop because v = null. Because the
root of T is not null and v = null, we use the else if statement at the end of the algorithm to

label our new vertex with the key oceanography. <

698

10/ Trees

Links

EXAMPLE 3

Extra g
Examples

10-16

T U

Unlabeled vertices circled

FIGURE 2 Adding Unlabeled Vertices to Make a Binary Search Tree Full.

We will now determine the computational complexity of this procedure. Suppose we have
a binary search tree T for a list of n items. We can form a full binary tree U from T by adding
unlabeled vertices whenever necessary so that every vertex with a key has two children. This is
illustrated in Figure 2. Once we have done this, we can easily locate or add a new item as a key
without adding a vertex.

The most comparisons needed to add a new item is the length of the longest path in U from
the root to a leaf. The internal vertices of U are the vertices of T'. It follows that U has » internal
vertices. We can now use part (if) of Theorem 4 in Section 10.1 to conclude that U has n + 1
leaves. Using Corollary 1 of Section 10.1, we see that the height of U is greater than or equal to
h = [log(n + 1)]. Consequently, it is necessary to perform at least [log(n + 1)] comparisons
to add some item. Note that if U is balanced, its height is [log(n + 1)] (by Corollary 1 of
Section 10.1). Thus, if a binary search tree is balanced, locating or adding an item requires no
more than [log(n + 1)] comparisons. A binary search tree can become unbalanced as items
are added to it. Because balanced binary search trees give optimal worst-case complexity for
binary searching, algorithms have been devised that rebalance binary search trees as items are
added. The interested reader can consult references on data structures for the description of such
algorithms.

Decision Trees

Rooted trees can be used to model problems in which a series of decisions leads to a solution.
For instance, a binary search tree can be used to locate items based on a series of comparisons,
where each comparison tells us whether we have located the item, or whether we should go right
or left in a subtree. A rooted tree in which each internal vertex corresponds to a decision, with
a subtree at these vertices for each possible outcome of the decision, is called a decision tree.
The possible solutions of the problem correspond to the paths to the leaves of this rooted tree.
Example 3 illustrates an application of decision trees.

Suppose there are seven coins, all with the same weight, and a counterfeit coin that weighs less
than the others. How many weighings are necessary using a balance scale to determine which
of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Solution: There are three possibilities for each weighing on a balance scale. The two pans can
have equal weight, the first pan can be heavier, or the second pan can be heavier. Consequently,
the decision tree for the sequence of weighings is a 3-ary tree. There are at least eight leaves in

10-17

10.2 Applications of Trees 699

0]0]0)] 0100,

| Lighter (D @ (3 Balance (@) (3) (© Lighter I

@l@ @l@ @l@

@ Lighter

Balance @ Lighter @ Lighter =~ Balance . Lighter @ Lighter ~ Balance @ Lighter

©0)

@ @ @ Impossible @ @ @

FIGURE 3 A Decision Tree for Locating a Counterfeit Coin. The counterfeit coin is shown in color
below each final weighing.

EXAMPLE 4

THEOREM 1

the decision tree because there are eight possible outcomes (because each of the eight coins can
be the counterfeit lighter coin), and each possible outcome must be represented by at least one
leaf. The largest number of weighings needed to determine the counterfeit coin is the height of
the decision tree. From Corollary 1 of Section 10.1 it follows that the height of the decision tree
is at least [log; 8] = 2. Hence, at least two weighings are needed.

It is possible to determine the counterfeit coin using two weighings. The decision tree that
illustrates how this is done is shown in Figure 3. <

THE COMPLEXITY OF SORTING ALGORITHMS Many different sorting algorithms have
been developed. To decide whether a particular sorting algorithm is efficient, its complexity is
determined. Using decision trees as models, a lower bound for the worst-case complexity of
sorting algorithms can be found.

We can use decision trees to model sorting algorithms and to determine an estimate for the
worst-case complexity of these algorithms. Note that given n elements, there are n! possible
orderings of these elements, because each of the n! permutations of these elements can be the
correct order. The sorting algorithms studied in this book, and most commonly used sorting
algorithms, are based on binary comparisons, that is, the comparison of two elements at a time.
The result of each such comparison narrows down the set of possible orderings. Thus, a sorting
algorithm based on binary comparisons can be represented by a binary decision tree in which
each internal vertex represents a comparison of two elements. Each leaf represents one of the
n! permutations of n elements.

We display in Figure 4 a decision tree that orders the elements of the list a, b, c. <

The complexity of a sort based on binary comparisons is measured in terms of the number
of such comparisons used. The largest number of binary comparisons ever needed to sort a list
with n elements gives the worst-case performance of the algorithm. The most comparisons used
equals the longest path length in the decision tree representing the sorting procedure. In other
words, the largest number of comparisons ever needed is equal to the height of the decision
tree. Because the height of a binary tree with n! leaves is at least [log #n!] (using Corollary 1 in
Section 10.1), at least [log n!] comparisons are needed, as stated in Theorem 1.

A sorting algorithm based on binary comparisons requires at least [log n!] comparisons.

700 10/ Trees

COROLLARY 1

THEOREM 2

10-18

a>b a<b

a.

c
a>/ a<c b>/ b<c
b: @ a:c @

c

c
b>c b<c a>c a<

FIGURE 4 A Decision Tree for Sorting Three Distinct Elements.

We can use Theorem 1 to provide a big-Omega estimate for the number of comparisons used
by a sorting algorithm based on binary comparison. We need only note that by Exercise 62 in
Section 3.2 we know that [logn!] is ®(n log n), one of the commonly used reference functions
for the computational complexity of algorithms. Corollary 1 is a consequence of this estimate.

The number of comparisons used by a sorting algorithm to sort #» elements based on binary
comparisons is 2(n logn).

A consequence of Corollary 1 is that a sorting algorithm based on binary comparisons that
uses O(n log n) comparisons, in the worst case, to sort #» elements is optimal, in the sense that
no other such algorithm has better worst-case complexity. Note that by Theorem 1 in Section
4.4 we see that the merge sort algorithm is optimal in this sense.

We can also establish a similarresult for the average-case complexity of sorting algorithms.
The average number of comparisons used by a sorting algorithm based on binary comparisons
is the average depth of a leaf in the decision tree representing the sorting algorithm. By Exercise
48 in Section 10.1 we know that the average depth of a leaf in a binary tree with N vertices is
Q(log N). We obtain the following estimate when we let N = n! and note that a function that is
Q(logn!) is also 2(n log n) because log n! is @(n logn).

The average number of comparisons used by a sorting algorithm to sort #» elements based on
binary comparisons is 2(n log n).

Prefix Codes

Consider the problem of using bit strings to encode the letters of the English alphabet (where
no distinction is made between lowercase and uppercase letters). We can represent each letter
with a bit string of length five, because there are only 26 letters and there are 32 bit strings of
length five. The total number of bits used to encode data is five times the number of characters
in the text when each character is encoded with five bits. Is it possible to find a coding scheme

10-19

- FIGURE 5 The
Binary Tree with a
Prefix Code.

&

Links

10.2 Applications of Trees 701

of these letters such that, when data are coded, fewer bits are used? We can save memory and
reduce transmittal time if this can be done.

Consider using bit strings of different lengths to encode letters. Letters that occur more
frequently should be encoded using short bit strings, and longer bit strings should be used to
encode rarely occurring letters. When letters are encoded using varying numbers of bits, some
method must be used to determine where the bits for each character start and end. For instance,
if e were encoded with 0, @ with 1, and ¢ with 01, then the bit string 0101 could correspond to
eat, tea, eaea, or It.

One way to ensure that no bit string corresponds to more than one sequence of letters is to
encode letters so that the bit string for a letter never occurs as the first part of the bit string for
another letter. Codes with this property are called prefix codes. For instance, the encoding of e
as 0, a as 10, and ¢ as 11 is a prefix code. A word can be recovered from the unique bit string
that encodes its letters. For example, the string 10110 is the encoding of ate. To see this, note
that the initial 1 does not represent a character, but 10 does represent a (and could not be the
first part of the bit string of another letter). Then, the next 1 does not represent a character, but
11 does represent ¢. The final bit, 0, represents e.

A prefix code can be represented using a binary tree, where the characters are the labels of
the leaves in the tree. The edges of the tree are labeled so that an edge leading to a left child is
assigned a 0 and an edge leading to a right child is assigned a 1. The bit string used to encode a
character is the sequence of labels of the edges in the unique path from the root to the leaf that
has this character as its label. For instance, the tree in Figure 5 represents the encoding of e by
0,aby 10,2 by 110,n by 1110, and s by 1111.

The tree representing a code can be used to decode a bit string. For instance, consider the
word encoded by 11111011100 using the code in Figure 5. This bit string can be decoded by
starting at the root, using the sequence of bits to form a path that stops when a leaf is reached.
Each 0 bit takes the path down the edge leading to the left child of the last vertex in the path, and
each 1 bit corresponds to the right child of this vertex. Consequently, the initial 1111 corresponds
to the path starting at the root, going right four times, leading to a leaf in the graph that has s
as its label, because the string 1111 is the code for s. Continuing with the fifth bit, we reach a
leaf next after going right then left, when the vertex labeled with a, which is encoded by 10, is
visited. Starting with the seventh bit, we reach a leaf next after going right three times and then
left, when the vertex labeled with », which is encoded by 1110, is visited. Finally, the last bit, O,
leads to the leaf that is labeled with e. Therefore, the original word is sane.

We can construct a prefix code from any binary tree where the left edge at each internal
vertex is labeled by 0 and the right edge by a 1 and where the leaves are labeled by characters.
Characters are encoded with the bit string constructed using the labels of the edges in the unique
path from the root to the leaves.

HUFFMAN CODING We now introduce an algorithm that takes as input the frequencies
(which are the probabilities of occurrences) of symbols in a string and produces as output a
prefix code that encodes the string using the fewest possible bits, among all possible binary
prefix codes for these symbols. This algorithm, known as Huffman coding, was developed by
David Huffman in a term paper he wrote in 1951 while a graduate student at MIT. (Note that this
algorithm assumes that we already know how many times each symbol occurs in the string, so we
can compute the frequency of each symbol by dividing the number of times this symbol occurs
by the length of the string.) Huffman coding is a fundamental algorithm in data compression,
the subject devoted to reducing the number of bits required to represent information. Huff man
coding is extensively used to compress bit strings representing text and it also plays an important
role in compressing audio and image files.

Algorithm 2 presents the Huffman coding algorithm. Given symbols and their frequencies,
our goal is to construct a rooted binary tree where the symbols are the labels of the leaves. The
algorithm begins with a forest of trees each consisting of one vertex, where each vertex has a
symbol as its label and where the weight of this vertex equals the frequency of the symbol that

702

10/ Trees

EXAMPLE 5

Extra S5
Examples (53

o
Links &

10-20

is its label. At each step, we combine two trees having the least total weight into a single tree
by introducing a new root and placing the tree with larger weight as its left subtree and the tree
with smaller weight as its right subtree. Furthermore, we assign the sum of the weights of the
two subtrees of this tree as the total weight of the tree.(Although procedures for breaking ties by
choosing between trees with equal weights can be specified, we will not specify such procedures
here.) The algorithm is finished when it has constructed a tree, that is, when the forest is reduced
to a single tree.

ALGORITHM 2 Huffman Coding.

procedure Huffman(C: symbols a; with frequencies w;,i = 1,...,n)
F = forest of n rooted trees, each consisting of the single vertex a; and assigned weight w;
while F is not a tree
begin
Replace the rooted trees T and T’ of least weights from F with w(T) > w(T') with a tree
having a new root that has T as its left subtree and T’ as its right subtree. Label the new
edge to T with 0 and the new edge to T’ with 1.
Assign w(T) + w(T') as the weight of the new tree.
end
{the Huffman coding for the symbol g; is the concatenation of the labels of the edges in the
unique path from the root to the vertex a; }

Example 5 illustrates how Algorithm 2 is used to encode a set of five symbols.

Use Huffman coding to encode the following symbols with the frequencies listed: A: 0.08, B:
0.10, C: 0.12, D: 0.15, E: 0.20, F: 0.35. What is the average number of bits used to encode a
character?

Solution: Figure 6 displays the steps used to encode these symbols. The encoding produced
encodes Aby 111, Bby 110, Cby 011, D by 010, E by 10, and F by 00. The average number of
bits used to encode a symbol using this encoding is 3 - 0.08 +3-0.10+3-0.12+3-0.15 +
2-0.20+2-0.35 =2.45. <

DAVID A. HUFFMAN (1925-1999) David Huffman grew up in Ohio. At the age of 18 he received his B.S.
in electrical engineering from The Ohio State University. Afterward he served in the U.S. Navy as a radar
maintenance officer on a destroyer that had the mission of clearing mines in Asian waters after World War II.
Later, he earned his M.S. from Ohio State and his Ph.D. in electrical engineering from MIT. Huffman joined
the MIT faculty in 1953, where he remained until 1967 when he became the founding member of the computer
science department at the University of California at Santa Cruz. He played an important role in developing this
department and spent the remainder of his career there, retiring in 1994.

Huffman is noted for his contributions to information theory and coding, signal designs for radar and
for communications, and design procedures for asynchronous logical circuits. His work on surfaces with zero

curvature led him to develop original techniques for folding paper and vinyl into unusual shapes considered works of art by many
and publicly displayed in several exhibits. However, Huffman is best known for his development of what is now called Huffman
coding, a result of a term paper he wrote during his graduate work at MIT.

Huffman enjoyed exploring the outdoors, hiking, and traveling extensively. He became certified as a scuba diver when he was
in his late 60s. He kept poisonous snakes as pets.

10-21 10.2 Applications of Trees 703

008 0.10 0.12 0.15 0.20 0.35 -
° ° ° ° ° Initial
A B C D E F forest

0.12 0.15 0.18 0.20 0.35 Step 1
[[y ° °
& D (/\ B P
B A
018 0.20 0.27 0.35 Step 2
° °
B A D C
0.27 0.35 Step 3
°
AN
D C
0.62 Step 4
1.00 Step 5

FIGURE 6 Huffman Coding of Symbols in Example 4.

Note that Huffman coding is a greedy algorithm. Replacing the two subtrees with the
smallest weight at each step leads to an optimal code in the sense that no binary prefix code
for these symbols can encode these symbols using fewer bits. We leave the proof that Huff man
codes are optimal as Exercise 32 at the end of this section.

There are many variations of Huffman coding. For example, instead of encoding single
symbols, we can encode blocks of symbols of a specified length, such as blocks of two symbols.
Doing so may reduce the number of bits required to encode the string (see Exercise 30 at the
end of this section). We can also use more than two symbols to encode the original symbols in
the string (see the preamble to Exercise 28 at the end of this section). Furthermore, a variation
known as adaptive Huff man coding (see [Sa00]) can be used when the frequency of each symbol
in a string is not known in advance, so that encoding is done at the same time the string is being
read.

704

10/ Trees

Links

EXAMPLE 6

10-22

Game Trees

Trees can be used to analyze certain types of games such as tic-tac-toe, nim, checkers, and chess.
In each of these games, two players take turns making moves. Each player knows the moves
made by the other player and no element of chance enters into the game. We model such games
using game trees; the vertices of these trees represent the positions that a game can be in as
it progresses; the edges represent legal moves between these positions. Because game trees are
usually large, we simplify game trees by representing all symmetric positions of a game by the
same vertex. However, the same position of a game may be represented by different vertices if
different sequences of moves lead to this position. The root represents the starting position. The
usual convention is to represent vertices at even levels by boxes and vertices at odd levels by cir-
cles. When the game is in a position represented by a vertex at an even level, it is the first player’s
move; when the game is in a position represented by a vertex at an odd level, it is the second
player’s move. Game trees may be infinite when the games they represent never end, such as
games that can enter infinite loops, but for most games there are rules thatlead to finite game trees.

The leaves of a game tree represent the final positions of a game. We assign a value to each
leaf indicating the payoff to the first player if the game terminates in the position represented by
this leaf. For games that are win—lose, we label a terminal vertex represented by a circle with a
1 to indicate a win by the first player and we label a terminal vertex represented by a box with
a —1 to indicate a win by the second player. For games where draws are allowed, we label a
terminal vertex corresponding to a draw position with a 0. Note that for win—lose games, we
have assigned values to terminal vertices so that the larger the value, the better the outcome for
the first player.

In Example 6 we display a game tree for a well-known and well-studied game.

Nim In a version of the game of nim, at the start of a game there are a number of piles of
stones. Two players take turns making moves; a legal move consists of removing one or more
stones from one of the piles, without removing all the stones left. A player without a legal move
loses. (Another way to look at this is that the player removing the last stone loses because the
position with no piles of stones is not allowed.) The game tree shown in Figure 7 represents

221

/]

11

—
—
—
[\S]
—

21 2 21 11

+1 +1 +1

1 1 with +1 if the first player wins
-1 -1 -1 -1 -1 and -1 if the second player wins

) I Terminal vertices are labeled

FIGURE 7 The Game Tree for a Game of Nim.

10-23

10.2 Applications of Trees 705

(a) (b) .
X[X|O
0)
o|X
X X X[X|O X|X|0O X[X|[O
X O X{0O oX
X|O|X o|X o|X
X|O X O X X X X|X]0 XiX|O X|X|O X1 X|O
0] 0|0 0|0 X|0O O|X
0 @) X|oX X|O|X 0|0l X O|0|X
'“// \.. ‘ , O wins O wins
X| X X X X X X[X|O X[X|O
0 0 o|X O O|0o|X X|O|O
X X|O|X X[O| X

eoe draw X wins

FIGURE 8 Some of the Game Tree for Tic-Tac-Toe.

EXAMPLE 7

this version of nim given the starting position where there are three piles of stones containing
two, two, and one stone each, respectively. We represent each position with an unordered list of
the number of stones in the different piles (the order of the piles does not matter). The initial
move by the first player can lead to three possible positions because this player can remove one
stone from a pile with two stones (leaving three piles containing one, one, and two stones);
two stones from a pile containing two stones (leaving two piles containing two stones and
one stone); or one stone from the pile containing one stone (leaving two piles of two stones).
When only one pile with one stone is left, no legal moves are possible, so such positions are
terminal positions. Because nim is a win—lose game, we label the terminal vertices with +1
when they represent wins for the first player and —1 when they represent wins for the second
player. <

Tic-tac-toe The game tree for tic-tac-toe is extremely large and cannot be drawn here, although
a computer could easily build such a tree. We show a portion of the game tic-tac-toe in Figure
8(a). Note that by considering symmetric positions equivalent, we need only consider three
possible initial moves, as shown in Figure 8(a). We also show a subtree of this game tree leading
to terminal positions in Figure 8(b), where a player who can win makes a winning move. 4

We can recursively define the values of all vertices in a game tree in a way that enables
us to determine the outcome of this game when both players follow optimal strategies. By a
strategy we mean a set of rules that tells a player how to select moves to win the game. An
optimal strategy for the first player is a strategy that maximizes the payoff to this player and for
the second player is a strategy that minimizes this payoff. We now recursively define the value
of a vertex.

706 10/ Trees

DEFINITION 1

THEOREM 3

10-24

The value of a vertex in a game tree is defined recursively as:

() the value of a leaf is the payoff to the first player when the game terminates in the
position represented by this leaf.
(ii) the value of an internal vertex at an even level is the maximum of the values of its
_children, and the value of an internal vertex at an odd level is the minimum of the
values of its children.

The strategy where the first player moves to a position represented by a child with maximum
value and the second player moves to a position of a child with minimum value is called the
minmax strategy. We can determine who will win the game when both players follow the
minmax strategy by calculating the value of the root of the tree; this value is called the value of
the tree. This is a consequence of Theorem 3.

The value ofa vertex ofa game tree tells us the payoff to the first player if both players follow
the minmax strategy and play starts from the position represented by this vertex.

Proof: We will use induction to prove this theorem.

BASIS STEP: If the vertex is a leaf, by definition the value assigned to this vertex is the payoff
to the first player.

INDUCTIVE STEP: The inductive hypothesis is the assumption that the values of the children
of a vertex are the payoffs to the first player, assuming that play starts at each of the positions
represented by these vertices. We need to consider two cases, when it is the first player’s turn
and when it is the second player’s turn.

When it is the first player’s turn, this player follows the minmax strategy and moves to the
position represented by the child with the largest value. By the inductive hypothesis, this value
is the payoff to the first player when play starts at the position represented by this child and
follows the minmax strategy. By the recursive step in the definition of the value of an internal
vertex at an even level (as the maximum value of its children), the value of this vertex is the
payoff when play begins at the position represented by this vertex.

- When it is the second player’s turn, this player follows the minmax strategy and moves to
the position represented by the child with the least value. By the inductive hypothesis, this value
is the payoff to the first player when play starts at the position represented by this child and both
players follow the minmax strategy. By the recursive definition of the value of an internal vertex
at an odd level as the minimum value of its children, the value of this vertex is the payoff when
play begins at the position represented by this vertex.

Remark: By extending the proof of Theorem 3, it can be shown that the minmax strategy is the
optimal strategy for both players.

Example 8 illustrates how the minmax procedure works. It displays the values assigned to
the internal vertices in the game tree from Example 6. Note that we can shorten the computation
required by noting that for win—lose games, once a child of a square vertex with value +1
is found, the value of the square vertex is also +1 because +1 is the largest possible payoff.

10-25

EXAMPLE 8

Links

10.2 Applications of Trees 707

+11221 max
+1{ 22 l@) -1{ 21 min
2 1 11 max
+1 -1 +1
min
+1 +1

FIGURE 9 Showing the Values of Vertices in the Game of Nim.

Similarly, once a child of a circle vertex with value —1 is found, this is the value of the circle
vertex also.

In Example 6 we constructed the game tree for nim with a starting position where there are
three piles containing two, two, and one stones. In Figure 9 we show the values of the vertices
of this game tree. The values of the vertices are computed using the values of the leaves and
working one level up at a time. In the right margin of this figure we indicate whether we use the
maximum or minimum of the values of the children to find the value of an internal vertex at
each level. For example, once we have found the values of the three children of the root, which
are 1, —1, and —1, we find the value of the root by computing max(1, —1, —1) = 1. Because
the value of the root is 1, it follows that the first player wins when both players follow a minmax
strategy. <

Game trees for some well-known games can be extraordinarily large, because these games
have many different possible moves. For example, the game tree for chess has been estimated to
have as many as 10'% vertices! It may be impossible to use Theorem 3 directly to study a game
because of the size of the game tree. Therefore, various approaches have been devised to help
determine good strategies and to determine the outcome of such games. One useful technique,
called alpha-beta pruning, eliminates much computation by pruning portions of the game tree
that cannot affect the values of ancestor vertices. (For information about alpha-beta pruning,
consult [Gr90].) Another useful approach is to use evaluation functions, which estimate the
value of internal vertices in the game tree when it is not feasible to compute these values exactly.
For example, in the game of tic-tac-toe, as an evaluation function for a position, we may use the
number of files (rows, columns, and diagonals) containing no Os (used to indicate moves of the
second player) minus the number of files containing no Xs (used to indicate moves of the first
player). This evaluation function provides some indication of which player has the advantage in
the game. Once the values of an evaluation function are inserted, the value of the game can be
computed following the rules used for the minmax strategy. Computer programs created to play
chess, such as the famous Deep Blue program, are based on sophisticated evaluation functions.
For more information about how computers play chess see [Le91].

708 10 / Trees

Exercises

10-26

1. Build a binary search tree for the words banana, peach,
apple, pear, coconut, mango, and papaya using alphabet-
ical order.

2. Build a binary search tree forthe words oenology, phrenol-
ogy, campanology, ornithology, ichthyology, limnology,
alchemy, and astrology using alphabetical order.

3. How many comparisons are needed to locate or to add
each of these words in the search tree for Exercise 1, start-
ing fresh each time?

b) banana
d) orange

a) pear
¢) kumgquat

4. How many comparisons are needed to locate or to add
each of the words in the search tree for Exercise 2, start-
ing fresh each time?

a) palmistry b) etymology
¢) paleontology d) glaciology

5. Using alphabetical order, construct a binary search tree
for the words in the sentence “The quick brown fox jumps
over the lazy dog.”

6. How many weighings of a balance scale are needed to find
a lighter counterfeit coin among four coins? Describe an
algorithm to find the lighter coin using this number of
weighings.

7. How many weighings of a balance scale are needed to find
a counterfeit coin among four coins if the counterfeit coin
may be either heavier or lighter than the others? Describe
analgorithm to find the counterfeit coin using this number
of weighings.

*8. How many weighings of a balance scale are needed to find
a counterfeit coin among eight coins ifthe counterfeit coin
is either heavier or lighter than the others? Describe an al-
gorithm to find the counterfeit coin using this number of
weighings.

*9, How many weighings of a balance scale are needed to find
a counterfeit coin among 12 coins if the counterfeit coin
is lighter than the others? Describe an algorithm to find
the lighter coin using this number of weighings.

¥10. One of four coins may be counterfeit. If it is counterfeit,
it may be lighter or heavier than the others. How many
weighings are needed, using a balance scale, to determine
whether there is a counterfeit coin, and if there is, whether
it is lighter or heavier than the others? Describe an algo-
rithm to find the counterfeit coin and determine whether
it is lighter or heavier using this number of weighings.

11. Find the least number of comparisons needed to sort four
elements and devise an algorithm that sorts these elements
using this number of comparisons.

¥12. Find the least number of comparisons needed to sort five
elements and devise an algorithm that sorts these elements
using this number of comparisons.

The tournament sort is a sorting algorithm that works by
building an ordered binary tree. We represent the elements to

be sorted by vertices that will become the leaves. We build up
the tree one level at a time as we would construct the tree repre-
senting the winners of matches in a tournament. Working left
to right, we compare pairs of consecutive elements, adding a
parent vertex labeled with the larger of the two elements under
comparison. We make similar comparisons between labels of
vertices at each level until we reach the root of the tree that is
labeled with the largest element. The tree constructed by the
tournament sort of 22, 8, 14, 17, 3, 9, 27, 11 is illustrated in
part (a) of the figure. Once the largest element has been de-
termined, the leaf with this label is relabeled by —oo, which
is defined to be less than every element. The labels of all ver-
tices on the path from this vertex up to the root of the tree are
recalculated, as shown in part (b) of the figure. This produces
the second largest element. This process continues until the
entire list has been sorted.

}&;mem
KX KX KX

®O®H OO O® O

(@

62\\ 22 is second largest element

2R KR
CRolclolofolelo

13. Complete the tournament sort of the list 22, 8, 14, 17, 3,
9,27, 11. Show the labels of the vertices at each step.

14. Use the tournament sort to sort the list 17, 4, 1, 5, 13, 10,
14, 6.

15. Describe the tournament sort using pseudocode.

16. Assuming that n, the number of elements to be sorted,
equals 2% for some positive integer k, determine the num-
ber of comparisons used by the tournament sort to find
the largest element of the list using the tournament sort.

17. How many comparisons does the tournament sort use to
find the second largest, the third largest, and so on, up to
the (n — 1)st largest (or second smallest) element?

18. Show that the tournament sort requires ©(n log n) com-
parisons to sort a list of n elements. [Hint: By inserting
the appropriate number of dummy elements defined to be

10-27

19.

20.

21.

22.

23.

24.

25.

26.

smaller than all integers, such as —oo, assume thatn = 2k
for some positive integer £.]

Which of these codes are prefix codes?

a) a:ll,e: 00,z 10,s: 01

b) a:0,e:1,¢:01,s: 001

¢) a:101, e 11,¢:001,5s: 011, n: 010

d) a:010,e:11,¢£011,s: 1011, n: 1001, i: 10101
Construct the binary tree with prefix codes representing
these coding schemes.

a) a:11,e: 0, £ 101, s: 100

b) a: 1, e 01,¢:001,s: 0001, n: 00001

¢) a:1010,e: 0,2:11,s: 1011, #: 1001, i: 10001

What are the codes for g, e, i, k, o, p, and u if the coding
scheme is represented by this tree?

Given the coding scheme a: 001, &: 0001, e: 1, »: 0000,
s: 0100, £: 011, x: 01010, find the word represented by

a) 01110100011. b) 0001110000.
¢) 0100101010. d) 01100101010.

Use Huffman coding to encode these symbols with given
frequencies: a: 0.20, &: 0.10, ¢: 0.15, d: 0.25, e: 0.30.
What is the average number of bits required to encode a
character?

Use Huffman coding to encode these symbols with given
frequencies: A: 0.10, B: 0.25, C: 0.05, D: 0.15, E: 0.30,
F: 0.07, G: 0.08. What is the average number of bits re-
quired to encode a symbol?

Construct two different Huffman codes for these symbols
and frequencies: ¢: 0.2, u: 0.3, v: 0.2, w: 0.3.

a) Use Huffman coding to encode these symbols with
frequencies a: 0.4, b: 0.2, ¢: 0.2, d: 0.1, e: 0.1 in two
different ways by breaking ties in the algorithm differ-
ently. First, among the trees of minimum weight select
two trees with the largest number of vertices to com-
bine at each stage of the algorithm. Second, among
the trees of minimum weight select two trees with the
smallest number of vertices at each stage.

b) Compute the average number of bits required to en-
code a symbol with each code and compute the vari-
ances of this number of bits for each code. Which
tie-breaking procedure produced the smaller variance
in the number of bits required to encode a symbol?

27.

10.2 Applications of Trees 709

Construct a Huff man code for the letters of the English al-
phabet where the frequencies of letters in typical English
text are as shown in this table.

Letter Frequency Letter Frequency
A 0.0817 N 0.0662
B 0.0145 o 0.0781
C 0.0248 P 0.0156
D 0.0431 Q 0.0009
E 0.1232 R 0.0572
F 0.0209 S - 0.0628
G 0.0182 T 0.0905
H 0.0668 U 0.0304
I 0.0689 A% 0.0102
J 0.0010 w 0.0264
K 0.0080 X 0.0015
L 0.0397 Y 0.0211
M 0.0277 Z 0.0005

Suppose that m is a positive integer with m > 2. An m-ary
Huffman code for a set of N symbols can be constructed
analogously to the construction of a binary Huffman code.
At the initial step, (N — 1) mod (m — 1)) + 1 trees consist-
ing of a single vertex with least weights are combined into a
rooted tree with these vertices as leaves. At each subsequent
step, the m trees of least weight are combined into an m-ary
tree.

28.

29.

30.

31.

Describe the m-ary Huffman coding algorithm in
pseudocode.

Using the symbols 0, 1, and 2 use ternary (m = 3)
Huffman coding to encode these letters with the given
frequencies: A: 0.25, E: 0.30, N: 0.10, R: 0.05, T: 0.12,
Z: 0.18.

Consider the three symbols A, B, and C with frequencies
A: 0.80, B: 0.19, C: 0.01.

a) Construct a Huffman code for these three symbols.

b) Form a new set of nine symbols by grouping together
blocks oftwo symbols, AA, AB, AC,BA, BB, BC,CA,
CB, and CC. Construct a Huffman code for these nine
symbols,assumingthatthe occurrences of symbols in
the original text are independent.

¢) Compare the average number of bits required to en-
codetextusing the Huffman code for the three symbols
in part (a) and the Huffman code for the nine blocks
of two symbols constructed in part (b). Which is more
efficient?

Given n + 1 symbols xi, x2, ..., X,, X»+1 appearing 1,

N, foy..., fn times in a symbol string, respectively,

where f; is the jth Fibonacci number, what is the maxi-

mumnumber of bits used to encode a symbol when all pos-

sible tie-breaking selections are considered at each stage

of the Huffman coding algorithm?

710

32.

33.

34.

3s.

36.

37.

10 / Trees

Show that Huffman codes are optimal in the sense that
they represent a string of symbols using the fewest bits
among all binary prefix codes.

Draw a game tree for nim if the starting position consists
oftwo piles with two and three stones, respectively. When
drawing the tree represent by the same vertex symmetric
positions that result from the same move. Find the value
of each vertex of the game tree. Who wins the game if
both players follow an optimal strategy?

Draw a game tree for nim if the starting position consists
ofthree piles with one, two, and three stones, respectively.
When drawing the tree represent by the same vertex sym-
metric positions that result from the same move. Find the
value of each vertex of the game tree. Who wins the game
if both players follow an optimal strategy?

Suppose that we vary the payoff to the winning player in
the game of nim so that the payoff is n dollars when » is
the number of legal moves made before a terminal posi-
tion is reached. Find the payoff to the first player if the
initial position consists of

a) two piles with one and three stones, respectively.

b) two piles with two and four stones, respectively.

c) three piles with one, two, and three stones,
respectively.

Suppose that in a variation of the game of nim we allow a
player to either remove one or more stones from a pile or
merge the stones from two piles into one pile as long as at
least one stone remains. Draw the game tree for this vari-
ation of nim if the starting position consists of three piles
containing two, two, and one stone, respectively. Find the
values of each vertex in the game tree and determine the
winner if both players follow an optimal strategy.

Draw the subtree of the game tree for tic-tac-toe begin-
ning at each of these positions. Determine the value of
each of these subtrees.

a) O|x|x b x|0o|x

X|o|o O|X|[X

X o)

9 X o) 4 O|Xx

0|0 X |0
X X X |0

10.3 Tree Traversal

38.

39.

40.

41.

42,

43.

44.

10-28

Suppose that the first four moves of a tic-tac-toe game
are as shown. Does the first player (whose moves
are marked by Xs) have a strategy that will always
win?

2 x|0|X B xlo|x
o)
o)
) o|x d x
X X |0
o) o)

Show that if a game of nim begins with two piles contain-
ing the same number of stones, as long as this number is at
least two, then the second player wins when both players
follow optimal strategies.

Show that if a game of nim begins with two piles con-
taining different numbers of stones, the first player wins
when both players follow optimal strategies.

How many children does the root of the game tree for
checkers have? How many grandchildren does it have?
How many children does the root of the game tree for
nim have and how many grandchildren does it have if the
starting position is

a) piles with four and five stones, respectively.

b) piles with two, three, and four stones, respectively.

¢) piles with one, two, three, and four stones, respectively.

d) piles with two, two, three, three, and five stones,
respectively.

Draw the game tree for the game of tic-tac-toe for the
levels corresponding to the first two moves. Assign the
value of the evaluation function mentioned in the text that
assigns to a position the number of files containing no Os
minus the number of files containing no Xs as the value of
each vertex at this level and compute the value of the tree
for vertices as if the evaluation function gave the correct
values for these vertices.

Use pseudocode to describe an algorithm for determin-
ing the value of a game tree when both players follow a
minmax strategy.

Introduction

Links

Ordered rooted trees are often used to store information. We need procedures for visiting each

vertex of an ordered rooted tree to access data. We will describe several important algorithms
for visiting all the vertices of an ordered rooted tree. Ordered rooted trees can also be used
to represent various types of expressions, such as arithmetic expressions involving numbers,

10-29

EXAMPLE 1

Extra g~
s)

10.3 Tree Traversal 711

variables, and operations. The different listings of the vertices of ordered rooted trees used to
represent expressions are useful in the evaluation of these expressions.

Universal Address Systems

Procedures for traversing all vertices of an ordered rooted tree rely on the orderings of children.
In ordered rooted trees, the children of an internal vertex are shown from left to right in the
drawings representing these directed graphs.

We will describe one way we can totally order the vertices of an ordered rooted tree. To
produce this ordering, we must first label all the vertices. We do this recursively:

1. Label the root with the integer 0. Then label its k children (at level 1) from left to right
with 1,2,3,...,k.

2. For each vertex v at level » with label A, label its k, children, as they are drawn from left
to right, with A.1, A.2, ..., Ak,. '

Following this procedure, a vertex v at level n, for n > 1, is labeled x;.x;..... xn, Where the
unique path from the root to v goes through the x,st vertex at level 1, the xond vertex at level 2,
and so on. This labeling is called the universal address system of the ordered rooted tree.

We cantotally orderthe vertices using the lexicographic ordering of their labels in the univer-
sal address system. The vertex labeled x;.x,. x, is less than the vertex labeled y;.ys. Vm
ifthereisani, 0 <i <nmn,withx; =y, x2=y2,..., Xi-1 = yi—1,and x; < y;;orif n <m
andx; = y; fori =1,2,...,n.

We display the labelings of the universal address system next to the vertices in the ordered rooted
tree shown in Figure 1. The lexicographic ordering of the labelings is

0<1<11<12<13<2<3<31<3.11<3.12<3.12.1<3.1.2.2
<3123<3124<313<32<4<41<5< 5.1_ <511<52<53 |

3.1.2.1/ 3.1.2.3 |
3.1.2.2 3.12.4

FIGURE 1 The Universal Address System of an Ordered Rooted Tree.

712 10/ Trees 10-30

Step 1: Visit r

Preorder traversal

Step 2: Step 3: Step n + 1:
Visit T Visit T Visit T,
in preorder in preorder in preorder
FIGURE 2 Preorder Traversal. FIGURE 3 The Ordered

Rooted Tree 7.

Traversal Algorithms

Procedures for systematically visiting every vertex of an ordered rooted tree are called traversal
algorithms. We will describe three of the most commonly used such algorithms, preorder
traversal, inorder traversal, and postorder traversal. Each of these algorithms can be defined
recursively. We first define preorder traversal.

DEFINITION 1 Let T be an ordered rooted tree with root . If T consists only of 7, then r is the preorder
traversal of T . Otherwise, suppose that Ty, T3, ..., T, are the subtrees at » from left to right
in T. The preorder traversal begins by visiting r. It continues by traversing 7 in preorder,
then T in preorder, and so on, until T, is traversed in preorder.

The reader should verify that the preorder traversal of an ordered rooted tree gives the same
ordering of the vertices as the ordering obtained using a universal address system. Figure 2
indicates how a preorder traversal is carried out.

Example 2 illustrates preorder traversal.

EXAMPLE 2 In which order does a preorder traversal visit the vertices in the ordered rooted tree T shown in
Figure 3?

Extra Q Solution: The steps of the preorder traversal of T are shown in Figure 4. We traverse T in
Examples preorder by first listing the root a, followed by the preorder list of the subtree with root b, the
preorder list of the subtree with root ¢ (which is just ¢) and the preorder list of the subtree with
root d.

The preorder list of the subtree with root b begins by listing b, then the vertices of the
subtree with root e in preorder, and then the subtree with root f in preorder (which is just f).
The preorder list of the subtree with root d begins by listing d, followed by the preorder list of
the subtree with root g, followed by the subtree with root 4 (which is just #), followed by the

subtree with root i (which is just).

10-31

10.3 Tree Traversal 713

Preorder traversal: Visit root,
visit subtrees left to right

[
a b c d g h i
e o

FIGURE 4 The Preorder Traversal of T.

The preorder list of the subtree with root e begins by listing e, followed by the preorder
listing of the subtree with root j (which is just j), followed by the preorder listing of the subtree
with root k. The preorder listing of the subtree with root g is g followed by /, followed by m.
The preorder listing of the subtree with root & is &, n, 0, p. Consequently, the preorder traversal
of T isa, b,e, j,k,n,o0, p, f,c,d,g,l,m,h,i.

We will now define inorder traversal.

714 10/ Trees

DEFINITION 2

EXAMPLE 3

Extra g~
Examples <

DEFINITION 3

10-32

Step 2: Visit r

Inorder traversal

Step I: Step 3: Stepn+1:
Visit T in Visit T, in Visit T, in
inorder inorder inorder

FIGURE 5 Inorder Traversal.

Let T be an ordered rooted tree with root r. If T consists only of r, then r is the inorder

traversal of T . Otherwise, suppose that Ty, T>, ..., T, are the subtrees at » from left to right.
The inorder traversal begins by traversing T in inorder, then visiting r. It continues by
traversing T, in inorder, then T3 in inorder, . . ., and finally 7,, in inorder.

Figure 5 indicates how inorder traversal is carried out. Example 3 illustrates how inorder
traversal is carried out for a particular tree.

In which order does an inorder traversal visit the vertices of the ordered rootedtree T in Figure 3?

Solution: The steps of the inorder traversal of the ordered rooted tree T are shown in Figure 6.
The inorder traversal begins with an inorder traversal of the subtree with root b, the root a, the
inorder listing of the subtree with root ¢, which is just ¢, and the inorder listing of the subtree
with root d.

The inorder listing of the subtree with root b begins with the inorder listing of the subtree
with root e, the root b, and f. The inorder listing of the subtree with root d begins with the
inorder listing of the subtree with root g, followed by the root d, followed by 4, followed by i.

The inorder listing of the subtree with root e is j, followed by the root e, followed by the
inorder listing of the subtree with root k. The inorder listing of the subtree with root g is /, g,
m. The inorder listing of the subtree with root £ is n, k, o, p. Consequently, the inorder listing
of the ordered rooted tree is j, e, n, k, 0, p, b, f,a,c,1,g,m,d, h,i. <

We now define postorder traversal.

Let T be an ordered rooted tree with root . If T consists only of 7, then r is the postorder
traversal of T . Otherwise, suppose that T}, T, ..., T, are the subtrees at r from left to right.
The postorder traversal begins by traversing T; in postorder, then T, in postorder, . . ., then
T, in postorder, and ends by visiting r.

Figure 7 illustrates how postorder traversal is done. Example 4 illustrates how postorder
traversal works.

10-33

EXAMPLE 4

Extra
Examples

Q

10.3 Tree Traversal 715

Inorder traversal: Visit leftmost
subtree, visit root, visit other
subtrees left to right

n o p
j e n k o p b f a ¢ I g m d h i
e 6 o o6 o o o o o o © o o0 o o o

FIGURE 6 The Inorder Traversal of T.

In which order does a postordef traversal visit the vertices of the ordered rooted tree T shown
in Figure 3?

Solution: The steps of the postorder traversal of the ordered rooted tree T are shown in Figure 8.
The postorder traversal begins with the postorder traversal of the subtree with root b, the postorder
traversal of the subtree with root ¢, which is just c, the postorder traversal of the subtree with
root d, followed by the root a. ‘

716 10/ Trees 10-34

Step n+ 1: Visit r

Postorder traversal

Step 1 Step 2 Step n:
Visit T, Visit T, Visit T,
in postorder in postorder in postorder

FIGURE 7 Postorder Traversal.

The postorder traversal of the subtree with root b begins with the postorder traversal of the
subtree with root e, followed by f, followed by the root 4. The postorder traversal of the rooted
tree with root d begins with the postorder traversal of the subtree with root g, followed by 4,
followed by i, followed by the root d.

The postorder traversal of the subtree with root e begins with j, followed by the postorder
traversal of the subtree with root &, followed by the root e. The postorder traversal of the subtree
with root g is /, m, g. The postorder traversal of the subtree with root « is n, o, p, k. Therefore,
the postorder traversal of T is j, n, 0, p, k, e, f,b,c,l,m, g, h,i,d,a.

There are easy ways to list the vertices of an ordered rooted tree in preorder, inorder, and
postorder. To do this, first draw a curve around the ordered rooted tree starting at the root,
moving along the edges, as shown in the example in Figure 9. We can list the vertices in
preorder by listing each vertex the first time this curve passes it. We can list the vertices in
inorder by listing a leaf the first time the curve passes it and listing each internal vertex the
second time the curve passes it. We can list the vertices in postorder by listing a vertex the
last time it is passed on the way back up to its parent. When this is done in the rooted tree in
Figure 9, it follows that the preorder traversal gives a, b, d, h, e, i, j, c, f, g, k, the inorder
traversal gives h,d, b, i, e, j, a, f, c, k, g; and the postorder traversal gives 4,d, i, j, e, b, f,
k,g,c,a.

Algorithms for traversing ordered rooted trees in preorder, inorder, or postorder are most
easily expressed recursively.

ALGORITHM 1 Preorder Traversal.

procedure preorder(T : ordered rooted tree)

r :=rootof T

list »

for each child c of r from left to right

begin
T (¢) := subtree with c as its root
preorder(T (c))

end

10-35 10.3 Tree Traversal 717

Postorder traversal: Visit
subtrees left to right; visit root

a
°
h i d a
e o o o
J k e f b ¢ I m g h i d a
° ® o6 o o o o o o o o o
n o p
j n o p k e f b ¢ I m g h i d a
e © o6 o o o o o o o o o o o o o

FIGURE 8 The Postorder Traversal of T.

718

10/ Trees

10-36

FIGURE 9 A Shortcut for Traversing an Ordered
Rooted Tree in Preorder, Inorder, and Postorder.

ALGORITHM 2 Inorder Traversal.

procedure inorder(T : ordered rooted tree)
r :=rootof T
if 7 is a leaf then list »
else
begin
I = first child of » from left to right
T (/) := subtree with / as its root
inorder(T (1))
list ¥
for each child c of r except for/ from left to right
T (c) = subtree with c as its root
inorder(T (c))
end

ALGORITHM 3 Postorder Traversal.

procedure postorder(T : ordered rooted tree)
r:=rootof T
for each child c of 7 from left to right

begin
T (c) := subtree with c as its root
postorder(T (c))

end

list ¥

Note that both the preorder traversal and the postorder traversal encode the structure of an
ordered rooted tree when the number of children of each vertex is specified. That is, an ordered
rooted tree is uniquely determined when we specify a list of vertices generated by a preorder
traversal or by a postorder traversal of the tree, together with the number of children of each vertex

10-37

EXAMPLE 5

10.3 Tree Traversal 719

AN VAN aN

AL AT O
NN

FIGURE 10 A Binary Tree Representing ((x + y) T 2) + ((x — 4)/3).

(see Exercises 26 and 27). In particular, both a preorder traversal and a postorder traversal encode
the structure of a full ordered m-ary tree. However, when the number of children of vertices is
not specified, neither a preorder traversal nor a postorder traversal encodes the structure of an
ordered rooted tree (see Exercises 28 and 29).

Infix, Prefix, and Postfix Notation

We can represent complicated expressions, such as compound propositions, combinations of
sets, and arithmetic expressions using ordered rooted trees. For instance, consider the repre-
sentation of an arithmetic expression involving the operators + (addition), — (subtraction),
% (multiplication), / (division), and 4 (exponentiation). We will use parentheses to indicate the
order of the operations. An ordered rooted tree can be used to represent such expressions, where
the internal vertices represent operations, and the leaves represent the variables or numbers.
Each operation operates on its left and right subtrees (in that order).

What is the ordered rooted tree that represents the expression ((x + y)12) + ((x — 4)/3)?

Solution: The binary tree for this expression can be built from the bottom up. First, a subtree for
the expression x + y is constructed. Then this is incorporated as part of the larger subtree rep-
resenting (x + y) 1 2. Also, a subtree for x — 4 is constructed, and then this is incorporated into
a subtree representing (x — 4)/3. Finally the subtrees representing (x + y) 1 2 and (x — 4)/3
are combined to form the ordered rooted tree representing ((x + ») 1 2) + ((x — 4)/3). These
steps are shown in Figure 10. <

An inorder traversal of the binary tree representing an expression produces the original
expression with the elements and operations in the same order as they originally occurred,
except for unary operations, which instead immediately follow their operands. For instance,
inorder traversals of the binary trees in Figure 11, which represent the expressions (x + y)/
(x +3),(x+ (y/x))+ 3, and x + (y/(x + 3)), all lead to the infix expression x + y/x + 3.
To make such expressions unambiguous it is necessary to include parentheses in the inorder
traversal whenever we encounter an operation. The fully parenthesized expression obtained in
this way is said to be in infix form.

We obtain the prefix form of an expression when we traverse its rooted tree in preorder.
Expressions written in prefix form are said to be in Polish notation, which is named after the
Polish logician Jan Lukasiewicz. An expression in prefix notation (where each operation has

720

10/ Trees

EXAMPLE 6

EXAMPLE 7

ks

EXAMPLE 8

/ VA NEIVAN
N0 D A
/NN a

FIGURE 11 Rooted Trees Representing (x + y)/(x + 3), (x + (y/x)) + 3, and
x+ /(x+ 3)).

a specified number of operands), is unambiguous, so no parentheses are needed in such an
expression. The verification of this is left as an exercise for the reader.

What is the prefix form for (x + y) 1 2) + ((x —4)/3)?

Solution: We obtain the prefix form for this expressionby traversing the binary tree that represents
it, shown in Figure 10. This produces + t +x y 2/ —x 4 3. <

In the prefix form of an expression, a binary operator, such as 4+, precedes its two operands.
Hence, we can evaluate an expression in prefix form by working from right to left. When
we encounter an operator, we perform the corresponding operation with the two operands
immediately to the right of this operand. Also, whenever an operation is performed, we consider
the result a new operand.

What is the value of the prefix expression + — %23 5/1 23 4?

Solution: The steps used to evaluate this expression by working right to left, and performing
operations using the operands on the right, are shown in Figure 12. The value of this expression
is 3. |

We obtain the postfix form of an expression by traversing its binary tree in postorder.
Expressions written in postfix form are said to be in reverse Polish notation. Expressions in
reverse Polish notation are unambiguous, so parentheses are not needed. The verification of this
is left to the reader.

What is the postfix form of the expression ((x + y) 1 2) + ((x — 4)/3)?

Solution: The postfix form of the expression is obtained by carrying out a postorder traversal
of the binary tree for this expression, shown in Figure 10. This produces the postfix expression:
xXy+21tx4-3/+. <

In the postfix form of an expression, a binary operator follows its two operands. So, to
evaluate an expression from its postfix form, work from left to right, carrying out operations
whenever an operator follows two operands. After an operation is carried out, the result of this
operation becomes a new operand.

10-39

EXAMPLE 9

EXAMPLE 10

Linlis @

10.3 Tree Traversal 721

+ - % 2 3 5 / 1t 2 3 4 7 2 3 % - 4 1T 9 3 [/ +
213=8 2x3=6
+ - * 2 3 5 [/ 8 4 7 6 — 4 1T 9 3 [/ +
8/4=2 7-6=1
+ - % 2 3 5 2 14 1T 9 3 / +
2 3=6 14=1
+ - 6 5 2 by 3/ 4+
6-5=1 9/3=3
+ 1 2 1 3 +
1+2=3 1+3=4
Value of expression 3 Value of expression® 4
FIGURE 12 Evaluating a Prefix FIGURE 13 Evaluating a Postfix
Expression. Expression.

What is the value of the postfix expression 723 * —4 1 93/+?

Solution: The steps used to evaluate this expression by starting at the left and carrying out
operations when two operands are followed by an operator are shown in Figure 13. The value
of this expression is 4. 4

Rooted trees can be used to represent other types of expressions, such as those representing
compound propositions and combinations of sets. In these examples unary operators, such as
the negation of a proposition, occur. To represent such operators and their operands, a vertex
representing the operator and a child of this vertex representing the operand are used.

Find the ordered rooted tree representing the compound proposition (—(p A q)) <> (—p V —q).
Then use this rooted tree to find the prefix, postfix, and infix forms of this expression.

JAN LUKASIEWICZ (1878-1956) JanEukasiewicz was born into a Polish-speaking family in Lvov. At that
time Lvov was part of Austria, but it is now in the Ukraine. His father was a captain in the Austrian army.
Fukasiewicz became interested in mathematics while in high school. He studied mathematics and philosophy
at the University of Lvov at both the undergraduate and graduate levels. After completing his doctoral work
he became a lecturer there, and in 1911 he was appointed to a professorship. When the University of Warsaw
was reopened as a Polish university in 1915, Lukasiewicz accepted an invitation to join the faculty. In 1919 he
served as the Polish Minister of Education. He returned to the position of professor at Warsaw University where
he remained from 1920 to 1939, serving as rector of the university twice.

Lukasiewicz was one of the cof ounders of the famous Warsaw School of Logic. He published his famous

text, Elements of Mathematical Logic, in 1928. With his influence, mathematical logic was made a required course for mathematics

and science undergraduates in Poland. His lectures were considered excellent, even attracting students of the humanities.
Fukasiewicz and his wife experienced great suffering during World War II, which he documented in a posthumously published

autobiography. After the warthey lived in exile in Belgium. Fortunately, in 1949 he was offered a position at the Royal Irish Academy

in Dublin.

Fukasiewicz worked on mathematical logic throughout his career. His work on athree-valued logic was an important contribution
to the subject. Nevertheless, he is best known in the mathematical and computer science communities for his introduction of
parenthesis-free notation, now called Polish notation.

722 10/ Trees

Extra
Examples

Exercises

-

Q

10-40

IS
~

I N
A AN
/N

/N T
P q
FIGURE 14 Constructing the Rooted Tree for a Compound Proposition.

p q

~—
S —

Solution: Therooted tree for this compound proposition is constructed from the bottom up. First,
subtrees for —p and —g are formed (where — is considered a unary operator). Also, a subtree for
p A q is formed. Then subtrees for —(p A q) and (—p) V (—¢q) are constructed. Finally, these
two subtrees are used to form the final rooted tree. The steps of this procedure are shown in
Figure 14.

The prefix, postfix, and infix forms of this expression are found by traversing this rooted tree
in preorder, postorder, and inorder (including parentheses), respectively. These traversals give
< S ApPgV —p-gq,pg A—-p—g—V <, and (—(p A q)) < ((—p) V (—q)), respectively. <

Because prefix and postfix expressions are unambiguous and because they can be evaluated
easily without scanning back and forth, they are used extensively in computer science. Such
expressions are especially useful in the construction of compilers.

In Exercises 1-3 construct the universal address system forthe 3.
given ordered rooted tree. Then use this to order its vertices
using the lexicographic order of their labels.

1.

4. Suppose that the address of the vertex v in the ordered
rooted tree T is 3.4.5.2.4.
a) At what level is v?
b) What is the address of the parent of v?
¢) What is the least number of siblings v can have?
d) What is the smallest possible number of vertices in T
if v has this address?
e) Find the other addresses that must occur.

5. Suppose that the vertex with the largest address in an

10-41

ordered rooted tree T has address 2.3.4.3.1. Is it possible
to determine the number of vertices in T'?

. Can the leaves of an ordered rooted tree have the follow-

ing list of universal addresses? If so, construct such an
ordered rooted tree.

a) 1.1.1,1.1.2,1.2,2.1.1.1,2.1.2,2.1.3,2.2, 3.1.1,
3.1.2.1,3.1.2.2,3.2

b) 1.1,1.2.1,1.2.2,1.2.3,2.1,2.2.1,2.3.1,2.3.2,
242.1,2422,3.1,3.2.1,3.2.2

¢) 1.1,1.2.1,1.2.2,1.2.2.1,1.3,14,2,3.1,3.2,4.1.1.1

In Exercises 7-9 determine the order in which a preorder
traversal visits the vertices of the given ordered rooted tree.

7.

10.

11.

In which order are the vertices of the ordered rooted tree
in Exercise 7 visited using an inorder traversal?
In which order are the vertices of the ordered rooted tree
in Exercise 8 visited using an inorder traversal?

1.
1.
14.
15.

16.

17.

18.

19.

*20.
*21.

22

23.

24.

25.

10.3 Tree Traversal 723

In which order are the vertices of the ordered rooted tree

in Exercise 9 visited using an inorder traversal?

In which order are the vertices of the ordered rooted tree

in Exercise 7 visited using a postorder traversal?

In which order are the vertices of the ordered rooted tree

in Exercise 8 visited using a postorder traversal?

In which order are the vertices of the ordered rooted tree

in Exercise 9 visited using a postorder traversal?

a) Represent the expression ((x+2)13)*(y—
(3+x)) — S using a binary tree.

Write this expression in

b) prefix notation.

¢) postfix notation.

d) infix notation.

a) Represent the expressions (x + xy) + (x/y) and x +
((xy + x)/y) using binary trees.

Write these expressions in

b) prefix notation.

¢) postfix notation.

d) infix notation.

a) Represent the compound propositions —(p A q) <
(—pV —q) and (mp A (g < —p))V —q using or-
dered rooted trees.

Write these expressions in

b) prefix notation.

¢) postfix notation.

d) infix notation.

a) Represent(A N B) — (AU (B — A)) using an ordered
rooted tree.

Write this expression in

b) prefix notation.

¢) postfix notation.

d) infix notation.

In how many ways can the string —p A ¢ <& —p VvV —q be

fully parenthesized to yield an infix expression?

In how many ways can the stringANB — AN B — Abe

fully parenthesized to yield an infix expression?

Draw the ordered rooted tree corresponding to each of

these arithmetic expressions written in prefix notation.

Then write each expression using infix notation.

a) +*x+-—-53214

b) ++23-51

¢) x/934+%x24-76

What is the value of each of these prefix expressions?

a) —x2/843 »

b) + —%33%x425

¢) +—132123/6—-42

d) x+34+313+333

What is the value of each of these postfix expressions?

a) 521 ——-314+4++=x

b) 93/54+72—x

c) 32x2153-84/%x—

Construct the ordered rooted tree whose preorder traver-
salisa, b,f, ¢, g, h, i,d, e,j, k, I, where a has four children,

724

*26.

*27.

28.

29.

10/ Trees

¢ has three children, j has two children, b and e have one
child each, and all other vertices are leaves.

Show that an ordered rooted tree is uniquely determined

when a list of vertices generated by a preorder traversal

of the tree and the number of children of each vertex are
specified.

Show that an ordered rooted tree is uniquely determined
when a list of vertices generated by a postorder traversal
of the tree and the number of children of each vertex are
specified.

Show that preorder traversals of the two ordered rooted
trees displayed below produce the same list of vertices.
Note that this does not contradict the statement in Ex-
ercise 26, because the numbers of children of internal
vertices in the two ordered rooted trees differ.

Show that postorder traversals of these two ordered rooted
trees produce the same list of vertices. Note that this does
not contradict the statement in Exercise 27, because the
numbers of children of internal vertices in the two ordered
rooted trees differ.

10.4 Spanning Trees

c df g h c d

10-42

bg h

Well-formed formulae in prefix notation over a set of sym-
bols and a set of binary operators are defined recursively by
these rules:

30.

*31.

32.

33.

34.

(i) if x is a symbol, then x is a well-formed formula in
prefix notation;

(@) if X and Y are well-formed formulae and * is an
operator, then * XY is a well-formed formula.

Which of these are well-formed formulae over the sym-
bols {x, y, z} and the set of binary operators { x, +, o}?
a) Xx++xyx

b) oxy xxz

€) XOXZXXXYy

d) x+oxxoxxx

Show that any well-formed formula in prefix notation over
a set of symbols and a set of binary operators contains ex-
actly one more symbol than the number of operators.
Give a definition of well-formed formulae in postfix no-
tation over a set of symbols and a set of binary operators.
Give six examples of well-formed formulae with three or
more operators in postfix notation over the set of symbols
{z, v, 2} and the set of operators {+, x, o}.

Extend the definition of well-formed formulae in prefix
notation to sets of symbols and operators where the oper-
ators may not be binary.

DEFINITION 1

Introduction

Consider the system of roads in Maine represented by the simple graph shown in Figure 1(a).
The only way the roads can be kept open in the winter is by frequently plowing them. The
highway department wants to plow the fewest roads so that there will always be cleared roads
connecting any two towns. How can this be done?

At least five roads must be plowed to ensure that there is a path between any two towns.
Figure 1(b) shows one such set of roads. Note that the subgraph representing these roads is a
tree, because it is connected and contains six vertices and five edges.

This problem was solved with a connected subgraph with the minimum number of edges
containing all vertices of the original simple graph. Such a graph must be a tree.

every vertex of G.

Let G be a simple graph. A spanning tree of G is a subgraph of G that is a tree containing

10-43

EXAMPLE 1

THEOREM 1

10.4 Spanning Trees 725

Etna Old Town Etna Old Town

Orono Orono
Herman Bangor Herman [Bangor

Hampden Hampden e ¥ 8
(@ (b)

FIGURE 1 (a) A Road System and (b) a Set FIGURE 2 The
of Roads to Plow. Simple Graph G.

A simple graph with a spanning tree must be connected, because there is a path in the
spanning tree between any two vertices. The converse is also true; that is, every connected
simple graph has a spanning tree. We will give an example before proving this result.

Find a spanning tree of the simple graph G shown in Figure 2.

Solution: The graph G is connected, but it is not a tree because it contains simple circuits.
Remove the edge {a, e}. This eliminates one simple circuit, and the resulting subgraph is still
connected and still contains every vertex of G. Next remove the edge {e, f} to eliminate a
second simple circuit. Finally, remove edge {c, g} to produce a simple graph with no simple
circuits. This subgraph is a spanning tree, because it is a tree that contains every vertex of G.
The sequence of edge removals used to produce the spanning tree is illustrated in Figure 3.
The tree shown in Figure 3 is not the only spanning tree of G. For instance, each of'the trees
shown in Figure 4 is a spanning tree of G. <

A simple graph is connected if and only if it has a spanning tree.

Proof: First, suppose that a simple graph G has a spanning tree T'. T contains every vertex of
G. Furthermore, there is a path in T between any two of its vertices. Because T is a subgraph
of G, there is a path in G between any two of its vertices. Hence, G is connected.

Now suppose that G is connected. If G is not a tree, it must contain a simple circuit. Remove
an edge from one of these simple circuits. The resulting subgraph has one fewer edge but still
contains all the vertices of G and is connected. This subgraph is still connected because when
two vertices are connected by a path containing the removed edge, they are connected by a path

‘not containing this edge. We can construct such a path by inserting into the original path, at

Edge removed: {q, ¢}

(a)

{e,f}
(b) ©)

FIGURE 3 Producing a Spanning Tree for G by Removing Edges That Form Simple Circuits.

726 10/ Trees

EXAMPLE 2

Links

Links

&

10-44

a b c d a b c d
*——o
b e g
e f 8 f
a b c d a b c d
————+¢
*———4¢ e 8
e f 8 f

FIGURE 4 Spanning Trees of G.

the point where the removed edge once was, the simple circuit with this edge removed. If this
subgraph is not a tree, it has a simple circuit; so as before, remove an edge that is in a simple
circuit. Repeat this process until no simple circuits remain. This is possible because there are
only a finite number of edges in the graph. The process terminates when no simple circuits
remain. A tree is produced because the graph stays connected as edges are removed. This tree
is a spanning tree because it contains every vertex of G. d

Spanning trees are important in data networking, as Example 2 shows.

IP Multicasting Spanning trees play an important role in multicasting over Internet Protocol
(IP) networks. To send data from a source computer to multiple receiving computers, each of
which is a subnetwork, data could be sent separately to each computer. This type of networking,
called unicasting, is inefficient, because many copies of the same data are transmitted over the
network. To make the transmission of data to multiple receiving computers more efficient, IP
multicasting is used. With IP multicasting, a computer sends a single copy of data over the
network, and as data reaches intermediate routers, the data are forwarded to one or more other
routers so that ultimately all receiving computers in their various subnetworks receive these data.
(Routers are computers that are dedicated to forwarding IP datagrams between subnetworks in
a network. In multicasting, routers use Class D addresses, each representing a session that
receiving computers may join; see Example 16 in Section 5.1.)

For data to reach receiving computers as quickly as possible, there should be no loops
(which in graph theory terminology are circuits or cycles) in the path that data take through the
network. That is, once data have reached a particular router, data should never return to this
router. To avoid loops, the multicast routers use network algorithms to construct a spanning tree
in the graph that has the multicast source, the routers, and the subnetworks containing receiving
computers as vertices, with edges representing the links between computers and/or routers.
The root of this spanning tree is the multicast source. The subnetworks containing receiving
computers are leaves of the tree. (Note that subnetworks not containing receiving stations are
not included in the graph.) This is illustrated in Figure 5. <

Depth-First Search

The proof of Theorem 1 gives an algorithm for finding spanning trees by removing edges from
simple circuits. This algorithm is inefficient, because it requires that simple circuits be identified.

10-45

Demo

EXAMPLE 3

Extra
Examples

Q

10.4 Spanning Trees 727

IP network Multicast spanning tree

Source Source

(@ (d)

] Router
® Subnetwork
(® Subnetwork with a receiving station

FIGURE 5 A Multicast Spanning Tree.

Instead of constructing spanning trees by removing edges, spanning trees can be built up by
successively adding edges. Two algorithms based on this principle will be presented here.

We can build a spanning tree for a connected simple graph using depth-first search. We
will form a rooted tree, and the spanning tree will be the underlying undirected graph of this
rooted tree. Arbitrarily choose a vertex of the graph as the root. Form a path starting at this
vertex by successively adding vertices and edges, where each new edge is incident with the last
vertex in the path and a vertex not already in the path. Continue adding vertices and edges to this
path as long as possible. If the path goes through all vertices of the graph, the tree consisting of
this path is a spanning tree. However, if the path does not go through all vertices, more vertices
and edges must be added. Move back to the next to last vertex in the path, and, if possible, form
a new path starting at this vertex passing through vertices that were not already visited. If this
cannot be done, move back another vertex in the path, that is, two vertices back in the path, and
try again.

Repeat this procedure, beginning at the last vertex visited, moving back up the path one
vertex at a time, forming new paths that are as long as possible until no more edges can be
added. Because the graph has a finite number of edges and is connected, this process ends with
the production of a spanning tree. Each vertex that ends a path at a stage of the algorithm will
be a leaf in the rooted tree, and each vertex where a path is constructed starting at this vertex
will be an internal vertex.

The reader should note the recursive nature of this procedure. Also, note that if the vertices
in the graph are ordered, the choices of edges at each stage of the procedure are all determined
when we always choose the first vertex in the ordering that is available. However, we will not
always explicitly order the vertices of a graph.

Depth-first search is also called backtracking, because the algorithm returns to vertices
previously visited to add paths. Example 3 illustrates backtracking.

Use depth-first search to find a spanning tree for the graph G shown in Figure 6.

Solution: The steps used by depth-first search to produce a spanning tree of G are shown in
Figure 7. We arbitrarily start with the vertex f. A path is built by successively adding edges
incident with vertices not already in the path, as long as this is possible. This produces a path
f, g, h, k, j (note that other paths could have been built). Next, backtrack to k. There is no path

728 10/ Trees

10-46

~.

b

\
p———o
~0— o~
=~
>
o

>

8 (a) (b) © (d) (®

FIGURE 6 The Graph G. FIGURE 7 Depth-First Search of G.

EXAMPLE 4

beginning at £ containing vertices not already visited. So we backtrack to 4. Form the path 4,
i. Then backtrack to 4, and then to /. From f build the path f,d, e, c, a. Then backtrack to ¢
and form the path ¢, b. This produces the spanning tree. <4

The edges selected by depth-first search of a graph are called tree edges. All other edges
of the graph must connect a vertex to an ancestor or descendant of this vertex in the tree. These
edges are called back edges. (Exercise 39 asks for a proof of this fact.)

In Figure 8 we highlight the tree edges found by depth-first search starting at vertex f by showing
them with heavy colored lines. The back edges (e, f) and (f, /) are shown with thinner black
lines. <

We have explained how to find a spanning tree of a graph using depth-first search. However,
our discussion so far has not brought out the recursive nature of depth-first search. To help
make the recursive nature of the algorithm clear, we need a little terminology. We say that we
explore from a vertex v when we carry out the steps of depth-first search beginning when v is
added to the tree and ending when we have backtracked back to v for the last time. The key
observation needed to understand the recursive nature of the algorithm is that when we add an
edge connecting a vertex v to a vertex w, we finish exploring from w before we return to v to
complete exploring from v.

In Algorithm 1 we construct the spanning tree of a graph G with vertices vy, .. ., v, by first
selecting the vertex v; to be the root. We initially set T to be the tree with just this one vertex.
At each step we add a new vertex to the tree T together with an edge from a vertex already
in T to this new vertex and we explore from this new vertex. Note that at the completion of
the algorithm, T contains no simple circuits because no edge is added that connects a vertex
already in the tree. Moreover, T remains connected as it is built. (These last two observations
can be easily proved via mathematical induction.) Because G is connected, every vertex in G is
visited by the algorithm and is added to the tree (as the reader should verify). It follows that T
is a spanning tree of G.

~
p—— ~ .
= Geem——

b g

FIGURE 8 The Tree Edges and Back Edges
of the Depth-First Search in Example 4.

10-47

Demo
Links

EXAMPLE 5

Extra
Examples

10.4 Spanning Trees 729

ALGORITHM 1 Depth-First Search.

procedure DFS(G: connected graph with vertices v;, vy, ..., v,)
T = tree consisting only of the vertex v,
visit(vy)
procedure visit(v: vertex of G)
for each vertex w adjacent to v and not yet in T
begin
add vertex w and edge {v,w}to T
visit(w)
end

We now analyze the computational complexity of the depth-first search algorithm. The key
observation is that for each vertex v, the procedure visit(v) is called when the vertex v is first
encountered in the search and it is not called again. Assuming that the adjacency lists for G are
available (see Section 9.3), no computations are required to find the vertices adjacent to v. As
we follow the steps of the algorithm, we examine each edge at most twice to determine whether
to add this edge and one of its endpoints to the tree. Consequently, the procedure DF'S constructs
a spanning tree using O(e), or O (n?), steps where e and n are the number of edges and vertices
in G, respectively. [Note that a step involves examining a vertex to see whether it is already in
the spanning tree as it is being built and adding this vertex and the corresponding edge if the
vertex is not already in the tree. We have also made use of the inequality e < n(n — 1)/2, which
holds for any simple graph.]

Depth-first search can be used as the basis for algorithms that solve many different problems.
For example, it can be used to find paths and circuits in a graph, it can be used to determine
the connected components of a graph, and it can be used to find the cut vertices of a connected
graph. As we will see, depth-first search is the basis of backtracking techniques used to search
for solutions of computationally difficult problems. (See [GrYe99], [Ma89], and [CoLeRiSt01]
for a discussion of algorithms based on depth-first search.)

Breadth-First Search

We can also produce a spanning tree of a simple graph by the use of breadth-first search.
Again, a rooted tree will be constructed, and the underlying undirected graph of this rooted
tree forms the spanning tree. Arbitrarily choose a root from the vertices of the graph. Then add
all edges incident to this vertex. The new vertices added at this stage become the vertices at
level 1 in the spanning tree. Arbitrarily order them. Next, for each vertex at level 1, visited in
order, add each edge incident to this vertex to the tree as long as it does not produce a simple
circuit. Arbitrarily order the children of each vertex at level 1. This produces the vertices at level
2 in the tree. Follow the same procedure until all the vertices in the tree have been added. The
procedure ends because there are only a finite number of edges in the graph. A spanning tree is
produced because we have produced a tree containing every vertex of the graph. An example
of breadth-first search is given in Example 5.

Use breadth-first search to find a spanning tree for the graph shown in Figure 9.

Solution: The steps of the breadth-first search procedure are shown in Figure 10. We choose
the vertex e to be the root. Then we add edges incident with all vertices adjacent to e, so edges
from e to b, d, f, and i are added. These four vertices are at level 1 in the tree. Next, add the
edges from these vertices at level 1 to adjacent vertices not already in the tree. Hence, the edges

730 10/ Trees

3
m k

FIGURE Y9 A Graph G.

10-48

from b to a and c are added, as are edges from d to A, from f to j and g, and from i to k. The
new vertices a, ¢, h, j, g, and k are at level 2. Next, add edges from these vertices to adjacent

vertices not already in the graph. This adds edges from g to / and from & to m.

4

We describe breadth-first search in pseudocode as Algorithm 2. In this algorithm, we assume

the vertices of the connected graph G are ordered as vy, vz, ..

., U,. In the algorithm we use the

term “process” to describe the procedure of adding new vertices, and corresponding edges, to
the tree adjacent to the current vertex being processed as long as a simple circuit is not produced.

ALGORITHM 2 Breadth-First Search.

T := tree consisting only of vertex v,
L = empty list
put vy in the list L of unprocessed vertices
while L is not empty
begin
remove the first vertex, v, from L
for each neighbor w of v
if w isnot in L and not in T then
begin
add w to the end of the list L
add w and edge {v,w}to T
end
end

procedure BF'S (G: connected graph with vertices vy, vy, ...

,v")

on
S
QU
\

FIGURE 10 Breadth-First Search of G.

10-49

EXAMPLE 6

EXAMPLE 7

Links

10.4 Spanning Trees 731

We now analyze the computational complexity of breadth-first search. For each vertex v in
the graph we examine all vertices adjacent to v and we add each vertex not yet visited to the tree
T. Assuming we have the adjacency lists for the graph available, no computation is required
to determine which vertices are adjacent to a given vertex. As in the analysis of the depth-first
search algorithm, we see that we examine each edge at most twice to determine whether we
should add this edge and its endpoint not already in the tree. It follows that the breadth-first
search algorithm uses O(e) or O(n?) steps.

Backtracking Applications

There are problems that can be solved only by performing an exhaustive search of all possible
solutions. One way to search systematically for a solution is to use a decision tree, where each
internal vertex represents a decision and each leaf a possible solution. To find a solution via
backtracking, first make a sequence of decisions in an attempt to reach a solution as long as this
is possible. The sequence of decisions can be represented by a path in the decision tree. Once
it is known that no solution can result from any further sequence of decisions, backtrack to the
parent of the current vertex and work toward a solution with another series of decisions, if this
is possible. The procedure continues until a solution is found, or it is established that no solution
exists. Examples 6 to 8 illustrate the usefulness of backtracking.

Graph Colorings How can backtracking be used to decide whether a graph can be colored
using » colors?

Solution: We can solve this problem using backtracking in the following way. First pick some
vertex a and assign it color 1. Then pick a second vertex b, and if b is not adjacent to a, assign
it color 1. Otherwise, assign color 2 to b. Then go on to a third vertex c. Use color 1, if possible,
for c. Otherwise use color 2, if this is possible. Only if neither color 1 nor color 2 can be used
should color 3 be used. Continue this process as long as it is possible to assign one of the n
colors to each additional vertex, always using the first allowable color in the list. If a vertex is
reached that cannot be colored by any of the n colors, backtrack to the last assignment made and
change the coloring of the last vertex colored, if possible, using the next allowable color in the
list. If it is not possible to change this coloring, backtrack farther to previous assignments, one
step back at a time, until it is possible to change a coloring of a vertex. Then continue assigning
colors of additional vertices as long as possible. If a coloring using n colors exists, backtracking
will produce it. (Unfortunately this procedure can be extremely inefficient.)

In particular, consider the problem of coloring the graph shown in Figure 11 with three
colors. The tree shown in Figure 11 illustrates how backtracking can be used to construct a
3-coloring. In this procedure, red is used first, then blue, and finally green. This simple example
can obviously be done without backtracking, but it is a good illustration of the technique.

In this tree, the initial path from the root, which represents the assignment of red to a, leads
to a coloring with a red, b blue, ¢ red, and d green. It is impossible to color e using any of the
three colors when a, b, ¢, and d are colored in this way. So, backtrack to the parent of the vertex
representing this coloring. Because no other color can be used for d, backtrack one more level.
Then change the color of ¢ to green. We obtain a coloring of the graph by then assigning red to
d and green to e.

The n-Queens Problem The n-queens problem asks how n queens can be placedonann x n
chessboard so that no two queens can attack one another. How can backtracking be used to solve
the n-queens problem?

Solution: To solve this problem we must find » positions on an n x n chessboard so that no
two of these positions are in the same row, same column, or in the same diagonal [a diagonal
consists of all positions (i, j) with i + j = m for some m, ori — j = m for some m]. We will

732 10/ Trees

EXAMPLE 8

10-50

a red
a red, b blue
e d / \
a red, b blue, ¢ red a red, b blue, ¢ green
[b
a b c /
a red, b blue, ¢ red, d green ared, b blue, c green, d red

ared, b blue, ¢ green, d red, e green

FIGURE 11 Coloring a Graph Using Backtracking.

use backtracking to solve the n-queens problem. We start with an empty chessboard. At stage
k + 1 we attempt putting an additional queen on the board in the (X + 1)st column, where there
are already queens in the first £ columns. We examine squares in the (k + 1)st column starting
with the square in the first row, looking for a position to place this queen so that it is not in the
same row or on the same diagonal as a queen already on the board. (We already know it is not
in the same column.) If it is impossible to find a position to place the queen in the (k + 1)st
column, backtrack to the placement of the queen in the kth column, and place this queen in the
next allowable row in this column, if such a row exists. If no such row exists, backtrack further.

In particular, Figure 12 displays a backtracking solution to the four-queens problem. In this
solution, we place a queen in the first row and column. Then we put a queen in the third row of
the second column. However, this makes it impossible to place a queen in the third column. So
we backtrack and put a queen in the fourth row of the second column. When we do this, we can
place a queen in the second row of the third column. But there is no way to add a queen to the
fourth column. This shows that no solution results when a queen is placed in the first row and
column. We backtrack to the empty chessboard, and place a queen in the second row of the first
column. This leads to a solution as shown in Figure 12. <

Sums of Subsets Consider this problem. Given a set of positive integers x1, x2, ..., X,, finda
subset of this set of integers that has M as its sum. How can backtracking be used to solve this
problem?

Solution: We start with a sum with no terms. We build up the sum by successively adding terms.
An integer in the sequence is included if the sum remains less than M when this integer is added
to the sum. If a sum is reached such that the addition of any term is greater than M, backtrack
by dropping the last term of the sum.

Figure 13 displays a backtracking solution to the problem of finding a subset of
{31,27, 15, 11, 7, 5} with the sum equal to 39. <

Depth-First Search in Directed Graphs

We can easily modify both depth-first search and breadth-first search so that they can run given
a directed graph as input. However, the output will not necessarily be a spanning tree, but rather
a spanning forest. In both algorithms we can add an edge only when it is directed away from

10-51 10.4 Spanning Trees 733

X
X
X X
X
X
X X
X X
X X
X X
X
X
X
X represents a queen X

FIGURE 12 A Backtracking Solution of the Four-Queens Problem.

the vertex that is being visited and to a vertex not yet added. If at a stage of either algorithm we
find that no edge exists starting at a vertex already added to one not yet added, the next vertex
added by the algorithm becomes the root of a new tree in the spanning forest. This is illustrated
in Example 9.

EXAMPLE 9 What is the output of depth-first search given the graph G shown in Figure 14(a) as input?

Solution: We begin the depth-first search at vertex a and add vertices b, ¢, and g and the
corresponding edges where we are blocked. We backtrack to ¢ but we are still blocked, and then

(/]
Sum=0
{31} {27}
Sum = 31 Sum =27
{31,7} {31, 5} {27, 11} (27,7}
Sum =38 Sum =36 Sum = 38 Sum = 34

(27,7, 5}
Sum = 39

FIGURE 13 Find a Sum Equal to 39 Using Backtracking.

734 10/ Trees

EXAMPLE 10

Exercises

10-52

(a) (b)

FIGURE 14 Depth-First Search of a Directed Graph.

backtrack to b, where we add vertices f and e and the corresponding edges. Backtracking takes
us all the way back to a. We then start a new tree at d and add vertices 4, /, k, and j and the
corresponding edges. We backtrack to &, then /, then 4, and back to d. Finally, we start a new
tree at i, completing the depth-first search. The output is shown in Figure 14(b). <

Depth-first search in directed graphs is the basis of many algorithms (see [GrYe99], [Ma89],
and [CoLeRiSt01]). It can be used to determine whether a directed graph has a circuit, it can
be used to carry out a topological sort of a graph, and it can also be used to find the strongly
connected components of a directed graph.

We conclude this section with an application of depth-first search and breadth-first search
to search engines on the Web.

Web Spiders To index websites, search engines such as Google and Yahoo systematically
explore the Web starting at known sites. These search engines use programs called Web spiders
(or crawlers or bots) to visit websites and analyze their contents. Web spiders use both depth-first
searching and breadth-first searching to create indices. As described in Example 8 in Section
9.1, Web pages and links between them can be modeled by a directed graph called the Web
graph. Web pages are represented by vertices and links are represented by directed edges. Using
depth-first search, an initial Web page is selected, a link is followed to a second Web page (if there
is such a link), a link on the second Web page is followed to a third Web page, if there is such a
link, and so on, until a page with no new links is found. Backtracking is then used to examine
links at the previous level to look for new links, and so on. (Because of practical limitations, Web
spiders have limits to the depth they search in depth-first search.) Using breadth-first search, an
initial Web page is selected and a link on this page is followed to a second Web page, then a
second link on the initial page is followed (if it exists), and so on, until all links of the initial
page have been followed. Then links on the pages one level down are followed, page by page,
and so on. <

1. How many edges must be removed from a connected 2. a b c
graph with n vertices and m edges to produce a spanning

tree?

In Exercises 2—6 find a spanning tree for the graph shown by
removing edges in simple circuits.

10-53 10.4 Spanning Trees 735

3. 10.
a
d
8
*11. How many different spanning trees does each of these
simple graphs have?

a) K3 b) K4 ©) Ki» d) Cs
*12. How many nonisomorphic spanning trees does each of

.. these simple graphs have?
d a) K3 b) K4 C) Ks
v v In Exercises 13—15 use depth-first search to produce a span-
ning tree for the given simple graph. Choose a as the root of

~v this spanning tree and assume that the vertices are ordered

f e alphabetically.
5 b 13. 4 e h i
c d
b f g i
14. b c 4 e f
a
h i j
6. 8 k
k
[] [g
l m n
I} 15. 8 h i q
as
b¢ y] 4 s
ce f 10 k l'
7. Find a spanning tree for each of these graphs. ;
a) Ks b) K4 ©) K6
d) 0; e) Cs) Ws a4 1 pA
If} Exercises 8-10 draw all the spanning trees of the given 16. Use breadth-first search to produce a spanning tree for
simple graphs. each of the simple graphs in Exercises 13—15. Choose
8 . a as the root of each spanning tree.
) 17. Use depth-first search to find a spanning tree of each of
A these graphs.
a) W (see Example 7 of Section 9.2), starting at the ver-
b ¢ tex of degree 6
b) Ks
% 4 4 ! 4 ¢) K34, starting at a vertex of degree 3
d) 03

18. Use breadth-first search to find a spanning tree of each of
the graphs in Exercise 17.

_ 19. Describe the trees produced by breadth-first search and

¢ d e h depth-first search of the wheel graph W, starting at the

736

20.

21.

22.

23.

24.

25.

26.

*27.

28.

29,

30.

31.

32.

10 / Trees

vertex of degree n, where # is an integer with n > 3. (See
Example 7 of Section 9.2.) Justify your answers.
Describe the trees produced by breadth-first search and
depth-first search of the complete graph K,,, where n is a
positive integer. Justify your answers.

Describe the trees produced by breadth-first search and
depth-first search of the complete bipartite graph K,, ,,
starting at a vertex of degree m, where m and n are posi-
tive integers. Justify your answers.

Explain how breadth-first search and how depth-first
search can be used to determine whether a graph is
bipartite.

Suppose that an airline must reduce its flight schedule to
save money. If its original routes are as illustrated here,
which flights can be discontinued to retain service be-
tween all pairs of cities (where it may be necessary to
combine flights to fly from one city to another)?

Bangor
Seattle Boston
San New York
Francisco .
Washington
Los
Angeles

San Diego

Dallas

When must an edge of a connected simple graph be in
every spanning tree for this graph?

Which connected simple graphs have exactly one span-
ning tree?

Explain how breadth-first search or depth-first search can
be used to order the vertices of a connected graph.

Show that the length of the shortest path between ver-
tices v and u in a connected simple graph equals the level
number of u in the breadth-first spanning tree of G with
root v.

Use backtracking to try to find a coloring of each of the
graphs in Exercises 7-9 of Section 9.8 using three colors.
Use backtracking to solve the n-queens problem for these
values of n.

a) n=3 by n=>5) n==6

Use backtracking to find a subset, if it exists, of the set
{27, 24, 19, 14, 11, 8} with sum

a) 20. b) 41. ¢) 60.

Explain how backtracking can be used to find a Hamilton

path or circuit in a graph.

a) Explain how backtracking can be used to find the way
out of a maze, given a starting position and the exit
position. Consider the maze divided into positions,
where at each position the set of available moves in-
cludes one to four possibilities (up, down, right, left).

b) Find apath from the starting position marked by X to
the exit in this maze.

10-54

Exit

A spanning forest of graph G is a forest that contains every
vertex of G such that two vertices are in the same tree of the
forest when there is a path in G between these two vertices.

33.
34.
3s.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

*46.

Show thatevery finite simple graph has a spanning forest.
How many trees are in the spanning forest of a graph?

How many edges must be removed to produce the span-
ning forest of a graph with n vertices, m edges, and ¢
connected components?

Devise an algorithm for constructing the spanning for-
est of a graph based on deleting edges that form simple
circuits.

Devise an algorithm for constructing the spanning forest
of a graph based on depth-first searching.

Devise an algorithm for constructing the spanning forest
of a graph based on breadth-first searching.

Let G be a connected graph. Show that if T is a span-
ning tree of G constructed using depth-first search, then
an edge of G not in T must be a back edge, that is, it
must connect a vertex to one of its ancestors or one of its
descendants in T'.

Let G be a connected graph. Show thatif T isa spanning
tree of G constructed using breadth-first search, then an
edge of G not in T must connect vertices at the same level
or at levels that differ by 1 in this spanning tree.

For which graphs do depth-first search and breadth-first
search produce identical spanning trees no matter which
vertex is selected as the root of the tree? Justify your
answer.

Use Exercise 39 to prove that if G is a connected, simple
graph with n vertices and G does not contain a simple
path of length £ then it contains at most (k — 1)n edges.

Use mathematical induction to prove that breadth-first
search visits vertices in order of their level in the resulting
spanning tree.

Use pseudocode to describe a variation of depth-first
search that assigns the integer n to the nth vertex visited
in the search. Show that this numbering corresponds to the
numbering of the vertices created by a preorder traversal
of the spanning tree.

Use pseudocode to describe a variation of breadth-first
search that assigns the integer m to the mth vertex visited
in the search.

Suppose that G is a directed graph and T is a span-
ning tree constructed using breadth-first search. Show that
every edge of G connects two vertices at the same level, a
vertex to a vertex at one level lower, or a vertex to a vertex
at some higher level.

10-55

47. Show that if G is a directed graph and T is a spanning
tree constructed using depth-first search, then every edge
not in the spanning tree is a forward edge connecting
an ancestor to a descendant, a back edge connecting a *5)
descendant to an ancestor, or a cross edge connecting a
vertex to a vertex in a previously visited subtree.

*48. Describe a variation of depth-first search that assigns the
smallest available positive integer to a vertex when the
algorithm is totally finished with this vertex. Show that
in this numbering, each vertex has a larger number than
its children and that the children have increasing numbers
from left to right.

Let T) and T, be spanning trees of a graph. The distance be-

tween T} and T is the number of edges in T; and T, that are

not common to T} and T,.

49. Find the distance between each pair of spanning trees
shown in Figures 3(c) and 4 of the graph G shown in *58.
Figure 2.

*50. Suppose that T, T», and T3 are spanning trees of the sim-
ple graph G. Show that the distance between T; and T3 *56.
does not exceed the sum of the distance between T and
T, and the distance between T, and T3.

**51. Suppose that T, and T, are spanning trees of a simple
graph G. Moreover, suppose that e; is an edge in T; that *57.
is not in T,. Show that there is an edge e; in T; that is not

53.

*54.

10.5 Minimum Spanning Trees

10.5 Minimum Spanning Trees 737

in T such that T} remains a spanningtree if e; is removed
from it and e, is added to it, and 7, remains a spanning
tree if e, is removed from it and e, is added to it.

. Show that it is possible to find a sequence of spanning

trees leading from any spanning tree to any other by suc-
cessively removing one edge and adding another.

A rooted spanning tree of a directed graph is a rooted tree
containing edges of the graph such that every vertex of the
graph is an endpoint of one of the edges in the tree.

For each of the directed graphs in Exercises 18-23 of Sec-
tion 9.5 either find a rooted spanning tree of the graph or
determine that no such tree exists.

Show that a connected directed graph in which each ver-
tex has the same in-degree and out-degree has a rooted
spanning tree. [Hint: Use an Euler circuit.]

Give an algorithm to build a rooted spanning tree for con-
nected directed graphs in which each vertex has the same
in-degree and out-degree.

Show that if G is a directed graph and T is a spanning
tree constructed using depth-first search, then G contains
acircuitifand only if G contains a back edge (see Exercise
47) relative to the spanning tree T .

Use Exercise 56 to construct an algorithm for determining
whether a directed graph contains a circuit.

Introduction

A company plans to build a communications network connecting its five computer centers. Any
Links BN pair of these centers can be linked with a leased telephone line. Which links should be made to
ensure that there is a path between any two computer centers so that the total cost of the network

is minimized? We can model this problem using the weighted graph shown in Figure 1, where

vertices represent computer centers, edges

represent possible leased lines, and the weights on

edges are the monthly lease rates of the lines represented by the edges. We can solve this problem
by finding a spanning tree so that the sum of the weights of the edges of the tree is minimized.
spanning tree.

Such a spanning tree is called a minimum

San Francisco

FIGURE 1 A Weighted Graph Showing Monthly Lease

Costs for Lines in a Computer Network.

738 10/ Trees 10-56

Algorithms for Minimum Spanning Trees

A wide variety of problems are solved by finding a spanning tree in a weighted graph such that
the sum of the weights of the edges in the tree is a minimum.

DEFINITION 1 A minimum spanning tree in a connected weighted graph is a spanning tree that has the
smallest possible sum of weights of its edges.

@ We will present two algorithms for constructing minimum spanning trees. Both proceed by

Demo L) successively adding edges of smallest weight from those edges with a specified property that

have not already been used. Both are greedy algorithms. Recall from Section 3.1 that a greedy

algorithm is a procedure that makes an optimal choice at each of its steps. Optimizing at each step

does not guarantee that the optimal overall solution is produced. However, the two algorithms

presented in this section for constructing minimurm spanning trees are greedy algorithms that
do produce optimal solutions.

) The first algorithm that we will discuss was given by Robert Prim in 1957, although the

linis 5 basic ideas of this algorithm have an earlier origin. To carry out Prim’s algorithm, begin by

choosing any edge with smallest weight, putting it into the spanning tree. Successively add to the

tree edges of minimum weight that are incident to a vertex already in the tree and not forming

a simple circuit with those edges already in the tree. Stop when n — 1 edges have been added.

Later in this section, we will prove that this algorithm produces a minimum spanning tree for

any connected weighted graph. Algorithm 1 gives a pseudocode description of Prim’s algorithm.

ALGORITHM 1 Prim’s Algorithm.

procedure Prim(G: weighted connected undirected graph with n vertices)
T := a minimum-weight edge
fori .=1ton—2
begin
e := an edge of minimum weight incident to a vertex in T and not forming a
simple circuit in T if added to T
T = T with e added
end {T is a minimum spanning tree of G}

Note that the choice of an edge to add at a stage of the algorithm is not determined when there
is more than one edge with the same weight that satisfies the appropriate criteria. We need to
order the edges to make the choices deterministic. We will not worry about this in the remainder
of the section. Also note that there may be more than one minimum spanning tree for a given

ROBERT CLAY PRIM (BORN 1921) Robert Prim, born in Sweetwater, Texas, received his B.S. in electrical
engineering in 1941 and his Ph.D. in mathematics from Princeton University in 1949. He was an engineer at
the General Electric Company from 1941 until 1944, an engineer and mathematician at the United States Naval
Ordnance Lab from 1944 until 1949, and a research associate at Princeton University from 1948 until 1949.
Among the other positions he has held are director of mathematics and mechanics research at Bell Telephone
Laboratories from 1958 until 1961 and vice president of research at Sandia Corporation. He is currently retired.

10-57

San Francisco

10.5 Minimum Spanning Trees 739

3 1 2 5
$2200 Atlanta
Choice Edge Cost e 4 f 3 8 3 h

1 {Chicago, Atlanta} $ 700

2 {Atlanta, New York} $ 800 4 2 4 3

3 {Chicago, San Francisco} $1200

4 { San Francisco, Denver} $ 900 3 3 1

Total $3600 i J k)

FIGURE 2 A Minimum Spanning Tree for the Weighted FIGURE 3 A Weighted Graph.
Graph in Figure 1.

EXAMPLE 1

EXAMPLE 2

Linlts @

connected weighted simple graph. (See Exercise 9.) Examples 1 and 2 illustrate how Prim’s
algorithm is used.

Use Prim’s algorithm to design a minimum-cost communications network connecting all the
computers represented by the graph in Figure 1.

Solution: We solve this problem by finding a minimum spanning tree in the graph in Figure 1.
Prim’s algorithm is carried out by choosing an initial edge of minimum weight and successively
adding edges of minimum weight that are incident to a vertex in the tree and that do not form
simple circuits. The edges in color in Figure 2 show a minimum spanning tree produced by
Prim’s algorithm, with the choice made at each step displayed.

Use Prim’s algorithm to find a minimum spanning tree in the graph shown in Figure 3.

Solution: A minimum spanning tree constructed using Prim’s algorithm is shown in Figure 4.
The successive edges chosen are displayed. <

The second algorithm we will discuss was discovered by Joseph Kruskal in 1956, although
the basic ideas it uses were described much earlier. To carry out Kruskal’s algorithm, choose
an edge in the graph with minimum weight.

Successively add edges with minimum weight that do not form a simple circuit with those
edges already chosen. Stop after n — 1 edges have been selected.

The proof that Kruskal’s algorithm produces a minimum spanning tree for every connected
weightedgraphis left as an exercise at the end of this section. Pseudocode for Kruskal’s algorithm
is given in Algorithm 2.

JOSEPH BERNARD KRUSKAL (BORN 1928) Joseph Kruskal, borninNew York City, attended the Univer-
sity of Chicago and received his Ph.D. from Princeton University in 1954. He was an instructor in mathematics
at Princeton and at the University of Wisconsin, and later he was an assistant professor at the University of
Michigan. In 1959 he became a member of the technical staff at Bell Laboratories, a position he continues to
hold. His current research interests include statistical linguistics and psychometrics. Besides his work on mini-
mum spanning trees, Kruskal is also known for contributions to multidimensional scaling. Kruskal discovered
his algorithm for producing minimum spanning trees when he was a second-year graduate student. He was not
sure his 23-page paper on this subject was worthy of publication, but was convinced by others to submit it.

740 10 / Trees

EXAMPLE 3

Extra
Examples

-

<

10-58

Choice Edge Weight

{b, f} 1
{a, b) 2
{f il 2
{a, e} 3
{i, j} 3
{f. g} 3
2
1
3
3
1

{c, g}
{c, d}
(g, h}
{h, 1)
{k, 1}

O 00N NH WN =

—
—_

(@) (b)

FIGURE 4 A Minimum Spanning Tree Produced Using Prim’s Algorithm.

ALGORITHM 2 Kruskal’s Algorithm.

procedure Kruskal(G: weighted connected undirected graph with n vertices)
T := empty graph
fori:=1ton—1
begin
e := any edge in G with smallest weight that does not form a simple circuit
when added to T
T := T with e added
end {T is a minimum spanning tree of G}

The reader should note the difference between Prim’s and Kruskal’s algorithms. In Prim’s
algorithm edges of minimum weight that are incident to a vertex already in the tree, and not
forming a circuit, are chosen; whereas in Kruskal’s algorithm edges of minimum weight that
are not necessarily incident to a vertex already in the tree, and that do not form a circuit, are
chosen. Note that as in Prim’s algorithm, if the edges are not ordered, there may be more than
one choice for the edge to add at a stage of this procedure. Consequently, the edges need to be
ordered for the procedure to be deterministic. Example 3 illustrates how Kruskal’s algorithm is
used.

Use Kruskal’s algorithm to find a minimum spanning tree in the weighted graph shown in
Figure 3.

Solution: A minimum spanning tree and the choices ofedges at each stage of Kruskal’s algorithm
are shown in Figure 5. <

HISTORICAL NOTE Joseph Kruskal and Robert Prim developed their algorithms for constructing minimum
spanning trees in the mid-1950s. However, they were not the first people to discover such algorithms. For
example, the work of the anthropologist Jan Czekanowski, in 1909, contains many of the ideas required to find
minimum spanning trees. In 1926, Otakar Boruvka described methods for constructing minimum spanning trees
in work relating to the construction of electric power networks.

10-59

10.5 Minimum Spanning Trees 741

Choice Edge Weight

O 00 N\ AW -
B
=

w
w
—
—
- o
—_—
P
~

(a) (b)

FIGURE S A Minimum Spanning Tree Produced by Kruskal’s Algorithm.

We will now prove that Prim’s algorithm produces a minimum spanning tree of a connected
weighted graph.

Proof: Let G be a connected weighted graph. Suppose that the successive edges chosen by

Prim’s algorithm are e}, e,, ..., e,—_;. Let S be the tree with ej, e5, ..., e, as its edges, and
let Si be the tree with ey, ey, ..., e as its edges. Let T be a minimum spanning tree of G
containing the edges ey, ez, ..., ex, Where k is the maximum integer with the property that a

minimum spanning tree exists containing the first k£ edges chosen by Prim’s algorithm. The
theorem follows if we can show that S = T.

Suppose that S # T, so that k < n — 1. Consequently, T contains ey, e, ..., €, but not
er+1. Consider the graph made up of T together with e, . Because this graph is connected and
has n edges, too many edges to be a tree, it must contain a simple circuit. This simple circuit
must contain e, because there was no simple circuit in 7. Furthermore, there must be an
edge in the simple circuit that does not belong to Si; because Sy is a tree. By starting at an
endpoint of e, that is also an endpoint of one of the edges ey, . . ., e;, and following the circuit
until it reaches an edge not in Sy, we can find an edge e not in Sy that has an endpoint that
is also an endpoint of one of the edges ey, ey, . . ., e;. By deleting e from T and adding e, we
obtain a tree T’ with n — 1 edges (it is a tree because it has no simple circuits). Note that the tree
T’ contains ey, ey, ..., €, exy1. Furthermore, because e, was chosen by Prim’s algorithm at
the (k + 1)st step, and e was also available at that step, the weight of e, is less than or equal
to the weight of e. From this observation it follows that T’ is also a minimum spanning tree,
because the sum of the weights of its edges does not exceed the sum of the weights of the edges
of T. This contradicts the choice of k as the maximum integer such that a minimum spanning
tree exists containing ey, . . ., e;. Hence, k = n — 1,and S = T. It follows that Prim’s algorithm
produces a minimum spanning tree.

It can be shown (see [CoLeRiSt01]) that to find a minimum spanning tree of a graph
with e edges and v vertices, Kruskal’s algorithm can be carried out using O(eloge) opera-
tions and Prim’s algorithm can be carried out using O(elogv) operations. Consequently, it
is preferable to use Kruskal’s algorithm for graphs that are sparse, that is, where e is very
small compared to C(v, 2) = v(v — 1)/2, the total number of possible edges in an undirected
graph with v vertices. Otherwise, there is little difference in the complexity of these two
algorithms.

742 10/ Trees

Exercises

10-60

1. The roads represented by this graph are all unpaved. The
lengths of the roads between pairs of towns are represented
by edge weights. Which roads should be paved so that
there is a path of paved roads between each pair of towns
so that a minimum road length is paved? (Note: These
towns are in Nevada.)

Manhattan
KL A]
r Tonopah ‘Warm Springs
Dyer - Goldfield
Silverpeak
QO

v

Gold
Point <5

Deep Springs

Beatty

In Exercises 2—4 use Prim’s algorithm to find a minimum span-
ning tree for the given weighted graph.

2. a 1 b

3
4 2 e 3
7 \2
c 1 d
3 a 5 b 4 ¢
d f
g 4 ho 2 i
4. 2
a1 b 2 ¢ 1N\d
1 3 3 1
. 2 f3 g 2 P
2 2 3 4 3 2

5. Use Kruskal’s algorithm to design the communications
network described at the beginning of the section.

6. Use Kruskal’salgorithm to find a minimum spanning tree
for the weighted graph in Exercise 2.

7. Use Kruskal’s algorithm to find a minimum spanning tree
for the weighted graph in Exercise 3.

8. Use Kruskal’s algorithm to find a minimum spanning tree
for the weighted graph in Exercise 4.

9. Find a connected weighted simple graph with the fewest
edges possible that has more than one minimum spanning
tree.

10. A minimum spanning forest in a weighted graph is a
spanning forest with minimal weight. Explain how Prim’s
and Kruskal’s algorithms can be adapted to construct min-
imum spanning forests.

A maximum spanning tree of a connected weighted undi-

rected graph is a spanning tree with the largest possible weight.

11. Devise an algorithm similar to Prim’s algorithm for
constructing a maximum spanning tree of a connected
weighted graph.

12. Devise an algorithm similar to Kruskal’s algorithm for
constructing a maximum spanning tree of a connected

weighted graph. z.
13. Find a maximum spanning tree for the weighted graph in
Exercise 2.

14. Find a maximum spanning tree for the weighted graph in
Exercise 3.

15. Find a maximum spanning tree for the weighted graph in
Exercise 4.

16. Find the second least expensive communications network
connecting the five computer centers in the problem posed
at the beginning of the section.

*17. Devise an algorithm for finding the second shortest span-
ning tree in a connected weighted graph.

*18. Show that an edge with smallest weight in a connected
weighted graph must be part of any minimum spanning
tree.

19. Show that there is a unique minimum spanning tree in a
connected weighted graph if the weights of the edges are
all different.

20. Suppose that the computer network connecting the cities
in Figure 1 must contain a direct link between New York
and Denver. What other links should be included so that
there is a link between every two computer centers and
the cost is minimized?

21. Find a spanning tree with minimal total weight contain-
ing the edges {e, i} and {g, £} in the weighted graph in
Figure 3.

22. Describe an algorithm for finding a spanning tree with
minimal weight containing a specified set of edges in a
connected weighted undirected simple graph.

10-61

23. Express the algorithm devised in Exercise 22 in
pseudocode.

Sollin’s algorithm produces a minimum spanning tree from
a connected weighted simple graph G = (V, E) by succes-
sively adding groups of edges. Suppose that the vertices in
V are ordered. This produces an ordering of the edges where
{uo, vo} precedes {u1, v } ifug precedesu; orifug = u; and vy
precedes v;. The algorithm begins by simultaneously choos-
ing the edge of least weight incident to each vertex. The first
edge in the ordering is taken in the case of ties. This pro-
duces a graph with no simple circuits, that is, a forest of trees
(Exercise 24 asks for a proof of this fact). Next, simultaneously
choose for each tree in the forest the shortest edge between a
vertex in this tree and a vertex in a different tree. Again the first
edge in the ordering is chosen in the case of ties. (This pro-
duces a graph with no simple circuits containing fewer trees
than were present before this step; see Exercise 24.) Continue
the process of simultaneously adding edges connecting trees
until n» — 1 edges have been chosen. At this stage a minimum
spanning tree has been constructed.

¥24. Show that the addition of edges at each stage of Sollin’s
algorithm produces a forest.

Key Terms and Results

Key Terms and Results 743

25. Use Sollin’s algorithm to produce a minimum spanning
tree for the weighted graph shown in
a) Figure 1.
b) Figure 3.

*26. Express Sollin’s algorithm in pseudocode.

**27. Prove that Sollin’s algorithm produces a minimum span-

ningyree in a connected undirected weighted graph.
Show that the first step of Sollin’s algorithm produces a
forest containing at least [n/2] edges.

*28

*29. Show that if there are r trees inthe forest at some interme-
diate step of Sollin’s algorithm, then at least [r/2] edges
are added by the next iteration of the algorithm.

*30. Show that no more than | 7n/2 | trees remain after the first
step of Sollin’s algorithm has been carried out and the
second step of the algorithm has been carried out £ — 1
times.

*31

Show that Sollin’s algorithm requires at most log » iter-
ations to produce a minimum spanning tree from a con-
nected undirected weighted graph with n vertices.

32. Prove that Kruskal’s algorithm produces minimum span-

ning trees.

TERMS

tree: a connected undirected graph with no simple circuits

forest: an undirected graph with no simple circuits

rooted tree: a directed graph with a specified vertex, called
theroot, such that there is a unique path to any other vertex
from this root

subtree: a subgraph of a tree that is also a tree

parent of v in a rooted tree: the vertex u such that (¥, v) is an
edge of the rooted tree

child of a vertex v in a rooted tree: any vertex with v as its
parent

sibling of a vertex v in a rooted tree: a vertex with the same
parent as v

ancestor of a vertex v in a rooted tree: any vertex on the path
from the root to v

descendant of a vertex v in a rooted tree: any vertex that has
v as an ancestor

internal vertex: a vertex that has children

leaf: a vertex with no children

level of a vertex: the length of the path from the root to this
vertex

height of a tree: the largest level of the vertices of a tree

m-ary tree: a tree with the property that every internal vertex
has no more than m children

full m-ary tree: a tree with the property that every internal
vertex has exactly m children

binary tree: an m-ary tree with m = 2 (each child may be
designated as a left or a right child of its parent)

ordered tree: a tree in which the children of each internal
vertex are linearly ordered

balanced tree: a tree in which every leafis at level h or A — 1,
where 4 is the height o f the tree

binary search tree: a binary tree in which the vertices are la-
beled with items so that a label of a vertex is greater than
the labels of all vertices in the left subtree of this vertex and
is less than the labels of all vertices in the right subtree of
this vertex

decision tree: a rooted tree where each vertex represents a
possible outcome of a decision and the leaves represent the
possible solutions

prefix code: a code that has the property that the code of a
character is never a prefix of the code of another character

minmax strategy: the strategy where the first player and sec-
ond player move to positions represented by a child with
maximum and minimum value, respectively

value of a vertex in a game tree: for a leaf, the payoff to the
first player when the game terminates in the position repre-
sented by this leaf; for an internal vertex, the maximum or
minimum of the values of its children, for an internal vertex
at an even or odd level, respectively

tree traversal: a listing of the vertices of a tree

preorder traversal: a listing of the vertices of an ordered
rooted tree defined recursively—the root is listed, followed
by the first subtree, followed by the other subtrees in the
order they occur from left to right

inorder traversal: a listing ofthe vertices of an ordered rooted
tree defined recursively—the first subtree is listed, followed
by the root, followed by the other subtrees in the order they
occur from left to right

postorder traversal: a listing of the vertices of an ordered
rooted tree defined recursively—the subtrees are listed in

744 10/ Trees

the order they occur from left to right, followed by the
root

infix notation: the form of an expression (including a full set
of parentheses) obtained from an inorder traversal of the
binary tree representing this expression

prefix (or Polish) notation: the form of an expression ob-
tained from a preorder traversal of the tree representing this
expression

postfix (or reverse Polish) notation: the form of an expression
obtained from a postorder traversal of the tree representing
this expression

spanning tree: a tree containing all vertices of a graph

minimum spanning tree: a spanning tree with smallest pos-
sible sum of weights of its edges

greedy algorithm: an algorithm that optimizes by making the
optimal choice at each step

RESULTS

A graph is a tree if and only if there is a unique simple path
between any of its vertices.

A tree with n vertices has n — 1 edges.

A full m-ary tree with i internal vertices has mi+ 1
vertices.

Review Questions

10-62

The relationships among the numbers of vertices, leaves, and
internal vertices in a full m-ary tree (see Theorem 4 in
Section 10.1)

There are at most m”* leaves in an m-ary tree of height 4.

Ifan m-ary tree has / leaves, its height 4 is at least [log,, /1. If
the tree is also full and balanced, then its height is [log,, /1.

Huffman coding: a procedure for constructing an optimal
binary code for a set of symbols, given the frequencies of
these symbols

depth-first search, or backtracking: a procedure for con-
structing a spanning tree by adding edges that form a path
until this is not possible, and then moving back up the path
until a vertex is found where a new path can be formed

breadth-first search: a procedure for constructing a spanning
tree that successively adds all edges incident to the last set
of edges added, unless a simple circuit is formed

Prim’s algorithm: a procedure for producing a minimumspan-
ning tree in a weighted graph that successively adds edges
with minimal weight among all edges incident to a vertex
already in the tree such that no edge produces a simple
circuit when it is added

Kruskal’s algorithm: a procedure for producing a minimum
spanning tree in a weighted graph that successively adds
edges of least weight that are not already in the tree such
that no edge produces a simple circuit when it is added

1. a) Define a tree. b) Define a forest.

2. Canthere be two different simple paths between the ver-
tices of a tree?

3. Give at least three examples of how trees are used in
modeling.
4. a) Define a rooted tree and the root of such a tree.

b) Define the parent of a vertex and a child of a vertex in
arooted tree.

¢) What are an internal vertex, a leaf, and a subtree in a
rooted tree?

d) Draw arooted tree with at least 10 vertices, where the
degree of each vertex does not exceed 3. Identify the
root, the parent of each vertex, the children of each
vertex, the internal vertices, and the leaves.

5. a) How many edges does a tree with n vertices have?

b) What do you need to know to determine the number
of edges in a forest with n vertices?

6. a) Define a full m-ary tree.

b) How many vertices does a full m-ary tree have if it
has i internal vertices? How many leaves does the tree
have?

7. a) What is the height of a rooted tree?

b) What is a balanced tree?

¢) How many leaves can an m-ary tree of height 4 have?
8. a) What is a binary search tree?

b) Describe an algorithm for constructing a binary search
tree.

¢) Form a binary search tree for the words vireo, warbler,
egret, grosbeak, nuthatch, and kingfisher.

9. a) What is a prefix code?
b) How can a prefix code be represented by a binary tree?

10. a) Define preorder, inorder, and postorder tree traversal.
b) Give an example of preorder, postorder, and inorder
traversal of a binary tree of your choice with at least

12 vertices.

11. a) Explain how to use preorder, inorder, and postorder
traversals to find the prefix, infix, and postfix forms of
an arithmetic expression.

b) Draw the ordered rooted tree that represents ((x —
N+ ((x/H+x—-y)13).

¢) Find the prefix and postfix forms of the expression in
part (b).

12. Show that the number of comparisons used by a sorting

algorithm is at least [logn!].

13. a) Describe the Huffman coding algorithm for construct-
ing an optimal code for a set of symbols, given the
frequency of these symbols.

b) Use Huffman coding to find an optimal code for these
symbols and frequencies: A: 0.2, B: 0.1, C: 0.3, D:
0.4.

14. Draw the game tree for nim if the starting position consists
of two piles with one and four stones, respectively. Who
wins the game if both players follow an optimal strategy?

15. a) What is a spanning tree of a simple graph?

10-63

b) Which simple graphs have spanning trees?
¢) Describe atleasttwo different applications thatrequire
that a spanning tree of a simple graph be found.

16. a) Describe two different algorithms for finding a span-
ning tree in a simple graph.

b) Illustrate how the two algorithms you described in (a)
can be used to find the spanningtree of a simple graph,
using a graph of your choice with at least eight vertices
and 15 edges.

17. a) Explain how backtracking can be used to determine
whether a simple graph can be colored using 7 colors.

b) Show, with an example, how backtracking can be used
to show that a graph with a chromatic number equal

Supplementary Exercises

Supplementary Exercises 745

to 4 cannot be colored with three colors, but can be
colored with four colors.

18. a) What is a minimum spanning tree of a connected
weighted graph?

b) Describe at least two different applications thatrequire
that a minimum spanning tree of a connected weighted
graph be found.

19. a) Describe Kruskal’s algorithm and Prim’s algorithm for
finding minimum spanning trees.

b) Illustrate how Kruskal’s algorithm and Prim’s algo-
rithmare used to find a minimum spanning tree, using
a weighted graph with at least eight vertices and 15
edges. :

*1. Show that a simple graph is a tree if and only if it
contains no simple circuits and the addition of an edge
connecting two nonadjacent vertices produces a new
graph that has exactly one simple circuit (where cir-
cuits that contain the same edges are not considered
different).

*2. How many nonisomorphic rooted trees are there with six
vertices?

3. Show that every tree with at least one edge must have at
least two pendant vertices.

4. Show that a tree with n vertices that has n — 1 pendant
vertices must be isomorphic to K ,—;.

5. What is the sum of the degrees of the vertices of a tree
with n vertices?

*6. Suppose that d, dy, ..., d, are n positive integers with
sum 2n — 2. Show that there is a tree that has »n vertices
such that the degrees of these vertices are d), ds, ..., d,.

7. Show that every tree is a planar graph.
8. Show that every tree is bipartite.
9. Show that every forest can be colored using two colors.

A B-tree of degree k is a rooted tree such that all its leaves
are at the same level, its root has at least two and at most
k children unless it is a leaf, and every internal vertex other
than the root has at least [k/2], but no more than £, children.
Computer files can be accessed efficiently when B-trees are
used to represent them.

10. Draw three different B-trees of degree 3 with height 4.

‘11. Give an upper bound and a lower bound for the number
of leaves in a B-tree of degree k& with height 4.

12. Give an upper bound and a lower bound for the height of
a B-tree of degree k with n leaves.

The binomial trees B;, i =0, 1,2, ..., are ordered rooted

trees defined recursively:

Basis step: The binomial tree By is the tree with a single
vertex.

Recursive step: Let k be a nonnegative integer. To con-
struct the binomial tree By, add a copy of By to a second

copy of By by adding an edge that makes the root of the
first copy of By the leftmost child of the second copy
of By.

13. Draw B fork =0, 1,2, 3, 4.

14. How many vertices does B have? Prove that your answer
is correct.

15. Find the height of B. Prove that your answer is correct.

16. How many vertices are there in Bj at depth j, where
0 < j < k? Justify your answer.

17. What is the degree of the root of B;? Prove that your
answer is correct.

18. Show that the vertex of largest degree in By is the root.

A rooted tree T is called an S;-tree if it satisfies this recursive

definition. It is an Sy-tree if it has one vertex. Fork > 0, T is

an S;-tree if it can be built from two S;_;-trees by making the

root of one the root of the S;-tree and making the root of the

other the child of the root of the first Si-tree.

19. Draw an Sy-tree for k =0, 1, 2, 3, 4.

20. Show that an S;-tree has 2* vertices and a unique vertex
at level k. This vertex at level & is called the handle.

*21. Suppose that T is an S-tree with handle v. Show that
T can be obtained from disjoint trees Ty, T}, ..., Ti—1,
where v is not in any of these trees, where T; is an S;-tree
fori =0,1,..., k— 1, by connecting v to ryp and r; to
riqpfori =0,1,...,k—2.

The listing of the vertices of an ordered rooted tree in level

order begins with the root, followed by the vertices at level 1

from left to right, followed by the vertices at level 2 from left

to right, and so on.

22. List the vertices of the ordered rooted trees in Figures 3
and 9 of Section 10.3 in level order.

23. Devise an algorithm for listing the vertices of an ordered
rooted tree in level order.

*24. Devise an algorithm for determining if a set of universal
addresses can be the addresses of the leaves of a rooted
tree. ’

25. Devise an algorithm for constructing a rooted tree from
the universal addresses of its leaves.

746 10/ Trees

A cut set of a graph is a set of edges such that the removal of

these edges produces a subgraph with more connected com-

ponents than in the original graph, but no proper subset of this

set of edges has this property.

26. Show that a cut set of a graph must have at least one edge
in common with any spanning tree of this graph.

A cactus is a connected graph in which no edge is in more

than one simple circuit not passing through any vertex other

than its initial vertex more than once or its initial vertex other

than at its terminal vertex (where two circuits that contain the

same edges are not considered different).

27. Which of these graphs are cacti?

a)

b)

28. Is a tree necessarily a cactus?

29. Show that a cactus is formed if we add a circuit con-
taining new edges beginning and ending at a vertex of a
tree.

¥30. Show that if every circuit not passing through any vertex
other than its initial vertex more than once in a connected
graph contains an odd number of edges, then this graph
must be a cactus.

A degree-constrained spanning tree of a simple graph G is

a spanning tree with the property that the degree of a vertex

10-64

in this tree cannot exceed some specified bound. Degree-
constrained spanning trees are useful in models of transporta-
tion systems where the number of roads at an intersection is
limited, models of communications networks where the num-
ber of links entering a node is limited, and so on.

In Exercises 31-33 find a degree-constrained spanning
tree of the given graph where each vertex has degree less
than or equal to 3, or show that such a spanning tree does not
exist.

31. 32.
a 4 c
d ¢ b f
e
33. a b c
e
d f
i h -g

34. Show that a degree-constrained spanning tree of a sim-
ple graph in which each vertex has degree not exceeding
2 consists of a single Hamilton path in the graph.

35. A tree with n vertices is called graceful if its vertices
can be labeled with the integers 1, 2, ..., n such that the
absolute values of the difference of the labels of adja-
cent vertices are all different. Show that these trees are

graceful.
b) ¢ I —

T

A caterpillar is a tree that contains a simple path such that
every vertex not contained in this path is adjacent to a vertex
in the path.

36. Which of the graphs in Exercise 35 are caterpillars?

a)——.

37. How many nonisomorphic caterpillars are there with six
vertices?

**38. a) Prove or disprove that all trees whose edges form a

single path are graceful.
b) Prove or disprove that all caterpillars are graceful.

0-65

9. Suppose that in a long bit string the frequency of occur-
rence of a 0 bit is 0.9 and the frequency of a 1 bit is 0.1
and bits occur independently.

a) Construct a Huffman code for the four blocks of two
bits, 00, 01, 10, and 11. What is the average number
of bits required to encode a bit string using this code?

b) Construct a Huffman code for the eight blocks of three
bits. What is the average number of bits required to
encode a bit string using this code?

0. Suppose that G is a directed graph with no circuits. De-
scribe how depth-first search can be used to carry out a
topological sort of the vertices of G.

1. Suppose that e is an edge in a weighted graph that is in-
cident to a vertex v such that the weight of e does not
exceed the weight of any other edge incident to v. Show
that there exists a minimum spanning tree containing this
edge.

2. Three couples arrive at the bank of a river. Each of the
wives is jealous and does not trust her husband when he
is with one of the other wives (and perhaps with other
people), but not with her. How can six people cross to
the other side of the river using a boat that can hold
no more than two people so that no husband is alone

_omputer Projects

*43,

44,

Computer Projects 747

with a woman other than his wife? Use a graph theory
model.

Show that if no two edges in a weighted graph have the
same weight, then the edge with least weight incident to
a vertex v is included in every minimum spanning tree.

Find a minimum spanning tree of each of these graphs
where the degree of each vertex in the spanning tree does
not exceed 2.

Nrite programs with these input and output.

1. Given the adjacency matrix of an undirected simple graph,
determine whether the graph is a tree.

2. Given the adjacency matrix of a rooted tree and a vertex in
thetree, find the parent, children, ancestors, descendants,
and level of this vertex.

3. Given the list of edges of a rooted tree and a vertex in
the tree, find the parent, children, ancestors, descendants,
and level of this vertex.

4. Given a list of items, construct a binary search tree con-
taining these items.

5. Given a binary search tree and an item, locate or add this
item to the binary search tree.

6. Given the ordered list of edges of an ordered rooted tree,
find the universal addresses of its vertices.

7. Given the ordered list of edges of an ordered rooted tree,
list its vertices in preorder, inorder, and postorder.

8. Given an arithmetic expression in prefix form, find its
value.

9. Given an arithmetic expression in postfix form, find its
value.

0. Given the frequency of symbols, use Huffman coding to
find an optimal code for these symbols.

11.

12.

13.

14.

*15.

*16.

17.

18.

Given an initial position in the game of nim, determine
an optimal strategy for the first player.

Given the adjacency matrix of a connected undirected
simple graph, find a spanning tree for this graph using
depth-first search.

Given the adjacency matrix of a connected undirected
simple graph, find a spanning tree for this graph using
breadth-first search.

Given a set of positive integers and a positive integer N,
use backtracking to find a subset of these integers that
have N as their sum.

Given the adjacency matrix of anundirected simple graph,
use backtracking to color the graph with three colors, if
this is possible.

Given a positive integer n, solve the n-queens problem
using backtracking,

Given the list of edges and their weights of a weighted
undirected connected graph, use Prim’s algorithm to find
a minimum spanning tree of this graph.

Given the list of edges and their weights of a weighted
undirected connected graph, use Kruskal’s algorithm to
find a minimum spanning tree of this graph.

748

10/ Trees

Computations and Explorations

10-66

Use a computational program or programs you have written to do these exercises.

1.

Display all trees with six vertices.

2. Display a full set of nonisomorphic trees with seven

*3.

vertices.

Construct a Huffman code for the symbols with ASCII
codes given the frequency of their occurrence in represen-
tative input.

. Compute the number of different spanning trees of K, for

n=1,2,3,4,5,6. Conjecture a formula for the number
of such spanning trees whenever » is a positive integer.

. Compare the number of comparisons needed to sort lists

of n elements for n = 100, 1000, and 10,000, where the
elements are randomly selected positive integers, using the

Writing Projects

*7.

selection sort, the insertion sort, the merge sort, and the
quick sort.

. Compute the number of different ways n queens can be

arranged on an n x n chessboard so that no two queens
can attack each other for all positive integers n not
exceeding 10.

Find a minimum spanning tree of the graph that connects
the capital cities of the 50 states in the United States to
each other where the weight of each edge is the distance
between the cities.

. Draw the complete game tree for a game of checkers on a

4 x 4 board.

Respond to these with essays using outside sources.

. Explain how Cayley used trees to enumerate the number

of certain types of hydrocarbons.

. Define AVL-trees (sometimes also known as height-

balanced trees). Describe how and why AVL-trees are
used in a variety of different algorithms.

. Define quad trees and explain how images can be repre-

sented using them. Describe how images can be rotated,
scaled, and translated by manipulating the corresponding
quad tree.

. Define a heap and explain how trees can be turned into

heaps. Why are heaps useful in sorting?

. Describe dynamic algorithms for data compression based

on letter frequencies as they change as characters are suc-
cessively read, such as adaptive Huffman coding.

. Explain how alpha-beta pruning can be used to simplify

the computation of the value of a game tree.

. Describe the techniques used by chess-playing programs

such as Deep Blue.

. Define the type of graph lenown as a mesh of trees.

10.

11.

12.

13.

14.

15.

16.

Explain how this graph is used in applications to very
large system integration and parallel computing.

. Discuss the algorithms used in IP multicasting to avoid

loops between routers.

Describe an algorithm based on depth-firstsearch for find-
ing the articulation points of a graph.

Describe an algorithm based on depth-first search to find
the strongly connected components of a directed graph.
Describe the search techniques used by the crawlers and
spiders in different search engines on the Web.

Describe an algorithm for finding the minimum spanning
tree of a graph such that the maximum degree of any ver-
tex in the spanning tree does not exceed a fixed constant k.
Compare and contrast some of the most important sorting
algorithms in terms of their complexity and when they are
used.

Discuss the history and origins of algorithms for con-
structing minimum spanning trees.

Describe algorithms for producing random trees.

Index

Absorption laws
for Boolean algebra, 753, 754
for lattices, 585
for propositions, 24
for sets, 124
Abstract definition of Boolean algebra, 755
Academic papers, 593
Academy, Plato’s, 2
Acceptance, deferred, 179
Accepted language, 806
Accepted strings, 806
Ackermann, Wilhelm, 310
Ackermann’s function, 310
Acquaintanceship graph, 592—-593
pathsin, 623
Actors, 593
Ada, Augusta (Countess of Lovelace), 25, 27
Adapting existing proofs, 96
Adders, 764-765
full, 764, 781
half, 764, 781
Addition
of functions, 135-136
of geometric progressions, 270-271
of integers, 222-224
of matrices, 247-248
of multisets, 132
of subsets, 732
Addition rule of inference, 66
Additive Compatibility Law, A-2
Address system, universal, 711
Adjacency list, 611
Adjacency matrices, 612614, 676

counting paths between vertices by, 628—629

Adjacent cells, 768

Adjacent vertices, 598, 600, 675
Adjective, 786

Adleman, Leonard, 241, 242
Adverb, 786

Affine transformation, 208

Airline system, weighted graphs modeling, 648

Alcuin of York, 632
Aleph null, 158
Alexander the Great, 2
Algebra, Boolean, S, 28
abstract definition of, 755
definition of, 781
identities of, 752-754, 755
ALGOL, 792
ALGOL 60, 792
Algorithm(s), 167-177
approximation, 655
for base b expansion, 219, 221
for binary search tree, 695-707
for Boolean product of zero-one matrices,
252-254
bubble sort, 173
change-making, 174-176
for coloring graphs, 671, 674
complexity of, 193-199
average-case, 195, 430433
of binary search algorithms, 194-195
of breadth-first search algorithms, 731
of bubble sort, 194-195
computational, 193
of Dijkstra’s algorithm, 653
constant, 197
of depth-first search algorithms, 729
exponential, 197

factorial, 197
of finding maximum element of set, 194
of insertion sort, 196
linear, 197
of linear search algorithms, 194
logarithmic, 197
of merge sort, 479
polynomial, 197
of searching algorithms, 194-195, 197
of sorting algorithms, 195-196
space, 193
time, 193-196
worst-case, 194, 195-196
computer time used by, 198-199
for computing div and mod, 225-226
deferred acceptance, 179, 293
definition of, 168
Dijkstra’s, 649-653, 676
divide-and-conquer, 474, 514
division, 202-203, 257
estimating number of operations of, 180182
Euclidean, 227-229, 258, 298
extended, 232, 246
for Euler circuits, 636—637
for Euler paths, 637-638
for evaluating polynomials, 199
for fast integer multiplication, 475476
for fast matrix multiplication, 475
for Fibonacci numbers, 316-317
for finding maximum element in
sequence, 169
for finding minimum element in sequence, 259
Fleury’s, 637, 646
Floyd’s, 656657
for generating combinations, 384-385
for generating permutations, 382—384
greedy, 174-176, 275-276, 703, 738, 744
history of word, 168
Huffman coding, 702—703
inorder traversal, 718
insertion sort, 174
for integer addition, 222-224
for integer multiplication, 224-226
for integer operations, 222-226
integers and, 219-229
iterative, for Fibonacci numbers, 317
Kruskal’s, 739-740, 744
for matrix multiplication, 249—250
merge sort, 317-321
for minimum spanning trees, 738-741
for modular exponentiation, 226
Monte Carlo, 411413
NAUTY, 618
optimal, 200
parallel, 606
postorder traversal, 718
preorder traversal, 716
Prim’s, 738-739, 744
probabilistic, 393, 411-413, 442
properties of, 169
recursive, 311-321, 329
binary search, 314
for computing a*, 312
for computing greatest common divisor, 313
correctness of, 315-317
for factorials, 197
for Fibonacci numbers, 316
linear search, 314
modular exponentiation, 313

searching, 170, 257
binary, 171, 257, 474
Boolean, 13
breadth-first, 729-731, 744
complexity of, 194-195, 197
depth-first, 726729, 744
applications with, 727-729
in directed graphs, 732-734
linear, 170, 256, 257
average-case complexity of, 431—432
complexity of, 194, 197
recursive sequential, 314
ternary, 178
Web page, 13
serial, 606
shortest-path, 649—653
Sollin’s, 743
sorting, 172-174
complexity of, 195-196
topological, 576-578, 582
for spanning trees, 738—-741
topological sorting, 577
for transitive closure, 550
traversal, 712-719
Warshall’s, 550553, 582
Alice in Wonderland (Carroll), 44
Alpha-beta pruning, 707, 748
Alphabet, 787, 838
Alphanumeric character, 340
Ambiguous grammar, 840
Analytic Engine, 27
Ancestors of vertex, 686, 743
AND, 13, 15-16
AND gate, 761, 781
Antecedent, 6
Antichain, 585
Antisymmetric relation, 523-524, 581
representing
using digraphs, 542
using matrices, 538-539
Appel, Kenneth, 668, 669
Application(s)
of backtracking, 731-732
of Bayes’ Theorem, 419-421
of congruences, 205-207
of graph theory, 592-595, 604-607, 623-625,
627, 638, 643, 671-672
of graphs colorings, 671-672
of inclusion-exclusion, 505-512
of number theory, 231-244
of pigeonhole principle, 351-353
of trees, 695-707
Approximation algorithm, 655
Archimedean property, A—5
Archimedes, A4
Archimedes’ screw, A—4
Argument, 44, 63
Cantor diagonalization, 160
form, 64
valid, 64
Aristotle, 2
Arithmetic
computer, with large integers, 237-238
Fundamental Theorem of, 211, 257, 285-286
matrix, 247-248
modular, 203-205
Arithmetic mean, 95, 282
Arithmetic progression, 151
Arithmeticorum Libri Duo (Maurolico), 265

12-1

12-2

Array
linear, 606, 607
two-dimensional, 606
Arrow, Peirce, 29
Ars Conjectandi (Bernoulli), 407
Art Gallery
problem, 675
Theorem, 675
Art of Computer Programming, T he (Knuth), 172
Article, 786
Articulation points, 625
Artificial intelligence, 332
fuzzy logic in, 19
fuzzy sets in, 132-133
Assertion
final, 323, 329
initial, 323, 329
Assignment of jobs, 513
Assignment, stable, 179, 293
optimal, 293
Assignment statements, A—10 — A—11
Assignments, frequency, 672
Associated homogenous recurrence relations, 467
Associative laws
for addition, A-1
for Boolean algebra, 753, 755
for lattices, 585
for multiplication, A-1
for propositions, 24
for sets, 124
Asymmetric relation, 528
Asymptotic functions, 146, 192
Asynchronous transfer mode (ATM), 144
ATM cells, 144
AT&T network, 625
Automated theorem proving, 108
Automaton
finite-state, 805-811
deterministic, 807-811, 839
nondeterministic, 811-814, 820-821,
822, 839
regular sets recognized by, 819-821
set not recognized by, 824825
linear bounded, 825
pushdown, 825
quotient, 817
Average-case complexity of algorithms, 195,
430433
Avian influenza, 424
AVL-trees, 748
Axiom(s), 75, A-1 - A-5
Completeness, A—2
field, A-1 — A-2
of Mathematical Induction, A-5
order, A-2
in proving basic facts, A-2 — A-5
for real numbers, A-1 — A-2
for set of positive integers, A—5

Babbage, Charles, 27
Bachmann, Paul Gustav Heinrich, 182
Back edges, 728
Backtracking, 726-729, 744
applications of, 731-732
in directed graphs, 733
Backus, John, 792
Backus-Naur form (BNF), 792-793, 839
Backward differences, 460
Backward reasoning, 94
Bacon, Kevin, 623624
Bacon number, 623
Bacteria, 457
Balancedrootedtrees, 691, 743
Balanced strings of parentheses, 332
Balanced ternary expansion, 230
Bandwidth of graph, 680
Bar
chocolate, 292
Ziegler’s Giant, 184

Barber paradox, 19-20
Base b
Miller’s test for, 245
strong pseudoprime to, 245
Base b expansion, 219, 221
Base conversion, 220
BASIC, 340
Basis step, 264, 284, 299, 328, 690, 706
Basis, vertex, 632
Basketball, 382
Bayes, Thomas, 418, 420
Bayes’ Theorem, 417425
generalized, 420
Bayesian spam filters, 421-423
Beaver, busy, 835
Begging the question, 84
Begin statements, A-11, A-14
Bell,E. T, 566
Bell numbers, 566
Bernoulli family tree, 684
Bernoulli, James, 406, 407
Bernoulli trial, 428, 442
and binomial distribution, 406408
mutually independent, 378
Bernoulli’s inequality, 280
Biconditional, 9-10
logical equivalences for, 25
Bicycle racers, 424
Bidirectional bubble sort, 173
Big-O notation, 180186
Big-Omega notation, 182, 189-190
Big-Theta notation, 182, 189-190
Bigit, 16
Bijective function, 138, 163
Binary coded decimal, 231
Binary coded decimal expansion, 774
Binary digit
origin of term, 15
Binary expansion, 219
Binary insertion sort, 172, 174, 179
Binary relation, 519, 581
Binary search algorithm, 171, 257, 474
complexity of, 194-195, 197
recursive, 314
Binary search trees, 695-698, 743
Binary trees, 302—304, 686, 687
definition of, 743
extended, 302
full, 304-305
height of, 306
number of vertices of, 306
with prefix code, 700-701
Binding variables, 38-39
Binit, 16
Binomial coefficients, 357, 363368, 387
extended, 486
Binomial distribution, 406—408
Binomial expression, 363
Binomial Theorem, 363-365, 387
extended, 486
Binomial trees, 745
Bipartite graphs, 602-604, 675
coloring of , 603
Bird flu, 424
Birthday problem, 409411
Bit, 104
origin of term, 15, 16
Bit operations, 15, 104
Bit strings, 15, 104, 129-130
with an odd number of 1s and ending with at
least two 0Os, 809
counting, 336
without consecutive 0s, 454—455
decoding, 700-701
generating next largest, 385
in interstellar communication, 424
length of , 15, 454—455
Bitwise operators, 15-16, 104
Blocks of statements, A—11

Index I-3

BNF (Backus-Naur form), 792-793, 839
Boat, 632
Bonferroni’s inequality, 415
Book number of graph, 682
Boole, George, 3, 5, 420, 749
Boolean algebra, 5, 28, 752-755
abstract definition of, 755
definition of, 781
identities of, 752-754, 755
Boolean expressions, 750-752, 781
dual of, 754, 781
Boolean functions, 749-755, 781
dual of, 754, 781
functionally complete set of operators for, 759
implicant of, 770
minimization of, 766—779, 781
representing, 757-759
self-dual, 782
threshold, 783
Boolean power (of zero-one matrices), 252-254
Boolean product, 749-750, 751, 757-759, 781
of zero-one matrices, 252-254,257
Boolean searches, 13
Boolean sum, 749-750, 751, 757-759, 781
Boolean variable, 15, 104, 750, 758, 781
Boole’s inequality, 415
Boruvka, Otakar, 740
Bots, 734
Bottom-up parsing, 791
Bound
greatest lower, 582
of poset, 574
least upper, 582, A-2
of poset, 574
lower
of lattice, 586
of poset, 574, 582
upper, A-2
of lattice, 586
of poset, 574, 582
Bound variable, 38-39
Bounded lattices, 586
Boxes, distributing objects into, 376-379
distinguishable, 376
indistinguishable, 376
Breadth-first search, 729-731, 744
Bridge, in graphs, 625
Bridge problem, Konigsberg, 633-634, 636, 638
B-tree of degree k, 745
Bubble sort, 173, 257
bidirectional, 173, 259
variant of, 173, 219
worst-case complexity of, 194-195
Bug, computer, 811
Buoyancy, principle of, A—4
Busy beaver function, 835
Butane, 688
Bytes, 220

C programming language, 346, 559
Cabbage, 632
Cactus, 746
CAD programs, 772
Caesar, Julius, 207
Caesar cipher, 207-208
Calculus

predicate, 31

propositional, 2
Call graphs, 594

connected components of, 625
Canterbury Puzzles, The (Dudeney), 454
Cantor diagonalization argument, 160
Cantor digits, 386
Cantor expansion, 231, 386
Cantor, Georg, 111, 113, 160
Card hands, 358-359, 376-377
Cardinality

aleph null, 158

of set, 113, 116, 158-160

I-4 Index

Carmichael, Robert Daniel, 240
Carmichael numbers, 240-241, 257
Carroll, Lewis (Charles Dodgson), 44-45, 50
Carry, 222
Cartesian products, 117-118
Cases, proofs by, 86-90, 105
Cash box, 372-373
Catalan numbers, 456
Caterpillar, 746
Cayley, Arthur, 683, 688
Ceiling function, 143-145, 163
Celebrity problem, 282
Cells, adjacent, 768
Center, 695
Chain, 585
Chain letter, 691
Change-making algorithm, 174-176
Characteristic equation, 461
Characteristic function, 148
Characteristic roots, 461
Chebyshev, Pafnuty Lvovich, 438
Chebyshev’s inequality, 438439, 442
Checkerboard, tiling of, 97-102, 277, 283
Cheese, in Reve’s puzzle, 454
Chen, J.R,, 215
Chess, game tree for, 707
Chessboard
knight’s tour on, 647
n-queens problem on, 731-732
squares controlled by queen on, 679
Chi (Greek letter), 667
Chickens, 680
Child of vertex, 686, 743
Chinese meal, preparing, 585
Chinese postman problem, 638, 682
Chinese Remainder Theorem, 235-237, 258
Chocolate bar, 292
Chomp, 91, 292, 586
Chomsky, Avram Noam, 785, 789, 790
Chomsky classification of grammars,
789-790
Chromatic number, 668, 676
edge, 674
of graph, 667
k-critical, 674
Chung-Wu Ho, 290
Church, Alonzo, 833
Church-Turing thesis, 833
Cipher
affine, 208
Caesar, 207-208
RSA, 241-244
shift, 208
Circuits
combinational, 761-763
depth of, 766
examples of, 763—-764
minimization of , 766—779
in directed graph, 546, 582
Euler, 633-638, 676
in graph, 622
Hamilton, 638-643, 676
multiple output, 764
simple, 622
Circularreasoning, 84, 105
Circular relation, 584
Civil War, 32
Class
congruence, 204
equivalence, 558-559, 582
definition of, 558
and partitions, 559-562
representative of , 558
NP, 197
P, 197
Class A addresses, 341
Class B addresses, 341
Class C addresses, 341
Class D addresses, 341

Class E addresses, 341
Clauses, 68
Clique, 678
Closed walk, 622
Closest-Pair Problem, 479482
Closure, Kleene, 805, 817
Closure laws
for addition, A-1
for multiplication, A—-1
Closures of relations, 544-553, 582
reflexive, 544, 582
symmetric, 545, 582
transitive, 544, 547-550, 582
computing, 550-553
Coast Survey, U. S., 32
COBOL, 792, 811
Codes, Gray, 642-643
Codes, prefix, 700-703, 743
Codeword enumeration, 455456
Coding, Huffman, 701-703, 744
Codomain of function, 134, 149, 163
Coefficient(s)
binomial, 357, 363-368, 387
extended, 486
constant
linear homogenous recurrent relations with,
460, 461467, 514
linear nonhomogenous recurrent relations
with, 467471, 514
multinomial, 382
Coins, change using fewest, 175-176
Collaboration graphs, 593-594

paths in, 623
Collatz problem, 101-102
Collision, 206

in hashing functions, probability of, 410411
Coloring

of bipartite graphs, 603

chromatic number in, 667

of graphs, 666672, 676

of maps, 666—667
Column of matrix, 247
Combinations, 357-360

of events, 396-398, 403-404

generating, 384-385

linear, 232

with repetition, 371-375
Combinational circuits, 761-763

depthof, 766

examplesof, 763-764

minimization of , 766779
Combinatorial identities, 364—368
Combinatorial proof, 359, 386
Combinatorics, 335, 352, 378, 386
Comments in pseudocode, A-11 — A-12
Common difference, 151
Common divisor, greatest, 215-217
Common errors

in exhaustive proofs, 90

in proof by cases, 90
Common multiple, least, 216, 217
Common ratio, 150
Commutative laws

for addition, A-1

for Boolean algebra, 753, 755

for lattices, 585

for multiplication, A-1

for propositions, 26

for sets, 124
Comparable elements in poset, 567, 582
Compatible total ordering, 576, 582
Compatibility laws, A-2
Compilers, 559, 810
Complement, 749, 781

of Boolean function, 751

double, law of, in Boolean algebra, 753,

755,757
of fuzzy set, 132
one’s, 230

of set, 123, 163
two’s, 230-231
Complement laws, for sets, 124
Complementary event, 396
Complementary graph, 611
Complementary relation, 528
Complementation law, for sets, 124
Complemented lattice, 586, 755
Complete bipartite graph, 604, 675
Complete graphs, 601, 675
Complete induction, 284
Complete m-ary tree, 694
Complete m-partite graph, 678
Complexity of algorithms, 193-199
average-case, 109, 430-433
of binary search algorithms, 194-195
of breadth-first search algorithms, 731
of bubble sort, 194-195
computational, 193
of Dijkstra’s algorithm, 653
constant, 197
of depth-first search algorithms, 729
exponential, 197
factorial, 197
of finding maximum element of set, 194
of insertion sort, 196
linear, 197
of linear search algorithms, 194
logarithmic, 197
of merge sort, 479
polynomial, 197
of searching algorithms, 194-195, 197
of sorting algorithms, 195-196
space, 193
time, 193-196
worst-case, 194, 195-196
Complexity of merge sort, 479
Components of graphs, connected, 625-626
strongly, 627, 676
Composite integers, 189-190, 210, 211,
217,257
Composite key, 532, 582
Composite of relations, 526—-527, 581
Composition rule, 324
Compositions of functions, 139-141, 163
Compound interest, 451
Compound propositions, 3, 10-11, 21, 22, 104
consistent, 104
disjunctive normal form of, 29
dual of, 29
equivalences of, in Boolean algebra, 750
satisfiable, 30
well-formed formula for, 301
Computable function, 163, 835
Computation, models of, 785-837
Computational complexity of algorithms, 193
of Dijkstra’s algorithm, 653
Turing machine in making precise, 833
Computational geometry, 288-290, 479481
Computer arithmetic, with large integers,
237-238
Computer debugging, 811
Computer file systems, 689
Computer network, 590
with diagnostic lines, 591
interconnection networks, 606—-607
local area networks, 605-606
multicasting over, 726
with multiple lines, 590
with multiple one-way lines, 592
with one-way lines, 591
Computer programming, 792
Computer programming languages, 68, 135
Computer representation, of sets, 129—-130
Computer science, 792
Computer time used by algorithms, 198-199
Computer virus transmission, 389
Computer-aided design (CAD) programs, 772
Concatenation, 300, 804, 839

124

Conclusion, 6,44, 64
fallacy of affirming, 69
Concurrent processing, 595
Conditional constructions, A-12 — A-13
Conditional probability, 400, 404—405, 442
Conditional statement, 6
for program correctness, 324-326
Conditions
don't care, 774-775
initial, 450, 513
Congruence class, 204
Congruence modulo m, 203-204, 556, 558, 582
inverse of, 234
Congruences, 205-207
linear, 234-235, 257
Conjecture, 75, 105
3x +1,101-102
and counterexamples, 96-97
Frame’s, 460
Goldbach’s, 214-215
and proof, 96-97
twin prime, 215
Conjunction, 4-5, 104, 781
distributive law of disjunction over, 23
Conjunction rule of inference, 66
Conjunctive normal form, 758
Connected components of graphs, 625-626
strongly, 627, 676
Connected graphs, 621-629
directed, 626627
planar simple, 659-663
strongly, 626
undirected, 624—-626
weakly, 626
Connecting vertices, 598
Connectives, 4
Connectivity relation, 547, 582
Consecutive composite integers, 217
Consequence, 6
Consistency, of system specifications, 12
Consistent compound propositions, 104
Constant coefficients
linear homogenous recurrent relations with,
460, 461467, 513
linear nonhomogenous recurrent relations with,
467471, 514
Constant complexity of algorithms, 197
Construction of the real numbers, A-5
Constructions
conditional, A-12 — A-13
loop, A-13 - A-14
Constructive existence proof, 91, 105
Contain, 112
Context-free grammars, 789, 839
Context-free language, 789
Context-sensitive grammars, 789
Contingency, 21, 104
Contradiction, 21, 80
proofs by, 80-83
Contrapositive, of implication, 8
Converse
of directed graph, 611
of implication, 8, 104
Convex polygon, 288
Cookie, 373
Corollary, 75, 105
Correctness
of programs, 322-328, 329
conditional statements for, 324-326
loop invariants for, 326—327
partial, 323
program verification for, 323
rules of inference for, 323-324
of recursive algorithms, 315-316
Correspondences, one-to-one, 136, 160
Countability, of rational numbers, 158, 163, 218
Countable set, 158
Counterexamples, 34, 83
conjecture and, 96-97

Counting, 335-391, 449-518
basic principles of, 335-340
bit strings, 336
without consecutive 0s, 454455
Boolean functions, 751
combinations, 357-360
derangements, 510, 514
by distributing objects into boxes, 376—379
functions, 336-337
generating functions for, 488—493
Internet addresses, 341
one-to-one functions, 337
onto functions, 509-510, 514
passwords, 340
paths between vertices, 628—629
permutations, 355-357
pigeonhole principle and, 347-353
reflexive relations, 524
relations, 522
with repetition, 370-371
subsets of finite set, 338
telephone numbers, 337
tree diagrams for, 343-344
variable names, 340
Countrapositive, of implication, 104
Course in Pure Mathematics, A
(Hardy), 93
Covariance, 442
Covering relation, 579
Covers, 579
CPM (Critical Path Method), 587
Crawlers, 734
Cricket, 93
Critical Path Method (CPM), 587
Crossing number, 666
Cryptography, 207-208
private key, 241
public key, 231, 241-244
Cunningham numbers, 214
Cut edge, 625
Cut set of graph, 746
Cut vertices, 625
Cycle
in directed graph, 546, 582
with n vertices, 601
Cylinder, 769
Czekanowski, Jan, 740

Data compression, 701
Database
composite key of, 532
intension of, 531
primary key of, 531
records in, 531
relational model of, 531-532, 581
Database query language, 535-536
Datagrams, 346-347
Datalogy, 792
Datatype, 113
de Bruijn sequences, 682
de Méré, Chevalier, 400
De Morgan, Augustus, 22, 25, 668, 669
De Morgan’s laws
for Boolean algebra, 753, 757
for propositions, 22, 25-26
proving by mathematical induction, 274-275
for quantifiers, 4041
forsets, 124-126
Debugging, 811
Decimal, binary coded, 231
Decimal notation, 168, 219
Decision problems, 834
Decision trees, 698—700, 743
Decreasing function, 137
Decryption, 208, 231, 257
RSA, 243
Deductive reasoning, 264
Deep-Blue, 707, 748
Deferred acceptance algorithm, 179, 293

Index I-5

Definition
domain of, 149
recursive, 263, 294-308
Degree
of linear homogenous recurrence relations, 461
of membership, 132
of n-ary relations, 530
of region, 661
of vertex in undirected graph, 598
Degree-constrained spanning tree, 746
Delay machine, 799-800
Dense
graph, 614
poset, 581
Dependency notation, 784
Depth of combinatorial circuit, 766
Depth-first search, 726-729, 744
applications with, 732-734
in directed graphs, 732-734
Derangements, 510-512, 514
number of, 510, 514
Derivable form, 787
Derivation, 787
Derivation trees, 790-792, 839
Descartes, René, 117
Descendants of vertex, 686, 743
Detachment, law of , 65
Deterministic finite-state automata,
807-811, 839
Deviation, standard, 436
Devil’s pair, 621
Diagnostic test results, 419-420
Diagonal matrix, 255
Diagonal of a polygon, 288
Diagonal relation, 545
Diagonalization argument, 160
Diagrams
Hasse, 571-572, 574, 575, 582
state, for finite-state machine, 798
tree, 343-344, 386
Venn, 114, 115, 122, 123, 163
Diameter of graph, 680
Dice, 394
Dictionary ordering, 382
Die, 416, 436437
dodecahedral, 443
octahedral, 443
Difference, A—6
backward, 460
common, 151
forward, 516
o fmultisets, 132
of sets, 123, 163
symmetric, 131, 163
Difference equation, 460
Digits
binary
origin of term, 15, 16
Cantor, 386
Digraphs, 582, 591, 675
circuit (cycle) in, 546, 582
connectedness in, 626627
converse of, 611
depth-first search in, 732—-734
edges of, 591, 600-601
Euler circuit of, 634
loops in, 541, 582
paths in, 546-547, 582, 676
representing relations using, 541-542
self-converse, 679
vertex of, 590, 600
Dijkstra, Edsger Wybe, 649
Dijkstra’s algorithm, 649-653, 676
Dimes, 175-176
Diophantus, 101, 239
Dirac, G. A., 641
Dirac’s Theorem, 641
Direct proof, 76—77, 105
Directed edges, 592, 600-601, 675

I-6 Index

Directed graphs, 582, 591, 675
circuit (cycle) in, 546, 582
connectedness in, 626—627
converse of, 61.1
depth-first search in, 732-734
edges of, 591, 600—601
Euler circuit of, 634
loops in, 541, 582
paths in, 546-547, 582, 676
representing relations using, 541-542
self-converse, 679
vertex of, 590, 600
Directed multigraph, 591, 675
paths in, 623
Directly derivable form, 787
Dirichlet drawer principle, 348
Dirichlet, G. Lejeune, 348
Discours (Descartes), 117
Discourse, universe of, 34
Discrete mathematics, definition of, vii, viii
Discrete probability, 393447, 442
assigning, 401-403
of collision in hashing functions, 410411
of combinations of events, 396-398, 403-404
conditional, 400, 404405, 442
finite, 394-396
Laplace’s definition of, 393
Disjoint set, 122
Disjunction, 4-5, 104, 781
associative law of, 24
distributive law of, over conjunction, 23
Disjunctive normal form
for Boolean variables, 758
for propositions, 29
Disjunctive syllogism, 66
Distance
between distinct vertices, 680
between spanning trees, 737
Distinguishable
boxes, 376
objects, 376
Distinguishable strings, 827
Distributing objects into boxes, 376-379
Distribution
binomial, 406—408
probability, 401
of random variable, 408, 442
geometric, 433-434, 442
uniform, 402, 442
Distributive lattice, 586, 755
Distributive laws
for Boolean algebra, 752, 753, 755
for propositions, 23, 24
for sets, 124
div, 202, 225-226
Divide-and-conquer
algorithms, 474, 514
recurrence relations, 474-482
Dividend, 214
Divides, 201
Divine Benevolence (Bayes), 420
Divisibility facts, proving, by mathematical
induction, 273
Divisibility relation, 567
Division
of integers, 200-208
trial, 214
Division algorithm, 202-203
Divisor, 214
greatest common, 215-217, 232-234, 258
DNA sequencing, 638
Dodecahedral die, 443
Dodgson, Charles (Lewis Carroll), 44-45
Dogs, 17
Domain
of definition, 149
of discourse, 34
of a function, 134, 149, 163
of n-ary relation, 530

of a quantifier, 34
of relation, 530
universe of, 34
Dominating set, 679
Domination laws
for Boolean algebra, 753
for propositions, 27
for sets, 124
Dominos, 97, 266
Don 't care conditions, 774-775
Double complement, law of , in Boolean algebra,
753,757
Double negation law, for propositions, 26
Double summations, 156
Drug testing, 424
Dual
of Boolean expression, 754
of Boolean function, 754
of compound proposition, 29
of poset, 579
Dual graph, 667
Duality in lattice, 587
Duality principle, for Boolean identities, 754
Dudeney, Henry, 454

Ear(s), 292
nonoverlapping, 292
Earth, 424
EBNF (Extended Backus-Naur form), 796
Eccentricity of vertex, 695
Ecology, niche overlap graph in, 592
Edge chromatic number, 674
Edge coloring, 674
Edge vertex, 541
Edges
cut, 625
directed, 592, 600, 675
of directed graph, 591, 600-601
of directed multigraph, 591
endpoints of, 598
incident, 598, 676
of multigraph, 590
multiple, 590, 591, 675
of pseudograph, 591
of simple graph, 590, 611
undirected, 592, 675
of undirected graph, 592, 600
Egyptian (unit) fraction, 331
Einstein, Albert, 21
Electronic mail, 421
Elementary subdivision, 663, 676
Elements, 112, 163
comparable, in partially ordered set, 567, 582
equivalent, 556
fixed, 442
greatest, of partially ordered set, 573, 582
incomparable, in partially ordered set, 567, 582
least, of partially ordered set, 573, 582
of matrix, 247
maximal, of partially ordered set, 572, 582
minimal, of partially ordered set, 572, 573, 582
Elements (Euclid), 212
El ts of Mathematical Logic
(Lukasiewicz), 721
Ellipses (...), 112
Empty folder, 114
Empty set, 114, 163
Empty string, 151, 787
Encryption, 207, 231, 257
RSA, 242-243
Encyclopedia of Integers Sequences, T he (Sloane
and Plouffe), 153
End statements, A-11, A-14
Endpoints of edge, 598
English sentences
translating logical expressions to, 42—-43
translating to logical expressions, 11-12,
42-43, 56-57

12-5

Entry of matrix, 247
Enumeration, 335, 386
codeword, 455-456
Equality, of sets, 113, 163
Equation
characteristic, 461
difference, 460
Equivalence classes, 558-559, 582
definition of, 558
and partitions, 559—-562
representative of, 558
Equivalence, proofs of, 82-83
Equivalence relations, 555-562, 582
definition of, 555
Equivalent Boolean expressions, 750, 751
Equivalent elements, 556
Equivalent finite-state automata, 806,
809-811
Equivalent propositions, 8, 21-30
Eratosthenes, 507-508
sieve of, 210, 514
Erdos number, 584, 623, 624
Erdos Number Project, 623
Erdoés, Paul, 584, 623
Errors, in proofs, 83—-84
by mathematical induction, 278-279
Essential prime implicant, 770, 781
Euclid, 212, 227, 228
Euclidean algorithm, 227-229, 258, 298
extended, 232, 246
Euler circuits, 633-638, 676
Euler ¢-function, 218
Euler, Leonhard, 214, 633, 635
Euler paths, 633-638, 676
Euler’s formula, 659-663, 676
“Eureka,” A—4
Evaluation functions, 707
Even integer, 77
Event(s), 394
combinations of , 396—398, 403—404
complementary, 396
independent, 399, 405-406, 442
mutually independent, 444
Exams, scheduling, 671, 672
Exclusion rule, 299
Exclusive or, 5, 104
Exhaustive proof, 87
Existence proofs, 91-92, 105
constructive, 91
nonconstructive, 91
Existential generalization, 70, 71
Existential instantiation, 70, 71
Existential quantification, 36, 105
negation of,, 3941
Existential quantifier, 36—-37
Expansion
balanced ternary, 230
base b, 219, 221
binary, 219, 257
binary coded decimal, 774
Cantor, 231
hexadecimal, 219-220, 257
octal, 220, 257
one’s complement, 230
two’s complement, 230-231
Expected values, 426-429, 442
in hatcheck problem, 430
of inversions in permutation, 430-431
linearity of, 429-431, 442
Experiment, 394
Exponential complexity of algorithms, 197
Exponential functions, A—7
Exponential generating function, 498
Exponentiation, modular, 226-227
recursive, 313
Expression(s)
binomial, 363
Boolean, 750-752, 781
infix form of, 719

2-6

logical
translating English sentences into, 11,
42-43, 56-57
translating to English sentences, 55
postfix form of, 721
prefix form of, 719
regular, 818, 839
Extended Backus-Naur form (EBNF), 796
Extended binary trees, 302
Extended binomial coefficients, 486
Extended Binomial Theorem, 487
Extended Euclidean algorithm, 232, 246
Exterior of simple polygon, 288

Factor, of integers, 201
Factorial complexity of algorithms, 197
Factorial function, 145
Factorials, recursive procedure for, 311-312
Factorization into primes, 211-212
for finding greatest common divisor, 216
for finding least common multiple, 216, 217
uniqueness of, 233-234
Facts, 75
Failure, 406
Fallacy, 63, 69, 105
of affirming conclusion, 69
of begging the question, 84, 105
of circular reasoning, 84, 105
of denying hypothesis, 69
False
negative, 419, 421
positive, 419, 421
Family trees, 683, 684
Farmer, 632
Fast multiplication
of integers, 475-476
of matrices, 476478
Fermat, Pierre de, 239
Fermat’s Last Theorem, 100-101, 299
Fermat’s Little Theorem, 239, 258
Fibonacci, 298
Fibonacci numbers, 297
formula for, 463464
and Huffman coding, 709
iterative algorithm for, 317
rabbits and, 451-452
recursive algorithms for, 316
Fibonacci trees, rooted, 695
Field axioms, A-1 — A-2
Fields, 531
Filter, spam, 421-423
Final assertion, 323, 329
Final exams, scheduling, 671, 672
Final value, A-13
Finite graph, 589
Finite probability, 394-396
Finite sets, 116, 158, 163, 500, 514
subsets of
counting, 338
number of, 273-274
union of three, number of elements in,
501-503, 514
union o f two, number o f elements in, 500, 514
Finite-state automata, 805-811
deterministic, 807-811, 839
equivalent, 809-811
nondeterministic, 811-814, 820-821,
822, 839
regular sets recognized by, 819-821
set not recognized by, 824-825
Finite-state machines, 785, 796-814, 839
with no output, 804-814
with outputs, 798-801
transition function extension in, 805
First difference, 460
First forward difference, 516
Fixed elements, 442
Fixture controlled by three switches, circuit
for, 764

Flavius Josephus, 459
Fleury’s algorithm, 637, 646
Flip-flops, 784
Floor function, 143-145, 163
Floyd’s algorithm, 656—657
Folder, empty, 114
Forests, 684, 685
definition of, 742
minimum spanning, 742
spanning, 736
Form(s)
Backus-Naur, 792-793, 839
conjunctive normal, 758
disjunctive normal
for Boolean variables, 758
for propositions, 29
infix, 719
postfix, 720
prefix, 719
prenex normal, 62
Formal language, 786
Formal power series, 485
Formula(s)
Euler’s, 659-663, 676
for Fibonacci numbers, 463-464
Stirling’s, 146
summation, 157, 267
well-formed, 301
for compound propositions, 301
of operators and operands, 301
FORTRAN, 792
Fortune cookie, 388
Forward differences, 516
Forward reasoning, 94
Four Color Theorem, 668—671, 676
Fraction, unit (Egyptian), 331
Frame’s conjecture, 460
Free variable, 38, 105
Frend
Sophia, 25
William, 27
Frequency assignments, 672
Frisbee, rocket-powered, 750
Full adder, 764, 781
Full binary trees, 304-305
height of, 306
number of vertices of, 306
Full m-arytree, 686, 690, 743
complete, 694
Full subtractor, 766
Function(s), 133-146, 163
Ackermann’s, 310
addition of, 135-136
asymptotic, 192
bijective, 138, 163
Boolean, 749-755, 781
dual of, 754

functionally complete set of operators

for, 759
implicant of, 770
minimization of, 766—779, 781
representing, 757-759
self-dual, 782
threshold, 783
busy beaver, 835
ceiling, 143-145, 163
characteristic, 148
codomain of, 134, 149, 163
compositions of, 139-141, 163
computable, 163, 835
counting, 336-337
decreasing, 137
definition of, 133, 163
domain of, 134, 149, 163
Euler ¢, 218
evaluation, 707
exponential, A-7
factorial, 145
floor, 143-145, 163

Index 1-7

generating, 484495, 514
for counting, 488-493
exponential, 498
probability, 499
for proving identities, 495
for recurrence relations, 493-495
graphs of, 142
greatest integer, 143-145
growth of, 180-190
growth of combinations of, 186-189
hashing, 205-206
collision in, probability of, 410-411
identity, 138
increasing, 137
inverse, 139-140, 163
invertible, 140
iterated, 311
iterated logarithm, 311
logarithmic, A-7 — A-9
McCarthy 91, 331
multiplication of, 135-136
number-theoretic, 831
one-to-one (injective), 136, 138, 163
counting, 337
onto (surjective), 137-138, 163
number of, 509-510, 514
partial, 149
product of, 135-136
propositional, 30, 31, 105
existential quantification of, 36
universal quantification of, 33
range of, 134, 163
recursive, 133, 295-299, 328
as relations, 520
strictly decreasing, 137
strictly increasing, 137
sum of, 135-136
threshold, 783
total, 149
transition, 798
Turing machines computing, 831-832
undefined, 149
Functional completeness, 759
Functional decomposition, 784
Functionally complete set of operators
for Boolean functions, 759, 781
for propositions, 29
Fundamental Theorem of Arithmetic, 211, 257
Fuzzy logic, 19
Fuzzy sets, 132-133
complement of, 132
intersection of, 133
union of, 133

Gambling, 393
Game of

Chomp, 91
Game trees, 704-707, 743
Gates, logic, 760-765

AND, 761, 781

combination of, 761-763

NAND, 766

NOR, 766

OR, 761, 781

threshold, 783
Gating networks, 761-763

depth of , 766

examples of, 763-764

minimization of , 766-779
Gauss, Karl Friedrich, 204, 213
GCD (greatest common divisor), 215-217,

232-234,258

Generalization

existential, 70, 71

universal, 70, 71
Generalized combinations, 371-375
Generalized induction, 307-308
Generalized permutations, 370-371
Generalized pigeonhole principle, 349-351, 387

I-8 Index

Generating functions, 484495, 514
for counting, 488—493
exponential, 498
probability, 499
for proving identities, 495
for recurrence relations, 493—495
Geometric distribution, 433—434, 442
Geometric mean, 95, 282
Geometric progression(s), 150, 152
sums of,, 270-271
Geometric series, 155
Geometry, computational, 288-290, 479481
Giant strongly connected components
(GSCC), 627
GIMPS (Great Internet Mersenne Prime
Search), 213
Goat, 632
Gddel, Escher, Bach (Hof stader), 333
Goldbach, Christian, 214, 215
Goldbach’s conjecture, 214-215
Golf, hole-in-one, 279
Golomb, Solomon, 99
Golomb’s self-generating sequence, 333
Google, 13,734
Gossip problem, by mathematical induction, 282
Graceful trees, 746
Graham, Ron, 584
Grammars, 785-793
ambiguous, 840
Backus-Naur form of,, 792-793, 839
context-free (type 2), 789, 839
context-sensitive, 789
monotonic, 790
noncontracting, 790
phrase-structure, 787-790, 838
productions of, 787, 838
regular (type 3), 789, 817, 821-824, 839
type 0, 789, 838
type 1, 789, 838-839
Graph(s), 589682
acquaintanceship, 592-593
bandwidth of , 680
bipartite, 602—-604, 675
book number of, 682
call, 594
connected components of, 625
chromatic numberof, 667
chromatically k-critical, 674
collaboration, 593-594
coloring, 666—672, 676
complementary, 611
complete, 601, 675
complete bipartite, 604, 675
complete m-partite, 678
connected components of, 625-626, 676
connectedness in, 621-629
cut set of, 746
definition of, 591
diameter of, 680
directed, 582, 591, 675
circuit (cycle) in, 546, 582
connectedness in, 626—627
converse of, 611
dense, 614
depth-first search in, 732-734
edgesof, 591, 600601
Euler circuit of, 634
loops in, 541, 582
paths in, 546-547, 582, 676
representing relations using, 541-542
self-converse, 679
simple, 591
vertex of, 590, 600
directed multigraph, 592, 675
dual, 667
finite, 589
of functions, 142
Hollywood, 593
homeomorphic, 663-665, 676

independence number of, 680
infinite, 589
influence, 593, 594
intersection, 596
isomorphic, 611, 615-618, 676
paths and, 627-628
matching in, 605
mixed, 591
models, 592-595
monotone decreasing property of,, 681
monotone increasing property of, 681
multigraphs, 590, 675
niche overlap, 592, 593
nonplanar, 663-665
n-regular, 610
orientable, 679
paths in, 622—624
planar, 657-665, 676
precedence, 595
pseudograph, 590, 592, 675
radius of, 680
regular, 610, 676
representing, 611-618
in roadmap modeling, 595
self-complementary, 620
simple, 590, 601-602, 675
coloringof, 667
connected planar, 659-663
crossing number of, 666
dense, 614
edges of, 590, 608
isomorphic, 615-618, 675
orientation of, 679
pathsin, 725
random, 680-681
self-complementary, 620
with spanning trees, 725-726
sparse, 614
thickness of, 666
vertices of , 590, 608
simple directed, 591
sparse, 614, 741
strongly directed connected, 626
subgraph of, 607, 676
terminology of, 597-601
undirected, 592, 599, 676
connectedness in, 624—-626
Euler circuit of, 634
Euler path of, 638
orientation of, 679
pathsin, 622,676
underlying, 601, 675
union of, 661, 676
very large scale integration, 682
Web, 594-595
strongly connected components of, 627
weighted, 676
shortest path between, 647-653
traveling salesman problem with,
653-655
wheel, 601, 676
Gray codes, 642—643
Gray, Frank, 643
Great Internet Mersenne Prime Search
(GIMPS), 213
“Greater than or equal” relation, 566—-567
Greatest common divisor (GCD), 215-217,
232-234,258
Greatest element of poset, 573, 582
Greatest integer function, 143-145, 163
Greatest lower bound, 582
of poset, 574
Greedy algorithms, 174-176, 275-276, 703,
738, 744
Greedy change-making algorithm, 175
Growth of functions, 180-190
GSCC (giant strongly connected
components), 627
Guarding set, 675

12-7

Guare, John, 623
Gutbhrie, Francis, 669

Hadamard, Jacques, 213
Haken, Wolfgang, 668
Half adder, 764, 781
Half subtractor, 766
Halting problem, 176-177, 834-835
Hamilton circuits, 636-643, 676
Hamilton paths, 638-643, 676
Hamilton, William Rowan, 640, 669
Hamilton’s “Voyage Around the World”
Puzzle, 639
Handle, 745
Handshaking Theorem, 599
Hanoi, tower of, 452454
Hardware systems, 12
Hardy, Godfrey Harold, 93
Harmonic mean, 103
Harmonic number(s), 192
inequality of, 272-273
Harmonic series, 273
Hashing functions, 205-206
collision in, probability of, 410411
Hasse diagrams, 571-572, 574, 575, 582
Hasse, Helmut, 571
Hasse’s algorithm, 101-102
Hatcheck problem, 430, 510
Hazard-free switching circuits, 784
Heaps, 748
Heawood, Percy, 668
Height, star, 840
Height of full binary tree, 306
Height of rooted tree, 691, 743
Height-balanced trees, 748
Hermeas, 2
Hexadecimal expansion, 219-220
Hexagon identity, 369
Hilbert’s Tenth Problem, 835
HIV, 424
Ho, Chung-Wu, 290
Hoare, C. Anthony R., 323, 324
Hoare triple, 323
Hof'stader, Douglas, 333
Hole-in-one, 279
Hollywood graph, 593
paths in, 623-624
Homeomorphic graphs, 663—-665, 676
Hopper, Grace Brewster Murray, 811
Hops, 606
Horner’s method, 199
Horse races, 27
Host number (hostid), 341
Hotbot, 734
HTML, 796
Huffman coding, 701-703, 744
variations of , 703
Huffman, David A., 701, 702
Husbands, jealous, 632—-633
Hybrid topology for local area network, 605
Hydrocarbons, trees modeling, 688
Hypercube, 607
Hypothesis, 6
fallacy of denying, 69
inductive, 265
Hypothetical syllogism, 66

“Icosian Game,” 639, 640
Idempotent laws
for Boolean algebra, 753, 757
for lattices, 585
for propositions, 24
for sets, 124
Identifier, 559, 793
Identities, combinatorial, 364—368
Identity
combinatorial, proof of, 359, 386
hexagon, 369
Pascal’s, 366-367, 387

12-8

proving, generating functions for, 495
Vandermonde’s, 367-368
Identity elements axiom, A—1
Identity function, 138
Identity laws
additive, A-1
for Boolean algebra, 752-754, 755
multiplicative, A-1
for propositions, 26
for sets, 124
Identity matrix, 251, 257
“Ifandonly if” statement, 10
If then statement, 6, 8
Image, 136, 163
inverse, of set, 147
of set, 136
Implicant, 770
prime, 770
essential, 770
Implications, 6-10, 105
logical equivalences for, 26-27
Incidence matrices, 614-615, 676
Incident edge, 598
Inclusion relation, 567
Inclusion-exclusion principle, 122, 341-343,
500-504, 514
alternative form of, 506—507
applications with, 505-512
Inclusive or, 5
Incomparable elements in poset, 567, 582
Incomplete induction, 284
Increasing function, 137
Increment, 206
In-degree of vertex, 600, 675
Independence number, 680
Independent events, 399, 400,
405-406, 442
Independent random variables,
434-436, 442
Independent set of vertices, 680
Index, of summation, 153
Index registers, 672
Indicator random variable, 440
Indirect proof, 77
Indistinguishable
boxes, 376-379
objects, 375, 376-379
objects, permutations with, 375
Indistinguishable strings, 827
Induced subgraph, 678
Induction
complete, 284
generalized, 307-308
incomplete, 284
mathematical, 25, 263-279
principleof, 328
proof's by, 266278
second principle of, 284
strong, 283-285, 328
structural, 304-306, 329
validity of, 278
well-ordered, 568—569, 582
Inductive definitions, 295-308
of factorials, 296
of functions, 295-299, 328
of sets, 299-307, 329
of strings, 300
of structures, 299-307
Inductive hypothesis, 265
Inductive loading, 282, 293, 331
Inductive reasoning, 264
Inductive step, 264, 690, 706
Inequality
Bernoulli’s, 280
Bonferroni’s, 415
Boole’s, 415
Chebyshev’s, 438439, 442
of harmonic numbers, 272-273
Markov’s, 441

proving by mathematical induction, 271
triangle, 102
Inference, rules of, 64—67, 105
forprogram correctness, 323-324
for statements, 71-72
Infinite graph, 589
Infinite ladder, 263-264
by strong induction, 284
Infinite series, 157
Infinite set, 116, 158, 163
Infix form, 719
Infix notation, 719-721, 744
Influence graphs, 593, 594
Information flow, lattice model of, 575-576
Initial assertion, 323, 329
Initial conditions, 450, 513
Initial position of a Turing machine, 829
Initial state, 798, 805
Initial term, 151
Initial value, A-13
Initial vertex, 541, 600
Injection, 136
Injective (one-to-one) function, 136, 139, 163
counting, 337
Inorder traversal, 712, 714, 715, 718, 743
Inputalphabet, 798
Insertion sort, 172, 174, 257
average-case complexity of, 432—433
worst-case complexity of, 196
Instantiation
existential, 70, 71
universal, 70, 71
Integer sequences, 151-153
Integers, 112
addition of , algorithms for, 222-224
applications with, 231-244
axioms for, A-5
composite, 210, 211, 217, 257
division of, 200-208
even, 77
finding maximum element in finite sequence
of, 170
greatest common divisor of, 215-217
large, computer arithmetic with, 237-238
least common multiple of, 216, 217
multiplication of
algorithms for, 224-226
fast, 475-476
odd, 77
partition of, 310
perfect, 218
pseudoprimes, 238-241, 245, 257
representations of, 219-222, 230-231
setof, 112
squarefree, 513
Intension, o f database, 531
Interconnection networks for parallel
computation, 606—607
Interest, compound, 451
Interior of simple polygon, 288
Interior vertices, 551
Internal vertices, 686, 743
International Standard Book Number (ISBN), 209
Internet
search engines on, 734
searching, 13
Internet addresses, counting, 341
Internet datagram, 346-347
Internet Movie Database, 593
Internet Protocol (IP) multicasting, 726
Intersection
of fuzzy sets, 133
of multisets, 132
of sets, 121-122, 126-128, 163
Intersection graph, 596
Interval, open, 282
Intractable problem, 197, 836
Invariant for graph isomorphism, 615, 676
Invariants, loop, 326-327, 329

Index I-9

Inverse
of congruence modulo m, 234
of functions, 139-140, 163
of implication, 8, 105
of matrix, 255
Inverse image of set, 147
Inverse law
for addition, A-2
for multiplication, A—2
Inverse relation, 528
Inverse, multiplicative, 54
Inversions, in permutation, expected number of,
430-431
Inverter, 761, 781
Invertible function, 140
Invertible matrix, 255
IP multicasting, 726
Irrational numbers, 218
Irrationality o f /2, 80-81, 292, 332
Irreflexive relation, 528
ISBN (International Standard Book Number), 209
Isobutane, 688
Isolated vertex, 598, 676
Isomorphic graphs, 611, 615-618, 676
pathsand, 627-628
Iterated function, 311
Iterated logarithm, 311
Iteration, 311
Iterative algorithm, for Fibonacci numbers, 317
Iterative procedure, for factorials, 317
Iwaniec, Henryk, 215

Jacobean rebellion, 145
Jacquard loom, 27

Java, 135

Jealous husband problem, 632-633
Jewish-Roman wars, 459
Jigsaw puzzle, 292

Jobs, assignment of, 513, 604
Join, in lattice, 585

Join of n-ary relations, 533-534
Join of zero-one matrices, 252
Joint authorship, 593-594
Jordan Curve Theorem, 288
Josephus, Flavius, 459
Josephus problem, 459

Jug, 103, 633

Kakutani’s problem, 102
Kaliningrad, Russia, 633
Karnaugh maps, 768-774, 781
Karnaugh, Maurice, 767, 768
Kempe, Alfred Bray, 668
Key

composite, 532

for hashing, 205

primary, 531-532
al-Khowarizmi, Abu Ja’far Mohammed

ibn Musa, 168

Kissing problem, 154
Kleene closure, 804805, 839
Kleene, Stephen Cole, 805, 817
Kleene’s Theorem, 819-821, 839
K-maps, 768-774, 781
Kneiphof Island, 633
Knights and knaves, 13-14
Knight’s tour, 647

reentrant, 647
Knuth, Donald E., 172, 182, 184, 189
Konigsberg bridge problem, 633—-634, 636, 638
Kruskal, Joseph Bernard, 739, 740
Kruskal’s algorithm, 739-740, 744
k-tuple graph coloring, 674
Kuratowski, Kazimierz, 663
Kuratowski’s Theorem, 663-665, 676

Labeled tree, 695
Ladder, infinite, 263-264, 284
Lagarias, Jeffrey, 102

I-10 Index

Lamé, Gabriel, 299
Lamé’s Theorem, 298
Landau, Edmund, 183
Landau symbol, 182
Language, 785-793, 838
context-free, 789
formal, 786
generated by grammar, 788
natural, 785-786
recognized by finite-state automata,
806-814, 839
regular, 789
Language recognizer, 801
Lady Byron, 27
Laplace, Pierre Simon, 393, 394, 420
Laplace’s definition of probability, 394
Large numbers, law of , 407
Lattice model of information flow, 575-576
Lattice point, 330
Lattices, 574-576, 582
absorption laws for, 585
associative laws for, 585
bounded, 586
commutative laws for, 585
complemented, 586
distributive, 586
duality in, 587
idempotent laws for, 585
joinin, 585
meet in, 585
modular, 587
Law(s)
absorption
for Boolean algebra, 753, 754
for lattices, 585
for propositions, 24
for sets, 124
associative
for addition, A-1
for Boolean algebra, 753, 755
for lattices, 585
for multiplication, A-1
for propositions, 24
for sets, 124
closure
for addition, A-1
for multiplication, A-1
commutative
for addition, A-1
for Boolean algebra, 753, 755
for lattices, 585
for multiplication, A-1
for propositions, 26
for sets, 124
compatibility
additive, A-2
multiplicative, A-2
complement, for sets, 124
complementation, for sets, 124
completeness, A-2
De Morgan’s
for Boolean algebra, 753, 757
for propositions, 22, 25-26
proving by mathematical induction, 274-275
for quantifiers, 40—41
for sets, 124
of detachment, 65
distributive, A-2
for Boolean algebra, 752, 753, 755
for propositions, 23, 24
for sets, 124
domination
for Boolean algebra, 753
for propositions, 27
forsets, 124
of double complement, in Boolean algebra,
753, 755
idempotent
for Boolean algebra, 753, 757

for lattices, 585
for propositions, 24
for sets, 124
identity
additive, A-1
for Boolean algebra, 752-754, 755
multiplicative, A-1
for propositions, 26
for sets, 124
inverse
for addition, A-2
for multiplication, A-2
of large numbers, 407
of mathematical induction, A-5
negation, for propositions, 26
used to prove basic facts, A-2 — A-5
transitivity, A-2
trichotomy, A-2
Laws of Thought, The (Boole), 3, 5, 420, 749
Leaf, 686, 743
Least common multiple (LCM), 216-217, 257
Least element of poset, 573, 582
Leastupper bound, 582, A-2
of poset, 574
Left child of vertex, 687
Left subtree, 687
Lemma, 75, 105
Length of bit string, 15, 454-455
Length of path
in directed graph, 546
in weighted graph, 648
Length of string, 151
recursive definition of, 301
“Less than or equals” relation, 567
Level of vertex, 691, 743
Level order of vertex, 745
Lexicographic ordering, 307, 382-384, 385,
569-570
Liber Abaci (Fibonacci), 298
Light fixture controlled by three switches, circuit
for, 764
Limit, definition of, 55
Linear array, 606, 607
Linear bounded automata, 825
Linear combination, gcd as, 232
Linear complexity of algorithms, 197
Linear congruences, 234-235, 257
Linear congruential method, 206
Linear equations, simultaneous, 256
Linear homogenous recurrence relations, 460,
461-467, 513
Linear nonhomogenous recurrence relations,
467-471,514
Linear ordering, 568, 582
Linear search algorithm, 170, 257
average-case complexity of, 430—431
complexity of, 194, 197
recursive, 314
Linearity of expectations, 429—431, 442
Linearly ordered set, 568, 582
Lists, merging two, 319
Literal, 758, 781
Little-o notation, 192
Littlewood, John E., 93
Loading, inductive, 282, 293, 331
Loan, 457
Lobsters, 471
Local area networks, 605-606
Logarithm, iterated, 311
Logarithmic complexity of algorithms, 197
Logarithmic function, A-7 — A-9
Logic, 1-58, 104-105
fuzzy, 19
propositional, 2
rules of inference for, 64—67
Logic gates, 760—765
AND, 761, 781
combination of, 761-763
NAND, 766

12-9

NOR, 766
OR, 761, 781
threshold, 783
Logic Problem, 74
Logic programming, 45-46
Logic puzzles, 13-15
Logical connectives, 4
Logical equivalences, 22-27, 39, 105
in predicate calculus, 39
in propositional calculus, 22-27
Logical expressions
translating English sentences into, 10-11,
42-43, 56-57
translating to English sentences, 42—43
Logical operators, 104
functionally complete, 29
precedence of, 1011
Long-distance telephone network, 594
Loom, Jacquard, 27
Loop constructions, A-13 — A-14
Loop invariants, 326-327, 329
Loops
in directed graphs, 541, 582
within loops, A-14
nested, 51-52
Lottery, 394-395
Lovelace, Countess of (Augusta Ada), 25, 27
Lower bound
of lattice, 586
of poset, 574, 582
Lower limit of summation, 153
Lucas, Edouard, 452
Lucas numbers, 330, 471
Lucas-Lehmer test, 213
Lucky numbers, 518
Kukasiewicz, Jan, 719, 744
Lyceum, 2
Lycos, 734

McCarthy, John, 332
McCarthy 91 function, 331
McCluskey, Edward J., 775
Machine minimization, 810
Machines
delay, 799-800
finite-state, 785, 798, 839
with no output, 804-814
with outputs, 798-801
Mealy, 801
Moore, 801
Turing, 785, 825, 826, 827-832, 839
computing functions with, 831-832
definition of, 828-830
nondeterministic, 832
sets recognized by, 830-831
types of, 832
vending, 797-798
MAD Magazine, 184
Magic tricks, 14
Majority voting, circuit for, 763
Maps
coloring of , 666—667
Karnaugh, 768-774
Markov’s inequality, 441
Markup languages, 796
m-ary tree, 686, 743
complete, 694
full, 686, 690
height of,, 692—-693
Master Theorem, 479
Matching, 605
maximal, 605
Mathematical Analysis of Logic, The (Boole), 5
Mathematical induction, 25, 263-279
Axiom of,, A-5
errors in, 278-279
generalized, 307-308
inductive loading with, 282
principle of,, 328

12-10

proofs
by, 266-278
of divisibility facts, 273
errors in, 278-279
of inequalities, 271
of results about algorithms, 275
of results about sets, 273-275
of summation formulae, 267
second principle of, 284
strong, 283-285, 328
structural, 304-306, 329
validity of, 278
Mathematician s Apology, A (Hardy), 93
Matrix (matrices), 246-254
addition of , 247-248
adjacency, 612-614, 676

counting paths between vertices by, 628—-629

Boolean product of , 252-254, 257
column of, 247
definition of, 257
diagonal, 255
identity, 251, 257
incidence, 614-615, 676
inverse of, 255
invertible, 255
multiplication of, 249-250
algorithms for, 249-250
fast, 476-478
powers of, 251-252
representing relations using, 538—540
row of, 247
sparse, 614
square, 251
symmetric, 251, 257
transposes of, 251, 257
upper triangular, 260
zero-one, 252-254, 257
Boolean product of, 252-254
join of, 252
meet of, 252
representing relations using, 538-540
of transitive closure, 549-550
Warshall’s algorithm and, 550-553
Matrix-chain multiplication, 250
Maurolico, Francesco, 265
Maximal element of poset, 572, 582
Maximal matching, 605
Maximum element
in finite sequence, 169
time complexity of finding, 194
Maximum, of sequence, 475
Maximum satisfiability problems, 445
Maximum spanning tree, 742
Maxterm, 760
Mealy, G. H, 801
Mealy machines, 801, 839
Mean, 178
arithmetic, 95, 282
deviation from, 439
geometric, 95, 282
harmonic, 103
quadratic, 103
Median, 178
Meet, in lattice, 585
Meet of zero-one matrices, 252
Meigu, Guan, 638
Members, 112, 163
Membership, degree of, 132
Membership tables, 126, 163
Meénages, probléme des, 518
Merge sort, 172, 317-321, 329, 475
complexity of, 479
recursive, 318
Merging two lists, 319
Mersenne, Marin, 212, 213
Mersenne primes, 212, 257
Mesh network, 606—607
Mesh of trees, 748
Metacharacters, 796

Metafont, 184
Method(s)
Critical Path, 587
Horner’s, 199
linear congruential, 206
probabilistic, 413-414, 442
proof, 75-102, 105
Quine-McCluskey, 767, 775-779
Millbanke, Annabella, 27
Millennium problems, 836
Miller’s test for base b, 245
Minimal element of poset, 572, 582
Minimization
of Boolean functions, 766—779, 781
of combinational circuits, 766—779
Minimum dominating set, 679
Minimum, of sequence, 475
Minimum spanning forest, 742
Minimum spanning trees, 737-741, 744
Minmax strategy, 706, 743
Minterm, 758, 781
Mistakes, in proofs, 83—-84
Mixed graph, 591
mod, 202, 203, 205-207, 225-226
Mode, 178
Modeling
computation, 785-837
with graphs, 592-595
with recurrence relations, 450—456
with trees, 688—690
Modular arithmetic, 203-205
Modular exponentiation, 226227
recursive, 313
Modular lattice, 587
Modular properties, in Boolean algebra, 757
Modulus, 206
Modus ponens, 65, 66
Modus tollens, 66
Mohammed’s scimitars, 637
Molecules, trees modeling, 688
Monotone decreasing property of graph, 681
Monotone increasing property of graph, 681
Monotonic grammars, 790
Monte Carlo algorithms, 411-413
Montmort, Pierre Raymond de, 511, 518
Monty Hall Three Door Puzzle, 398, 425
Moore, E. F,, 801
Moore machine, 801
Moth, 811
Motorized pogo stick, 750
m-tuple, 533
Muddy children puzzle, 14-15
Multicasting, 726
Multigraphs, 590, 675
Euler circuit of, 637
Euler path of, 637
undirected, 592
Multinomial coefficient, 382
Multinomial Theorem, 382
Multiple
of integers, 201
least common, 216-217, 257
Multiple edges, 590, 591, 592, 675
Multiple output circuit, 764
Multiplexer, 766
Multiplication
of functions, 135-136
of integers
algorithms for, 224-226
fast, 475476
of matrices, 249-250
algorithms for, 249-250
fast, 476-478
matrix-chain, 250
Multiplicative Compatibility Law, A-2
Multiplicative inverse, 54
Multiplicity of membership in multisets, 132
Multiplier, 206
Multisets, 132

Index

Mutually independent events, 444
Mutually independent trials, 406
Mutually relative prime, 260

Naive set theory, 112
Namagiri, 94
NAND, 29, 759, 781
NAND gate, 766
n-ary relations, 530-536, 581
domain of, 530
operations on, 532-535
Natural language, 785-786
Natural numbers, 112
Naur, Peter, 792
NAUTY, 618
Naval Ordnance Laboratory, 811
Navy WAVES, 811
n-cubes, 602
Necessary, 6
and sufficient, 9
Negation
of existential quantification, 39
of nested quantifiers, S7-58
of propositions, 34, 104
of universal quantification, 39
Negation laws, for propositions, 26
Negation operator, 4
Negative
false, 419
true, 419
Neighbors in graphs, 598
Neptune, 424
Nested loops, 51-52
Nested quantifiers, 5058
negating, 57-58
Network
computer, 590
with diagnostic lines, 591
interconnection networks, 606—-607
local area networks, 605-606
multicasting over, 726
with multiple lines, 590
with multiple one-way lines, 592
with one-way lines, 591
gating, 761-763
depthof, 766
examples of , 763-764
minimization of,, 766—779
tree-connected, 689-690
Network number (netid), 341
New Foundations of Mathematical Logic
(Quine), 776
New Jersey crags, 44
Newton-Pepys problem, 447
Niche overlap graph, 592, 593
Nickels, 175-176
Nim, 704-705, 707
Nodes, 541, 589
Nonconformists, 420
Nonconstructive existence proof, 91, 105
Noncontracting grammar, 790

I-11

Nondeterministic finite-state automata, 811-814,

820, 822, 839
Nondeterministic Turing machine, 832
Nonoverlapping ears, 292
Nonplanar graphs, 663-665
Nonterminals, 787
NOR, 29, 759, 781
NOR gate, 766
NOT, 13
Notation

big-O, 180-186
big-Omega, 182, 189-190
big-Theta, 182, 189-190
dependency, 784

infix, 719-721, 744
little-o notation, 192
one’s complement, 230
Polish, 719, 744

I-12 Index

Notation—Cont.
postfix, 719-721, 744
prefix, 719-721, 744
for products, 162
well-formed formula in, 724
reverse Polish, 720, 744
set builder, 112
summation, 153
two’s complement, 230-231
Noun, 786
Noun phrase, 786
Nova, 101
NP, class, 197, 836
NP-complete problems, 197, 655, 768, 836
n-queens problem, 731-732
n-regular graph, 610
n-tuples, 531-532
ordered, 117
Null quantification, 49
Null set, 114, 163
Null string, 151, 787
Number(s)
Bacon, 623
Bell, 566
Carmichael, 240-241, 257
Catalan, 456
chromatic, 667, 668, 676
edge, 674
crossing, 666
Cunningham, 214
Erdés, 584, 623, 624
Fibonacci, 297-298, 316-317, 709
formula for, 463464
iterative algorithm for, 317
rabbits and, 451452
recursive algorithms for, 316
harmonic, 192
inequality of, 272-273
independence, 680
irrational, 218
large, law of, 407
Lucas, 330, 471
lucky, 518
natural, 112
perfect, 218
pseudorandom, 206-207
Ramsey, 352
rational, 105, 113
countability of, 158, 163
real, 113, A-1 - A-5
Stirling, of the second kind, 378
Ten Mosted Wanted, 214
Ulam, 165
Number theory, 200-244
Numbering plan, 337
Number-theoretic functions, 831

Object(s), 111-112
distinguishable, 376
and distinguishable boxes, 376-377
and indistinguishable boxes, 377-378
indistinguishable, 376

and indistinguishable boxes, 377, 378-379

unlabeled, 376
Octahedral die, 443
Octal expansion, 220, 257
Odd integer, 77
Odd pie fights, 276
Odlyzko, Andrew, 154
One’s complement expansion, 230
One-to-one correspondence, 139, 160, 163

One-to-one (injective) function, 136, 139, 163

counting, 337
“Only if” statement, 9

Onto (surjective) function, 137-138, 139, 163

number of, 509-510, 514
Open interval, 282
Open problems, 214-215
Operands, well-formed formula of, 301

Operations
bit, 15

estimating number of, of algorithms, 180-182

integer, algorithms for, 222-226
on n-ary relations, 532-535
onset, 121-130
Operators
bitwise, 15-16, 104
functionally complete set of, for
propositions, 29
logical, 104
functionally complete, 29
precedence of, 10—11
negation, 4
selection, 532
well-formed formula of, 301
Opium, 424
Optimal algorithm, 200
Optimal for suitors, stable assignment, 293
Optimization problems, 174-176
OR, 13, 15-16
OR gate, 761, 781
Oracle of Bacon, 624
Order, 190
of quantifiers, 52-54
same, 182
Ordered n-tuples, 117
Ordered pairs, 117, 120
Ordered rooted tree, 687, 743, 745
Ordering
dictionary, 382
lexicographic, 307, 382-384, 569-570
linear, 568
partial, 566—578, 582
quasi-ordering, 585
total, 568, 582
Ordinary generating function, 484
Ore, O, 641
Ore’s Theorem, 641, 647
Organizational tree, 689
Orientable graphs, 679
Orientation of undirected graph, 679
Quantifiers theorems stated as propositions
involving, 10, 23, 24, 64
Out-degree of vertex, 600, 675
Output alphabet, 798
Outputs
finite-state machines with, 798—801
finite-state machines without, 804-814

P, class, 197, 836
Pair
devil’s, 621
ordered, 117
Pairwise relatively prime integers, 216, 257
Palindrome, 177, 346, 795
Paradox, 112
barber’s, 19-20
Russell’s, 121
St. Petersburg, 444
Parallel algorithms, 606
Parallel edges, 590
Parallel processing, 199, 606
tree-connected, 689—-690
Parent of vertex, 686, 743
Parent relation, 526
Parentheses, balanced strings of, 332
Parse tree, 790-792, 839
Parsing
bottom-up, 791
top-down, 791
Partial correctness, 323
Partial function, 149
Partial orderings, 566—578, 582
compatible total ordering from, 582
Partially ordered set, 566, 582
antichain in, 585
chain in, 585
comparable elements in, 568, 582

12-11

dense, 581
dual of, 579
greatest element of, 573, 582
Hasse diagram of, 571-572, 573, 582
incomparable elements in, 568, 582
least element of, 573, 582
lower bound of, 574, 582
maximal element of, 572, 582
minimal element of, 572, 573, 582
upper bound of, 574, 582
well-founded, 581
Partition, 499
of positive integer, 310, 379
refinement of , 565
of set, 559-562, 582
Pascal, 135
Pascal, Blaise, 239, 366, 393, 400
Pascal’s identity, 366-367, 387
Pascal’s triangle, 366, 386
Passwords, 63, 340
Paths, 622-624
in acquantanceship graphs, 623
in collaboration graphs, 623
counting between vertices, 628—629
in directed graphs, 546-547, 582, 676
in directed multigraphs, 623
Euler, 633-638, 676
and graph isomorphism, 627-628
Hamilton, 638-643, 676
in Hollywood graph, 623—624
oflength n, 623
length of , in weighted graph, 648
shortest, 647-655, 676
in simple graphs, 622
terminology of,, 622
in undirected graphs, 622
Payoff, 704
Pearl Harbor, 811
Pecking order, 680
Peirce, Charles Sanders, 29, 32
Peirce arrow, 29
Pelc, A., 483
Pendant vertex, 598, 676
Pennies, 175-176
Perfect
integers, 218
number, 218
power, 87
Peripatetics, 2
Permutations, 355-357, 386
generating, 382-384
generating random, 445
with indistinguishable objects, 375-376
inversions in, expected number of,
430-431
with repetition, 371
PERT (Program Evaluation and Review
Technique), 587
Petersen, Julius Peter Christian, 646
Phrase-structure grammars, 787-790, 838
Pick’s Theorem, 292
Pie fights, odd, 276
Pigeonhole principle, 347-353, 387
applications with, 351-353
generalized, 349-351, 387
Planar graphs, 657665, 676
Plato, 2
Plato’s Academy, 2
Plouffe, Simon, 153
PNF (prenex normal form), 62
P=NP problem, 836
P(n,r), 386
Pogo stick, motorized, 750
Pointer, position of, digital representation of,
642-643
Poisonous snakes, 702
Poker hands, 358-359
Polish notation, 719, 744
Polya, George, 102

12-12

Polygon, 288
convex, 288
diagonal of, 288
exterior of, 288
interior of, 288
nonconvex, 288
with nonoverlapping ears, 292
sides of , 288
simple, 288
vertices of, 288
Polynomial complexity of algorithms, 197
Polynomials, rook, 518
Polynomial-time problems, 836
Polyominoes, 99, 277
Poset, 566, 582
antichain in, 585
chain in, 585
comparable elements in, 567, 582
dense, 581
dual of, 579
greatest element of, 573, 582
Hasse diagram of, 571-572, 573, 582
incomparable elements in, 568, 582
least element of, 573, 582
lower bound of, 574, 582
maximal element of, 572, 582
minimal element of, 572, 573, 582
upper bound of, 574, 582
well-founded, 581
Postcondition, 33, 323
Positive
false, 419
true, 419
Positive integers, 113
axioms for, A—5
Positive rational numbers, countability of, 158
Postfix form, 720
Postfix notation, 719-721, 744
Postorder traversal, 712, 715-716, 717, 718, 743
Postulates, 75
Power, perfect, 88
Power, Boolean (of zero-one matrices), 252—-254
Power series, 485-488
formal, 485
Power set, 116-117, 163
Powers
of matrices, 251-252
of relation, 527, 581
Pre-image, 147, 163
Precedence graphs, 595
Precedence levels, 11, 38
Precondition, 33, 323
Predicate, 30, 31
Predicate calculus, 33
logical equivalence in, 39
Prefix codes, 700-703, 743
Prefix form, 719
Prefix notation, 719-721, 744
well-formed formula in, 724
Premise, 6, 44, 63
Prenex normal form (PNF), 62
Preorder traversal, 712-713, 718, 743
Prim, Robert Clay, 738, 740
Primality testing, 412413
Primary key, 531-532, 581
Prime factorization, 211-212
for finding greatest common divisor, 216
for finding least common multiple, 216-217
uniqueness of, 233-234
Prime implicant, 770, 781
essential, 770
Prime Number Theorem, 213, 584
Primes, 210-215
definition of, 257
distribution of, 213
infinitude of, 212
Mersenne, 212, 257
mutually relative, 260
pseudoprimes, 238-241, 245, 257

relatively, 216, 257
sieve of Eratosthenes and, 210
twin, 215
Prim’s algorithm, 738-739, 744
Princess of Parallelograms, 27
Principia Mathematica (Whitehead and Russell),
28,114
Principle(s)
of buoyancy, A4
of counting, 335-340
duality, for Boolean identities, 754
of inclusion-exclusion, 122, 341-343,
500-504, 514
alternative form of, 506-507
applications with, 505-512
o fmathematical induction, 328
pigeonhole, 347-353, 387
applications with, 351-353
generalized, 349-351, 387
of well-founded induction, 585
of well-ordered induction, 568—569
Private key cryptography, 241
Probabilistic algorithms, 393, 411413, 442
Probabilistic method, 413-414, 442
Probabilistic primality testing, 412—413
Probabilistic reasoning, 398
Probability, discrete, 393-447
assigning, 401-403
of collision in hashing functions, 410-411
of combinations of events, 396—398, 403—-404
conditional, 400, 404405, 442
finite, 394-396
Laplace’s definition of, 394
in medical test results, 419-420
Probability distribution, 401
Probability generating function, 499
Probability theory, 393, 400416
Problem(s)
art gallery, 675
birthday, 409-411
bridge, 633-634, 636, 638
celebrity, 282
Chinese postman, 638
classes of, 835
Closest-Pair, 479482
Collatz, 101-102
decision, 834
halting, 176177, 834835
hatcheck, 430, 510
Hilbert’s tenth, 835
intractable, 197, 836
jealous husband, 632-633
Josephus, 459
Kakutani’s, 102
kissing, 154
Logic, 74
maximum satisfiability, 445
Millennium, 836
Newton-Pepys, 447
NP-complete, 197, 655, 768
n-queens, 731-732
open, 214-215
optimization, 174-176
P=NP, 836
polynomial-time, 836
scheduling greedy algorithm for, 179
final exams, 671, 672
shortest-path, 647655, 676
solvable, 197, 834
Syracuse, 102
tiling, 835
tractable, 197, 836
traveling salesman, 641, 649, 653—655, 676
Ulam’s, 101-102
unsolvable, 197, 834, 835
utilities-and-houses, 657-659
yes-or-no, 834
Probléme de rencontres, 511, 518
Probléme des ménages, 518

Index I-1

Problems, Millennium, 836
Procedure statements, A—10, A-14 — A-15
Processing
concurrent, 595
parallel, 199, 606
tree-connected, 689-690
Product
Boolean, 749-750, 751, 757-759, 781
of zero-one matrices, 252—-254, 257
Cartesian, 117-118
Product notation, 162
Product rule, 336
Productions of grammar, 787
Product-of-sums expansion, 760
Program correctness, 322-328, 329
conditional statements for, 324—-326
loop invariants for, 326-327
partial, 323
program verification for, 323
rules of inference for, 323-324
Program Evaluation and Review Technique
(PERT), 587
Program verification, 323
Programming, logic, 45-46
Programming languages, 68, 135, 346, 559
Progression(s)
arithmetic, 151
geometric, 150, 152
sums of, 270-271
Projection of n-ary relations, 533, 582
Prolog, 45
Prolog facts, 45
Prolog rules, 45
Proof(s)
adapting existing, 96
by cases, 86-90, 105
combinatorial, 359, 386
conjecture and, 96-97
by contradiction, 80-83, 105
definition of, 75, 105
direct, 76-77, 105
of equivalence, 82-83
exhaustive, 87
existence, 91-92, 105
indirect, 77, 105
by mathematical induction, 266-278
methods of, 75-102, 105
mistakes in, 83—84
of recursive algorithms, 315-317
by structural induction, 304
trivial, 78, 79, 105
uniqueness, 92-93, 105
vacuous, 78, 105
Proof strategy, 79, 86-102
Proper subset, 115, 163
Property
Archimedean, A-5
Completeness, A-2
Well-ordering, 290-291, 328, A-5
Proposition(s), 1-6, 75
compound, 3, 10-11, 21, 23, 104
consistent, 104
disjunctive normal form of, 29
dual of, 29
satisfiable, 30
well-formed formula for, 301
conjunction of, 4-5, 104
definition of, 2, 104
disjunction of, 4-5, 104
equivalent, 8, 21-30, 104
functionally complete set of operators for, 29
negation of, 3-4, 104
rules of inference for, 64—67
truth value of , 3
Propositional equivalences, 21-30
Propositional function, 30, 31, 105
existential quantification of, 36
universal quantification of, 33
Propositional logic, 2

I-14 Index

Protestant Noncomformists, 420
Pseudocode, 121, 169, A-10 — A-15
Pseudograph, 590, 592, 675
Pseudoprimes, 238-239, 245, 257
Pseudorandom numbers, 206207
Public key cryptography, 231, 241-244, 257
Pure multiplicative generator, 207
Pushdown automaton, 825
Puzzle(s)

Birthday Problem, 409411

Icosian, 639, 640

jigsaw, 292

logic, 13-15

Monty Hall Three Door, 398, 425

muddy children, 14-15

Reve’s, 454

river crossing, 632

Tower of Hanoi, 452454

“Voyage Around the World,” 639

zebra, 21

Quad trees, 748
Quadratic mean, 103
Quadratic residue, 246
Quality control, 412
Quantification
existential, 36, 105
negation of,, 39
as loops, 51-52
null, 49
universal, 34, 105
negation of, 39
Quantifiers, 34-37
De Morgan’s laws for quantifiers, 4041
domain of, 34
existential, 36-37
negating, 3941
nested, 50-58
negating, 57-58
order of, 52-54
precedence of, 38
rules of inference for, 70
truth set of, 119
uniqueness, 37
universal, 34-36
using in system specifications, 43—44
using set notation with, 119
with restricted domains, 38
Quarters, 175-176
Quasi-ordering, 585
Queens on chessboard, 679
Question, begging, 84, 105
Quick sort, 172, 322
Quine, Willard van Orman, 775, 776
Quine-McCluskey method, 768, 775-779
Quotient, 202, A—6
Automaton, 817

Rabbits, 451452
Races, horse, 27
Radius of graph, 680
Rado, Tibor, 838
Ramanujan, Srinivasa, 93, 94
Ramaré, O, 215
Ramsey, Frank Plumpton, 352
Ramsey number, 352
Ramsey theory, 352
Random permutation, generating, 445
Random simple graph, 680—681
Random variables, 402, 408—409
covariance of , 442
definition of, 442
distribution of, 408, 442
geometric, 433—-434
expected values of , 402—403, 426—429, 442
independent, 434-436, 442
indicator, 440
standard deviation of , 436
variance of, 426-429, 442

Range of function, 134, 163
Ratio, common, 150
Rational numbers, 105, 113
countability of, 158, 163, 218
r-combination, 357, 386
Reachable state, 841
Real numbers, 113
constructing, A-5
least upper bound, A-2
uncountability of, 160
upper bound, A-2
Reasoning
backward, 94
circular, 84, 105
deductive, 264
forward, 94
inductive, 264
probabilistic, 398
Recognized language, 806-814, 839
Recognized strings, 806
Records, 531
Recurrence relations, 449-460
associated homogenous, 467
definition of, 450, 513
divide-and-conquer, 474482
initial condition for, 450
linear homogenous, 460, 461-467, 513
linear nonhomogenous, 467471, 514
modeling with, 450456
simultaneous, 472
solving, 460—471
generating functions for, 493—495
Recursion, 294
Recursive algorithms, 311-321, 329
for binary search, 314
for computing a”, 312
for computing greatest common divisor, 313
correctness of, 315
for factorials, 311-312
for Fibonacci numbers, 316
for linear search, 314
for modular exponentiation, 313
proving correct, 315-317
trace of, 312, 313
Recursive definitions, 263, 295-308
of extended binary trees, 302
of factorials, 311-312
of full binary trees, 33
of functions, 295-299, 328
of sets, 299-307, 329
of strings, 300
of structures, 299-307
Recursive merge sort, 318
Recursive modular exponentiation, 313
Recursive sequential search algorithm, 314
Recursive step, 299
Reentrant knight’s tour, 647
Refinement, of partition, 565
Reflexive closure of relation, 544, 582
Reflexive relation, 522, 581
representing
using digraphs, 541-542
using matrices, 538

Regions of planar representation graphs, 659, 676

Regular expressions, 818, 839
Regular grammars, 789, 817, 821-824, 839
Regular graph, 610
Regular language, 789
Regular sets, 817-819, 820, 839
Relation(s), 519-587
antisymmetric, 523-524, 582
asymmetric, 528
binary, 519, 581
circular, 584
closures of, 544-553, 582
reflexive, 544, 582
symmetric, 545, 582
transitive, 544, 547-550, 582
computing, 550-553

combining, 525-527
complementary, 528
composite of, 526527, 581
connectivity, 547, 582
counting, 522
covering, 579
diagonal, 545
divide-and-conquer recurrence, 474
divisibility, 567
domains of, 530
equivalence, 555-562, 582
functions as, 520
“greater than or equal,” 566-567
inclusion, 566
inverse, 528, 581
irreflexive, 528
“less than or equals,” 567
n-ary, 530-536, 581
domain of, 531
operations on, 532-535
parent, 526
paths in, 546547
powers of, 527, 581
properties of, 522-525
reflexive, 522, 581
representing
using digraphs, 541-542
using matrices, 538—540
on set, 118, 521-522
symmetric, 523—524, 582
transitive, 524-525, 527, 582
Relational database model, 531-532, 581
Relatively prime integers, 216, 257
Remainder, 202, 203, 257
Rencontres, 511, 518
Repetition
combinations with, 371-375
permutations with, 371
Replacement
sampling with, 396
sampling without, 396
Representations
binary, 219
decimal, 168, 219
hexadecimal, 219-220
octal, 220
one’s complement, 230
unary, 831
Representative, of equivalence class, 558
Resolution, 66, 68
Results, 75
Reverse Polish notation, 720, 744
Reve’s puzzle, 454
Right child of vertex, 687
Right subtree, 687
Right triominoes, 100, 277, 283

Ring topology for local area network, 605

River crossing puzzle, 632
Rivest, Ronald, 241, 242
Roadmaps, 595
Rocket-powered Frisbee, 750
Rook polynomials, 518
Rooted Fibonacci trees, 695
Rootedspanningtree, 737
Rootedtrees, 302, 685-688
balanced, 691, 743
binomial, 745
B-tree of degree &, 745
decision trees, 698—700
definition of , 743
height of,, 691, 743
level order of vertices of, 745
ordered, 687, 743, 745
Sk-tree, 745
Roots, characteristic, 461
Round-robin tournaments, 291, 593, 594
Row of matrix, 247
Roy, Bernard, 551
Roy-Warshall algorithm, 550553

12-13

12-14

r-permutation, 355, 386
RSA system, 241-244
decryption, 243
encryption, 242-243
Rule
product, 336
sum, 338, 386387
Rules of inference, 64—67, 70, 105
for program correctness, 323-324
for propositions, 64—67
for quantifiers, 70
for statements, 71-72
Run, 440
Russell, Bertrand, 112, 114
Russell’s paradox, 121

St. Petersburg Paradox, 444
Same order, 182
Samos, Michael, 480
Sample space, 394
Sampling
with replacement, 396
without replacement, 396
Sanskrit, 792
Satisfiability problem, maximum, 445
Satisfiable compound propositions, 30
Saturated hydrocarbons, trees modeling, 688
Scheduling problems, 179
final exams, 671, 672
greedy algorithm for, 275-276
software projects, 581
tasks, 577-578
Scimitars, Mohammed’s, 637
Scope of a quantifier, 38
Screw, Archimedes, A4
Search engines, 734
Search trees, binary, 695-698, 743
Searching algorithms, 170-172, 257
binary, 171-172, 257, 474
Boolean, 13
breadth-first, 729-731, 744
complexity of, 194-195, 197
depth-first, 726-729, 744
applications with, 732-734
in directed graphs, 732-734
linear, 170, 257
average-case complexity of, 430431
complexity of, 195, 197
recursive, 314
recursive binary, 314
recursive linear, 314
recursive sequential, 314
ternary, 178
Web, 13
Second principle o f mathematical induction, 284
Secrets, 265-266
Seed, 206
Sees, 675
Selection operator, 532, 582
Selection sort, 172, 178-179
Self-complementary graph, 620
Self-converse directed graph, 679
Self-dual, 782
Self-generating sequences, 333
Semantics, 785
Sentence, 786, 787
Sequence(s), 149-153
de Bruijn, 682
definition of , 149
finding maximum and minimum of, 475
generating functions for, 484
integer, 151-153
self-generating, 333
strictly decreasing, 351
strictly increasing, 351
Sequential search, 170
Serial algorithms, 606
Series
geometric, 155

harmonic, 273
infinite, 157
power, 485-488
formal, 485
Set(s), 111-121
cardinality of, 116, 158-160, 163
complement of, 123, 163
computer representation of, 129-130
countable, 158,218
cut, 746
definition of,, 111, 163
description of, 111-112
difference of, 123, 163
symmetric, 131, 163
disjoint, 122
dominating, 679
elements of, 112, 163
empty (null), 114, 163
equal, 113, 163
finite, 116, 158, 163, 500, 514
combinations of, 384385
subsets of
counting, 338
number of, 273-274
union of three, number of elements in,
501-503, 514
union o f two, number o f elements in,
500, 514
fuzzy, 132-133
complement of, 132
intersection of , 133
union of, 133
guarding, 675
identities of, 124-126
image of, 136
infinite, 116, 159, 163
intersection of, 121-122, 126-128, 163
inverse image of, 147
linearly ordered, 568, 582
members of, 112, 163
not recognized by finite-set automata,
824-825
operations on, 121-130
partially ordered, 566, 582
antichain in, 585
chain in, 585
comparable elements in, 567, 582
dense, 581
dual of, 579
greatest element of, 573, 582
Hasse diagram of, 571-572, 573, 582
incomparable elements in, 567, 568, 582
least element of, 573, 582
lower bound of, 574, 582
maximal element of, 572, 582
minimal element of, 572, 573, 582
upper bound of, 574, 582
well-founded, 581
partition of, 560561, 582
power, 116-117, 163
proof's of facts about, by mathematical
induction, 273
recognized by finite-set automata, 819821
recognized by Turing machines, 830-831
recursively defined, 299-307, 329
regular, 817-819, 820, 821-824, 839
relation on, 118, 521-522
singleton, 114
successor of,, 132
symmetric difference of, 131, 163
totally ordered, 568, 582
truth, 119
type, 113
uncountable, 160
union of, 121, 126128, 163
universal, 113, 163
well-ordered, 332, 568, 582
Set builder, 112
Set notation, with quantifiers, 119

Index

Sex, 406
Shaker sort, 172, 259
Shamir, Adi, 241, 242
Shannon, Claude Elwood, 749, 750
Sheffer, Henry Maurice, 28, 29
Sheffer stroke, 28, 29
Shift cipher, 208
Shift register, 784
Shifting, 224
Shortest-path algorithm, 649-653
Shortest-path problems, 647-655, 676
Sibling of vertex, 686, 743
Sides of a polygon, 288
Sieve of Eratosthenes, 210, 507-509, 514
Simple circuit, 622
Simple directed graph, 591
Simple graphs, 590, 601-604, 675
coloring of, 667
connected planar, 659-663
crossing number of , 666
dense, 614
edges of, 590, 608
isomorphic, 615-618, 676
orientation of, 679
paths in, 622
random, 680—-681
self-complementary, 620
with spanning trees, 725-726
sparse, 614
thickness of, 666
vertices of , 590, 608
Simple polygon, 288
triangulation of , 288
Simplification rule of inference, 66
Simultaneous linear equations, 256
Singleton set, 114
Sink, 841
Six Degrees of Separation (Guare), 623
Si-tree, 745
Sloane, Neil, 154
Smullyan, Raymond, 13, 14
Snakes, poisonous, 702
Sneakers (movie), 242
Soccer players, 424
Socks, 353
Software systems, 12
Sollin’s algorithm, 743
Solution of a recurrence relation, 450
Solvable problem, 197
Solve a decision problem, 836
Solving using generating functions,
counting problems, 488—493
recurrence relations, 493495
Somerville, Mary, 27
Sort
binary insertion, 172, 179
bubble, 173, 257
bidirectional, 173
worst-case complexity of, 194-195
insertion, 172, 174, 257
average-case complexity of, 432—433
worst-case complexity of, 196
merge, 172, 317-321, 329, 475
complexity of, 479
recursive, 318
quick, 172, 322
selection, 172, 178-179
shaker, 172, 259
tournament, 172, 708
Sorting algorithms, 172-174
complexity of, 195-196
topological, 576578, 582
Space complexity of algorithms, 193
Space probe, 424
Space, sample, 394
Spam, 421-423
Spam filters, Bayesian, 421-423
Spanning forest, 736
minimum, 744

I-16 Index

Spanning trees, 724-734, 744
building
by breadth-first search, 729-731
by depth-first search, 726—729
definitionof, 724
degree-constrained, 746
distance between, 737
in IP multicasting, 726
maximum, 742
minimum, 737-741, 744
rooted, 737
Sparse graphs, 614, 741
Sparse matrix, 614
Specifications, system, 12, 4344
Spiders, Web, 734
SQL, 535-536
Square matrix, 251
Squarefree integer, 513
Stable assignment, 179, 293
Standard deviation, 436
Star height, 840
Star topology for local area network, 605
Start symbol, 787
State diagram for finite-state machine, 798
State table for finite-state machine, 798
State tables, 802
Statement(s), A—-10
assignment, A-10 — A-11
begin, A-11, A-14
blocks of, A-11
conditional, 6
forprogram correctness, 324-326
end, A-11, A-14
“ifand only if,” 8,9
if then, 6, 8
procedure, A-10
rules of inference for, 71-72
States, 798
reachable, 841
transient, 841
Steroids, 424
Stirling, James, 145
Stirling numbers of the second kind, 378
Stirling’s formula, 146
Straight triomino, 100
Strategies
minmax, 706, 743
Strategy, proof, 79, 86-102
Strictly decreasing function, 137
Strictly decreasing sequence, 351
Strictly increasing function, 137
Strictly increasing sequence, 351
Strings, 151
bit, 15, 104, 129-130
concatenation of, 300, 804, 839
counting, 336
without consecutive 0s, 454455
decoding, 700-701
distinguishable, 827
empty, 151, 787
generating next largest, 385
indistinguishable, 827
length of, 15, 151, 454-455
recursive definition of, 301
lexicographic ordering of, 568
of parentheses, balanced, 332
recognized (accepted), 806, 836
recursively defined, 300
ternary, 458
Strong induction, 283-285, 328
Strongly connected components of graphs,
627,676
Strongly connected graphs, 626
Structural induction, 304-306, 329
proof by, 304
Structured query language, 535-536
Structures, recursively defined, 299-307
Subgraph, 607, 678
induced, 678

Subsequence, 351
Subsets, 114, 163
of finite set
counting, 338
number of, 273-274
proper, 81, 163
sums of, 732
Subtractors
full, 766
half, 766
Subtree, 686, 687, 743
Success, 406
Successor
of integer, A-5
of set, 132
Sufficient, 6
secessary and, 9
Suitees, 179
Suitors, 179, 293
optimal for, 293
Sum(s)
Boolean, 749-750, 751, 757-759, 781
of first n positive integers, 157, 162, 267-268
of functions, 135-136
of geometric progressions, 270-271
of matrices, 247-248
of multisets, 132
of subsets, 732
Sum rule, 338, 386-387
Summation formulae
proving by mathematical induction, 267-270
Summation notation, 153
Summations, 153-158
double, 156
index of, 153
lower limit of, 153
proving, by mathematical induction, 267
upper limit of, 153
Sum-of -products expansions, 757-759, 781
simplifying, 766-779
Sun-Tsu, 235
Surjective (onto) function, 137-138, 139, 163
number of, 509-510, 514
Switching circuits, hazard-free, 784
Syllogism
disjunctive, 66
hypothetical, 66
Symbol(s), 787
Landau, 182
start, 787
terminal, 787
Symbolic Logic (Carroll), 44
Symbolic Logic (Venn), 115
Symmetric closure of relation, 545, 582
Symmetric difference, of sets, 131, 163
Symmetric matrix, 251, 257
Symmetric relation, 523-524, 581
representing
using digraphs, 542
using matrices, 538-539
Syntax, 785
Syracuse problem, 102
System specifications, 12, 43-44
consistent, 12
using quantifiers in, 43-44

Tables
membership, 126
state, 798, 802
truth, 3

Tautology, 21, 27, 65, 66, 104

Tee-shirts, 344

Telephone call graph, 625

Telephone calls, 594

Telephone lines
computer network with diagnostic, 591
computer network with multiple, 590
computer network with multiple one-way, 592
computer network with one-way, 591

Telephone network, 594, 625
Telephone number, 594
Telephone numbering plan, 337
Telescoping sum, 162
“Ten Most Wanted” numbers, 214
Term, initial, 151
Terminal vertex, 541, 600
Terminals, 787
Termary expansion, balanced, 230
Ternary search algorithm, 178
Temnary string, 458
Test
Lucas-Lehmer, 212
Miller’s, 245
primality, 412-413
probabilistic primality, 412413
Turing, 27
Tetrominoes, 104
TeX, 184
Theorem(s), 75, 105
Archimedean property, A-5
Art Gallery, 675
Bayes’, 417425
Binomial, 363-365, 387
Chinese remainder, 235-237, 258
Dirac’s, 641
Extended Binomial, 487
Fermat’s Last, 100-101, 299
Fermat’s Little, 239, 258
Four Color, 668-671, 676
Fundamental, Theorem o f Arithmetic, 211,
257, 285-286
Handshaking, 599
Jordan Curve, 288
Kleene’s, 819-821, 839
Kuratowski’s, 663—665, 676
Lamé’s, 298
Master, 479
methods of proving, 76-83
Multinomial, 382
Ore’s, 641, 647
Pick’s, 292
Prime Number, 213
Proving, automated, 108
Wilson’s, 244
Theory, Ramsey, 352
Thesis, Church-Turing, 833
Thiclness of a graph, 666
3x + 1 conjecture, 101-102
Threshold function, 783
Threshold gate, 783
Threshold value, 783
Tic-tac-toe, 705
Tiling of checkerboard, 97-102, 277
Time complexity of algorithms, 193-196
Top-down parsing, 791
Topological sorting, 576—578, 582
Topology for local area network
hybrid, 605
ring, 605
star, 605
Torus, 666
Total function, 149
Total ordering, 567, 582
compatible, 576, 582
Totally ordered set, 568, 582
Tournament, 680
round-robin, 416, 593
Tourmament sort, 172, 708
Tower of Hanoi, 452454
Trace of recursive algorithm, 312, 313
Tractable problem, 197, 836
Trail, 622
Transfer mode, asynchronous, 144
Transient state, 841
Transition function, 798
extending, 805
Transitive closure of relation, 544, 547-550, 582
computing, 550-553

12-16

Transitive relation, 524-525, 527, 581
representing, using digraphs, 542
Transitivity law, A—2
Translating
English sentences to logical expressions,
10-11, 4243, 56-57

logical expressions to English sentences, 42—43

Transposes of matrices, 251, 257
“Traveler’s Dodecahedron,” 639, 640
Traveling salesman problem, 641, 649,
653-655, 676
Traversal of tree, 710-722, 743
inorder, 712, 714, 715, 718, 743
level-order, 745
postorder, 712, 715-716, 717, 718, 743-744
preorder, 712-713, 718, 743
Tree(s), 683-741
applications of, 695-707
AVL, 748
binary, 302-304, 686, 687
extended, 302
full, 304-305
binary search, 695-698, 743
binomial, 745
caterpillar, 746
decision, 698-700, 743
definition of, 683
derivation, 790-792, 839
extended binary, 302
family, 683, 684
full binary, 303
full m-ary, 686, 690, 743
game, 704-707
graceful, 746
height-balanced, 748
labeled, 695
m-ary, 686, 743
complete, 694
height of, 692—693
mesh of, 748
as models, 688—-690
properties of, 690693
quad, 748
rooted, 302, 685-688
balanced, 691, 743
binomial, 745
B-tree of degree k, 745
decision trees, 698—700
definition of, 743
heightof, 691, 743
level order of vertices of, 745
ordered, 687, 743, 745
Si-tree, 745
rooted Fibonacci, 695
spanning, 724-734, 744
building
by breadth-first search, 729-731
by depth-first search, 726-729
definition of, 724
degree-constrained, 746
distance between, 737
in IP multicasting, 726
maximum, 742
minimum, 737-741, 744
rooted, 737
Tree diagrams, 343-344, 386
Tree edges, 728
Tree traversal, 710-722, 743
inorder, 712, 714, 715, 718, 743
postorder, 712, 715-716, 717, 718, 743-744
preorder, 712-713, 718, 743
Tree-connected network, 689—690
Tree-connected parallel processors, 689—-690
Trial division, 214
Triangle inequality, 102
Triangle, Pascal’s, 366, 386
Triangulation, 288
Trichotomy Law, A-2
Triominoes, 100, 277, 283

right, 100, 283
straight, 100

Trivial proof, 78, 79, 105

True negative, 419

True positive, 419

Truth set, 119

Truth table, 3-6, 10, 104
for biconditional statement, 9
for conjunction of two propositions, 4
for disjunction of two propositions, 4
for exclusive or of two propositions, 6
for implication, 6
for logical equivalences, 24
for negation of proposition, 3

Truth value, 104
of implication, 6
of proposition, 3

T-shirts, 344

Tukey, John Wilder, 16

Turing, Alan Mathison, 27, 176, 197, 825, 826

Turing machines, 785, 825, 826, 827-832, 839
in computational complexity, 833
computing functions with, 831-832
definition of, 828—830
nondeterministic, 832
sets recognized by, 830-831
types of, 832

Twin prime conjecture, 215

Twin primes, 215

Two-dimensional array, 606—607

Two’s complement expansion, 230-231

Type, 113

Type 0 grammar, 789, 838

Type 1 grammar, 789, 838-839

Type 2 grammar, 789, 839

Type 3 grammar, 789, 817, 821-824, 839

Ulam, Stanislaw, 483
Ulam numbers, 165
Ulam’s problem, 101-102, 483
Unary representations, 831
Uncountable set, 160
Undefined function, 149
Underlying undirected graph, 601, 675
Undirected edges, 592, 675

of simple graph, 590
Undirected graphs, 592, 599, 675

connectedness in, 624-626

Euler circuit of, 634

Euler path of, 638

orientation of, 679

paths in, 622,676

underlying, 601, 675
Unicasting, 726
Unicorns, 17
Unicycle, 750
Uniform distribution, 402, 442
Union

of fuzzy sets, 133

of graphs, 661, 767

of multisets, 132

ofsets, 121, 126-128, 163

of three finite sets, number of elements in,

501-503, 514
of two finite sets, number o f elements in,
500, 514

Uniqueness proofs, 92-93, 105
Uniqueness quantifier, 37
Unit (Egyptian) fraction, 331
Unit property, in Boolean algebra, 753
Unit-delay machine, 799-800
United States Coast Survey, 32
UNIVAC, 811
Universal address system, 711
Universal generalization, 70, 71
Universal instantiation, 70, 71
Universal quantification, 34, 105

negation of, 3941
Universal quantifier, 34-36

Index I-17

Universal set, 113, 163
Universal transitivity, 74
Universe of discourse, 34, 105
Unlabeled

boxes, 376

objects, 376
Unless, 6
Unsolvable problem, 197
Upper bound, A-2

of lattice, 586

of poset, 574, 582
Upper limit of summation, 153
Upper triangular matrix, 260
U. S. Coast Survey, 32
Utilities-and-houses problem, 657-659

Vacuous proof, 78, 105
Valeé-Poussin, Charles-Jean-Gustave-Nicholas de
la, 213
Valid
argument, 64
argument form, 64
Value(s)
expected, 402—403, 426429, 442
in hatcheck problem, 403
of inversions in permutation, 430—431
linearity of, 429-431, 442
final, A-13
initial, A—-13
threshold, 783
of tree, 706
of vertex in game tree, 706—707, 743
Vandermonde, Alexandre-Théophile, 368
Vandermonde’s identity, 367—-368
Variable(s)
binding, 38-39
Boolean, 15, 104, 750, 758, 781
free, 38, 105
random, 402, 408—409
covariance of, 442
definition of, 442
distribution of , 408, 442
geometric, 433-434
expected values of, 402-403, 426429, 442
independent, 434-436, 442
indicator, 440
standard deviation of, 436
variance of, 426—429, 442
Variance, 426, 436438, 442
Veitch, E. W, 768
Vending machine, 797-798
Venn diagrams, 113, 115, 122, 123, 163
Venn, John, 115
Verb, 786
Verb phrase, 786
Vertex, 288
bipartition of, 602
Vertex basis, 632
Vertex (vertices), 541
adjacent, 598, 600, 675
ancestor of, 686, 743
child of, 686, 687, 743
connecting, 598
counting paths between, 628-629
cut, 625
degree of, in undirected graph, 598
descendant of, 686, 743
of directed graph, 591, 600
of directed multigraph, 592
distance between, 680
eccentricity of, 695
end, 600
in-degree of, 600, 675
independent set of, 680
initial, 541, 600
interior, 551
internal, 686, 743
isolated, 598, 676
level of, 691, 743

I-18 Index

Vertex (vertices)}—Cont.

level order of, 745

of multigraph, 590

number of, of full binary tree, 306

out-degree of, 600, 675

parent of, 686, 743

pendant, 598, 676

of polygon, 288

of pseudograph, 590

sibling of, 686, 743

of simple graph, 590, 612

terminal, 541, 600

of undirected graph, 592, 598, 600

degree of, 598

value of, in game tree, 706—707, 743
Very large scale integration (VLSI) graphs, 682
Vocabulary, 787, 838
“Voyage Around the World” Puzzle, 639

Walk, 622
closed, 622
Warshall, Stephen, 551
Warshall’s algorithm, 550-553
WAVES, Navy, 811
Weakly connected graphs, 626
Web crawlers, 595
Web graph, 594-595, 734
strongly connected components of, 627

Web page searching, 13
Web pages, 13, 595, 627, 734
Web spiders, 734
Website for this book, xviii, xxi
Weighted graphs, 676
minimum spanning tree for, 738-741
shortest path between, 647—653
traveling salesman problem with,
653-655
Well-formed expressions, 306
Well-formed formula, 301
for compound propositions, 301
of operators and operands, 301
in prefix notation, 724
structural inductionand, 305
Well-founded induction, principle
of, 585
Well-founded poset, 581
Well-ordered induction, 582
principle of, 568—569
Well-ordered set, 332, 568, 582
Well-ordering property, 290-291, 328, A-5
WFF’N PROOE The Game of Modern Logic
(Allen), 74
Wheels, 601, 676
Whitehead, Alfred North, 114
Wiles, Andrew, 101, 239
Wilson’s Theorem, 244

12-17

Without loss of generality, 89

Witnesses, 181

WLOG (without loss of generality), 89

Word, 787

Word and Object (Quine), 776

World Cup soccer tournament, 362

World Wide Web graph, 594595

World’s record, for twin primes, 215

Worst-case complexity o falgorithms, 194,
195-196, 197

XML, 796
XOR, 15-16

Yes-or-no problems, 834

Zebra puzzle, 21
Zero property, in Boolean algebra,
753

Zero-one matrices, 252—-254, 257
Boolean product of, 252-254
join of, 252
meet of , 252
representing relations using, 538—540
of transitive closure, 549-550
Warshall’s algorithm and, 550-553
Ziegler’s Giant Bar, 184
Zodiac, signs of, 388

LIST OF SYMBOLS

TOPIC SYMBOL MEANING PAGE
COUNTING P(n,r) number of r-permutations of a set
with n elements 355
C(n,r) number of ¥-combinations of a set
with n elements 357
() binomial coefficient n choose 357
C(n;ny,na,...,0y) multinomial coefficient 382
p(E) probability of E 394
P(E | F) conditional probability of E given F 404
E(X) expected value of the random variable X 426
V(X) variance of the random variable X 436
C, Catalan number 456
NPy ---P) number of elements having properties
P,'j,j=1,...,n 506
N (P,.’l ‘e P,.:) number of elements not having properties
P,j=1,...,n 506
D, number of derangements of n objects 510
RELATIONS SoR composite of the relations R and S 526
R" nth power of the relation R 526
R! inverse relation 528
Sc select operator for condition C 532
Pi iyin projection 533
Jo(R,S) join 534
A diagonal relation 545
R* connectivity relation of R 547
[alr equivalence class of a with respect to R 558
[a]lm congruence class modulo m 558
(S, R) poset consisting of the set S and partial
ordering R 566
a=<b a is less than b 567
a>b a is greater than b 567
axb a is less than or equal to b 567
axb a is greater than or equal to b 567
GRAPHS (u, v) directed edge 541
AND TREES G=(V,E) graph with vertex set V and edge set £ 589
{u, v} undirected edge 590
deg (v) degree of the vertex v 598
deg=(v) in-degree of the vertex v 600
degt(v) out-degree of the vertex v 600
K, complete graph on n vertices 601
C, cycle of size n 601
W, wheel of size n 601
On n-cube 602
Kmn complete bipartite graph of size m, n 604

TOPIC SYMBOL MEANING PAGE
GRAPHS AND G] U G2 union of G1 and G2 608
TREES (cont.) A, X1y ..o, Xn—1,b path from a to b 623
Ay X1y ey Xn_1,0 circuit 623
r number of regions of the plane 660
deg (R) degree of the region R 661
n number of vertices of a rooted tree 690
i number of internal vertices of a rooted tree 691
l number of leaves of a rooted tree 691
m greatest number of children of an internal
vertex in a rooted tree 686
h height of a rooted tree 692
BOOLEAN x complement of the Boolean variable x 749
ALGEBRA x+y Boolean sum of x and y 749
x -y (orxy) Boolean product of x and y 749
B {0, 1} 750
F4 dual of F 754
x|y x NAND y 759
xdly x NOR y 759
x "{>’—* X inverter 761
X
y:D_*“y OR gate 761
X —»
y _’J_’ y AND gate 761
LANGUAGES A the empty string 151
AND xy concatenation of x and y 300
FINITE-STATE ~ l(x) length of the string x 301
MACHINES wR reversal of w 309
V,T,8,P) phrase-structure grammar 787
S start symbol 787
w — w production 787
Wi = W) wy is directly derivable from w 787
Wl = wy w; is derivable from w) 787
<A>:=c]|d Backus-Naur form 792
(S, 1,0, f, g s0) finite-state machine with output 798
S0 start state 798
AB concatenation of the sets A and B 804
A* “Kléene closure of A 804
S, 1, f, 50, F) finite-state machine with no output 805
(S, 1, £, s0) 828

Turing machine

