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CHAPTER 6
Counting

SECTION 6.1 The Basics of Counting

The secret to solving counting problems is to look at the problem the right way and apply the correct rules
(usually the product rule or the sum rule), often with some common sense and cleverness thrown in. This
is usually easier said than done, but it gets easier the more problems you do. Sometimes you need to count
more than you want and then subtract the overcount. (This notion is made more precise in Section 8.5,
where the inclusion—-exclusion principle is discussed explicitly.) At other times you compensate by dividing;
see Exercise 73, for example. Counting problems are sometimes ambiguous, so it is possible that your answer,

although different from the answer we obtain, is the correct answer to a different interpretation of the problem;
try to figure out whether that is the case.

If you have trouble with a problem, simplify the parameters to make them more manageable (if necessary)
and try to list the set in question explicitly. This will often give you an idea of what is going on and suggest
a general method of attack that will solve the problem as given. For example, in Exercise 11 you are asked
about bit strings of length 10. If you are having difficulty, investigate the analogous question about bit strings
of length 2 or 3, where you can write down the entire set, and see if a pattern develops. (Some people define

mathematics as the study of patterns.) Sometimes tree diagrams make the analysis in these small cases easier
to keep track of.

See the solution to Exercise 47 for a discussion of the powerful tool of symmetry, which you will often
find helpful. Another useful trick is gluing; see the solution to Exercise 65.

Finally, do not be misled, if you find these exercises easy, into thinking that combinatorial problems are a
piece of cake. It is very easy to ask combinatorial questions that look just like the ones asked here but in fact
are extremely difficult, if not impossible. For example, try your hand at the following problem: how many

strings are there, using 10 A’s, 12 B’s, 11 C’s, and 15 D’s, such that no A is followed by a B, and no C
is followed by a D7

1. This problem illustrates the difference between the product rule and the sum rule. If we must make one choice
and then another choice, the product rule applies, as in part (a). If we must make one choice or another
choice, the sum rule applies, as in part (b). We assume in this problem that there are no double majors.

a) The product rule applies here, since we want to do two things, one after the other. First, since there are 18
mathematics majors, and we are to choose one of them, there are 18 ways to choose the mathematics major.
Then we must choose the computer science major from among the 325 computer science majors, and that
can clearly be done in 325 ways. Therefore there are, by the product rule, 18 - 325 = 5850 ways to pick the
two representatives.

b) The sum rule applies here, since we want to do one of two mutually exclusive things. Either we can choose
a mathematics major to be the representative, or we can choose a computer science major. There are 18 ways
to choose a mathematics major, and there are 325 ways to choose a computer science major. Since these two
actions are mutually exclusive (no one is both a mathematics major and a computer science major), and since
we want to do one of them or the other, there are 18 + 325 = 343 ways to pick the representative.
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a) The product rule applies, since the student will perforlrél each of 10 tasks, onfz a.‘fter the other, There e
4 ways to do each task. Therefore there are 4- 4...4 =410 = 1,048,576 ways to answer the questions on th,

test.

b) This is identical to part (a), except that now there are
10

4 answers or give no answer at all. Therefore there are 5

test.

5 ways to answer each question—give any of t}
Uhe
= 9,765,625 ways to answer the questions the

s determined by choosing an airline for the flight from Ney Yor,
to Denver (which can be done in 6 ways) and then choosing an airline for the flight from Denver t, g,

Francisco (which can be done in 7 ways). Therefore there are 6 -7 = 42 different possibilities for the enir,

flight.

. Three-letter initials are determined by specifying the first initial (26 ways), then the second initial (26 ways)

and then the third initial (26 ways). Therefore by the product rule there are 26 - 26 - 26 = 26° = 17,57

possible three-letter initials.

. There is only one way to specify the first initial, but as in Exercise 7, there are 26 ways to specify each of the

other initials. Therefore there are, by the product rule, 1-26 - 26 = 262 = 676 possible three-letter initials
beginning with A.

A bit string is determined by choosing the bits in the string, one after another, so the product rule applies
We want to count the number of bit strings of length 10, except that we are not free to choose either the first
bit or the last bit (they are mandated to be 1’s). Therefore there are 8 choices to make, and each choice can
be made in 2 ways (the bit can be either a 1 or a 0). Thus the product rule tells us that there are 2° = 2t

such strings.

This is a trick question, since it is easier than one might expect. Since the string is given to consist entirely
of 1’s, there is nothing to choose except the length. Since there are n + 1 possible lengths not exceeding »
(if we include the empty string, of length 0), the answer is simply n + 1. Note that the empty string

consists—vacuously—entirely of 1’s.

By the sum rule we can count the number of strings of length 4 or less by counting the number of strings of
length 7, for 0 < ¢ < 4, and then adding the results. Now there are 26 letters to choose from, and a string of
length ¢ is specified by choosing its characters, one after another. Therefore, by the product rule there are 26'

4
strings of length i. The answer to the question is thus Y 26" = 1+ 26 + 676 + 17576 + 456976 = 475,255.
i=0
The easiest way to count this is to find the total number of ASCII strings of length five and then subtract off
the number of such strings that do not contain the @ character. Since there are 128 characters to choose from
in each location in the string, the answer is 128° — 127° = 34,359,738,368 — 33,038,369,407 = 1,321,368,961.

Recall that an RNA sequence is a sequence of letters, each of which is one of A, C, G, or U. Thus by the
product rule there are 46 RNA sequences of length six if we impose no restrictions.

a) If U is excluded, then each position can be chosen from among three letters, rather than four. Therefore
the answer is 3% = 729.

b) If the last two letters are specified, then we get to choose only four letters, rather than six, so the answer
is 4* = 256.

c) If the first letter is specified, then we get to choose only five letters, rather than six, so the answer is
45 = 1024.
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d) If only A or U is allowed in each position, then there are just two choices at each of six stages, so the
answer is 2° = 64.

Because neither 100 nor 50 is divisible by either 7 or 11, whether the ranges are meant to be inclusive or
exclusive of their endpoints is moot.

a) There are [100/7] = 14 integers less than 100 that are divisible by 7, and [50/7] = 7 of them are less
than 50 as well. This leaves 14 — 7 = 7 numbers between 50 and 100 that are divisible by 7. They are 56,
63, 70, 77, 84, 91, and 98.

b) There are |100/11| =9 integers less than 100 that are divisible by 11, and |50/11] = 4 of them are less
than 50 as well. This leaves 9 — 4 = 5 numbers between 50 and 100 that are divisible by 11. They are 55,
66, 77, 88, and 99.

¢) A number is divisible by both 7 and 11 if and only if it is divisible by their least common multiple, which
is 77. Obviously there is only one such number between 50 and 100, namely 77. We could also work this

out as we did in the previous parts: [100/77] — |50/77] = 1—0 = 1. Note also that the intersection of the
sets we found in the previous two parts is precisely what we are looking for here.

This problem deals with the set of positive integers between 100 and 999, inclusive. Note that there are
exactly 999 — 100 + 1 = 900 such numbers. A second way to see this is to note that to specify a three-digit
number, we need to choose the first digit to be nonzero (which can be done in 9 ways) and then the second
and third digits (which can each be done in 10 ways), for a total of 9-10-10 = 900 ways, by the product
rule. A third way to see this (perhaps most relevant for this problem) is to note that a number of the desired
form is a number less than or equal to 999 (and there are 999 such numbers) but not less than or equal to
99 (and there are 99 such numbers); therefore there are 999 — 99 = 900 numbers in the desired range.

a) Every seventh number—7, 14, and so on—is divisible by 7. Therefore the number of positive integers less
than or equal to n and divisible by 7 is [n/7] (the floor function is used—we have to round down—because
the first six positive integers are not multiples of 7; for example there are only [20/7] = 2 multiples of 7 less
than or equal to 20). So we find that there are |999/7| = 142 multiples of 7 not exceeding 999, of which
|199/7] = 14 do not exceed 99. Therefore there are exactly 142 — 14 = 128 numbers in the desired range
divisible by 7.

b) This is similar to part (a), with 7 replaced by 2, but with the added twist that we want to count the
numbers not divisible by 2. Mimicking the analysis in part (a), we see that there are [999/2] = 499 even
numbers not exceeding 999, and therefore 999 — 499 = 500 odd ones; there are similarly 99 — |99/2]| = 50
odd numbers less than or equal to 99. Therefore there are 500 — 50 = 450 odd numbers between 100 and
999 inclusive.

c) There are just 9 possible digits that a three-digit number can start with. If all of its digits are to be the
same, then there is no choice after the leading digit has been specified. Therefore there are 9 such numbers.

d) This is similar to part (b), except that 2 is replaced by 4. Following the analysis there, we find that there
are 999 — [999/4| = 750 positive integers less than or equal to 999 not divisible by 4, and 99 — [99/4] = 75
such positive integers less than or equal to 99. Therefore there are 750 — 75 = 675 three-digit integers not
divisible by 4.

e) The method is similar to that used in the earlier parts. There are [999/3] — [99/3] = 300 three-digit

numbers divisible by 3, and [999/4| — [99/4] = 225 three-digit numbers divisible by 4. Moreover there are
1999/12] — [99/12] = 75 numbers divisible by both 3 and 4, i.e., divisible by 12. In order to count each

number divisible by 3 or 4 once and only once, we need to add the number of numbers divisible by 3 to the

number of numbers divisible by 4, and then subtract the number of numbers divisible by both 3 and 4 so as

not to count them twice. Therefore the answer is 300 4 225 — 75 = 450.

f) In part (e) we found that there were 450 three-digit integers that are divisible by either 3 or 4. The
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others, of course, are not. Therefore there are 900 — 450 = 450 three-digit integers that are not divisiy, by

either 3 or 4.
g) We saw in part (e) that there are 300 three-digit numbers divisible by 3 and that 75 of them ape als,

divisible by 4. The remainder of those 300 numbers, therefore, are not divisible by 4. Thus the answer i

300 — 75 = 225.
h) We saw in part (e) that there are 75 three-digit numbers divisible by both 3 and 4.

25. This problem involves 1000 possible strings, since there is a choice of 10 digits for each of the three Positiong
in the string.
a) This is most easily done by subtracting from the total number of strings the number of strings that violae
the condition. Clearly there are 10 strings that consist of the same digit three times (000, 111, ..., 999).
Therefore there are 1000 — 10 = 990 strings that do not.
b) If we must begin our string with an odd digit, then we have only 5 choices for this digit. We still have 19
choices for each of the remaining digits. Therefore there are 5-10-10 = 500 such strings. Alternatively, we
note that by symmetry exactly half the strings begin with an odd digit (there being the same number of odq
digits as even ones). Therefore half of the 1000 strings, or 500 of them, begin with an odd digit.
c) Here we need to choose the position of the digit that is not a 4 (3 ways) and choose that digit (9 ways).
Therefore there are 3 -9 = 27 such strings.

27. There are 50 choices to make, each of which can be done in 3 ways, namely by choosing the governor, choosing
the senior senator, or choosing the junior senator. By the product rule the answer is therefore 3% ~ 7.2x10%.

29. By the sum rule we need to add the number of license plates of the first type and the number of license plates
of the second type. By the product rule there are 26-26-10-10-10- 10 = 6,760,000 license plates consisting
of 2 letters followed by 4 digits; and there are 10-10-26-26 - 26 - 26 = 45,697,600 license plates consisting of
2 digits followed by 4 letters. Therefore the answer is 6,760,000 + 45,697,600 = 52,457,600.

31. First let us compute the number of ways to choose the letters. By the sum rule this is the sum of the number
of ways to use two letters and the number of ways to use three letters. By the product rule there are 26* ways
to choose two letters and 26® ways to choose three letters. Therefore there are 262 + 263 ways to choose the
letters. By similar reasoning there are 10? + 10® ways to choose the digits. Thus the answer to the question
is (262 + 26%)(10% + 10) = 18252 - 1100 = 20,077,200.

33. We take as known that there are 26 letters including 5 vowels in the English alphabet.
a) There are 8 slots, each of which can be filled with one of the 26 — 5 = 21 nonvowels (consonants), so by
the product rule the answer is 21% = 37,822,859,361.
b) There are 21 choices for the first slot in our string, but only 20 choices for the second slot, 19 for the third,
and so on. So the answer is 21-20-19-18-17-16-15- 14 = 8,204,716,800.
c) There are 26 choices for each slot except the first, for which there are 5 choices, so the answer is 5267 =
40,159,050,880.
d) This is similar to (b), except that there are only five choices in the first slot, and we are free to choose from
all the letters not used so far, rather than just the consonants. Thus the answer is 5-25-24-23.22.21-20-19 =
12,113,640,000.
e) We subtract from the total number of strings (26®) the number that do not contain at least one vowel (218,
the answer to (a)), obtaining the answer 26% — 218 = 208,827,064,576 — 37,822,859,361 = 171,004,205,215.
f) The best way to do this is first to decide where the vowel goes (8 choices), then to decide what the vowel
is to be (A, E, I, O, or U—?5 choices), and then to fill the remaining slots with any consonants (217 choices,
since one slot has already been filled). Therefore the answer is 8- 5.217 = 72,043,541,640.
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g) We can ignore the first slot, since there is no choice. Now the problem is almost identical to (e), except
that there are only 7 slots to fill. So the answer is 267 — 217 = 8,031,810,176 — 1,801,088,541 = 6,230,721,635.

h) The problem is almost identical to (g), except that there are only 6 slots to fill. So the answer is
268 — 215 = 308,915,776 — 85,766,121 = 223,149,655.

For each part of this problem, we need to find the number of one-to-one functions from a set with 5 elements
to a set with k elements. To specify such a function, we need to make 5 choices, in succession, namely the
values of the function at each of the 5 elements in its domain. Therefore the product rule applies. The first
choice can be made in k ways, since any element of the codomain can be the image of the first element of the
domain. After that choice has been made, there are only k£ — 1 elements of the codomain available to be the
image of the second element of the domain, since images must be distinct for the function to be one-to-one.
Similarly, for the third element of the domain, there are k —2 possible choices for a function value. Continuing
in this way, and applying the product rule, we see that there are k(k — 1)(k — 2)(k — 3)(k — 4) one-to-one
functions from a set with 5 elements to a set with k elements.

a) By the analysis above the answer is 4-3-2-1-0 = 0, what we would expect since there are no one-to-one
functions from a set to a strictly smaller set.

b) By the analysis above the answer is 5-4-3-2-1 = 120.

c) By the analysis above the answer is 6-5-4-3-2 = 720.

d) By the analysis above the answer is 7-6-5-4 -3 = 2520.

a) There can clearly be no one-to-one function from {1,2,...,n} to {0,1} if n > 2. If n =1, then there are
2 such functions, the one that sends 1 to 0, and the one that sends 1 to 1. If n = 2, then there are again 2
such functions, since once it is determined where 1 is sent, the function must send 2 to the other value in the
codomain.

b) If the function assigns 0 to both 1 and n, then there are n — 2 function values free to be chosen. Each
can be chosen in 2 ways. Therefore, by the product rule (since we have to choose values for all the elements
of the domain) there are 2”2 such functions, as long as n > 1. If n =1, then clearly there is just one such
function.

c) If n = 1, then there are no such functions, since there are no positive integers less than n. So assume
n > 1. In order to specify such a function, we have to decide which of the numbers from 1 to n—1, inclusive,
will get sent to 1. There are n — 1 ways to make this choice. There is no choice for the remaining numbers
from 1 to n — 1, inclusive, since they all must get sent to 0. Finally, we are free to specify the value of the
function at n, and this may be done in 2 ways. Hence, by the product rule the final answer is 2(n —1).

The easiest way to view a partial function in terms of counting is to add an additional element to the codomain
of the function—let’s call it u for “undefined”— and then imagine that the function assigns a value to all
elements of the domain. If the original function f had previously been undefined at x, we now say that
f(z) = u. Thus all we have done is to increase the size of the codomain from n elements to n + 1 elements.
By Example 6 we conclude that there are (n + 1)™ such partial functions.

The trick here is to realize that a palindrome of length n is completely determined by its first [n/2] bits.
This is true because once these bits are specified, the remaining bits, read from right to left, must be identical

to the first |n/2] bits, read from left to right. Furthermore, these first [n/2] bits can be specified at will,
and by the product rule there are 27/2] ways to do so.

Recall that an RNA sequence is a sequence of letters, each of which is one of A, C, G, or U. Thus by the
product rule there are 4* RNA sequences of length four if we impose no restrictions.

a) There are 3* RNA sequences that use only letters other than U, so the answer is 4* — 3* = 175.
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sequences that do contain CUG. There are two cases: these are the first three bases, or these are thel
three. In either case, there are four ways to fill in the remaining base, so there are 4 +4 =8 such sequengy,

Therefore there are 44 — 8 = 248 sequences that do not.
c) We first count the number of sequences that do contain all four bases. All that matters is the order of the

bases. There are four choices for which base to put first, three choices for which base to put second, they two
choices for the third position, and one choice for the last position. By the product rule, the answer to iy,
subproblem is 4-3-2- 1 = 24. Therefore the answer to the given question is 44 — 24 = 232.

d) We need to choose two the two bases to be included, and this can be done in six ways (AU, AC, AG, y¢,
UG, CG). Once we make this choice (say AU), we can count the sequences that use those two bases. Ther
are 2% = 16 ways to choose which base goes at which position (two choices at each of the four positions), by
two of these in fact use only one base, so there are 14 sequences that use exactly those two bases. Therefor

the answer is 6 - 14 = 84.

We can use the division rule here; see Example 20. If we imagine the places at the table as fixed, then there
are 6-5-4-3-2-1=6! ways to seat the six people—choose one of the six people for seat #1, choose one of
the five remaining people for seat #2, and so on. However, this overcounts by a factor of 6, corresponding
to rotating the table (which does not change a person’s neighbors), and by a factor of 2, because any given
arrangement is the “same” under the stated rules as the arrangement that reverses the order of the people
(changing clockwise to counterclockwise). Therefore the answer is 6!/(6-2) = 60. An alternative way to look
at it is as follows. Without loss of generality, have person A take a seat. Choose his two neighbors in one of
5-4/2 = 10 ways and have them sit on either side of him. Now place the other three people in one of the 3!
ways possible in the remaining seats. The number of ways, then, is 10 -6 = 60.

a) Here is a good way (but certainly not the only way) to approach this problem. Since the bride and groom
must stand next to each other, let us treat them as one unit. Then the question asks for the number of ways
to arrange five units in a row (the bride-and-groom unit and the four other people). We can think of filling
five positions one at a time, so by the product rule there are 5-4-3-2-1 = 120 ways to make these choices.
This is not quite the answer, however, since there are also two ways to decide on which side of the groom the
bride will stand. Therefore the final answer is 120 - 2 = 240.

b) There are clearly 6-5-4-3-2-1 =720 arrangements in all. We just determined in part (a) that 240 of
them involve the bride standing next to the groom. Therefore there are 720 — 240 = 480 ways to arrange the
people with the bride not standing next to the groom.

c) Of the 720 arrangements of these people (see part (b)), exactly half must have the bride somewhere to the
left of the groom. (We are invoking symmetry here—a useful tool for solving some combinatorial problems.)
Therefore the answer is 720/2 = 360.

There are 27 bit strings of length 10 that begin with three 0’s, since each of the remaining seven bits has two
possible values. Similarly, there are 2% bit strings of length 10 that end with two 0’s. Furthermore, there
are 2° bit strings of length 10 that both begin with three 0’s and end with two 0’s, since each of the five
“middle” bits can be specified in two ways. Using the principle of inclusion-exclusion, we conclude that there
are 27 + 28 — 25 = 352 such strings. The idea behind this principle here is that the strings that both begin
with three 0’s and end with two 0’s were counted twice when we added 27 and 28, so we need to subtract
for the overcounting. It is definitely not the case that we are subtracting because we do not want to count

such strings at all.

First let us count the number of 8-bit strings that contain three consecutive 0’s. We will organize our count
by looking at the leftmost bit that contains a 0 followed by at least two more 0’s. If this is the first bit.
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then the second and third bits are determined (namely, they are both 0), but bits 4 through 8 are free to be
specified, so there are 25 = 32 such strings. If it is the second, third, or fourth bits, then the bit preceding
it must be a 1 and the two bits after it must be 0’s, but the other four bits are free. Therefore there are
2% = 16 such strings in each of these three cases, or 48 in all. Next let us suppose that the substring of three
or more 0's starts at bit 5. Then bit 4 must be a 1. Bits 1 through 3 can be anything other than three 0’s (if
it were three 0's, then we already counted this string); thus there are 2* — 1 =7 ways to specify them. Bit 8
is free. Therefore there are 7-2 = 14 such strings. Finally, suppose that the substring 000 starts in bit 6,
so that bit 5 is a 1. There are 2* = 16 possibilities for the first four bits, but three of them contain three
consecutive 0’s (0000, 0001, and 1000); therefore there are only 13 such strings. Adding up all the cases we
have discussed, we obtain the final answer of 32 + 48 + 14 + 13 = 107 for the number of 8-bit strings that
contain three consecutive 0's.

Next we need to compute the number of 8-bit strings that contain four consecutive 1’s. The analysis is
very similar to what we have just done. There are 2! = 16 such strings starting with 1111; there are 20=8
starting 01111; there are 23 = 8 starting 201111 (where z is either 0 or 1); and there are similarly 8 starting
each of xy01111 and xy201111. This gives us a total of 16 + 4 - 8 = 48 strings containing four consecutive
I's.

Finally, we need to count the number of strings that contain both three consecutive 0’s and four con-
secutive 1’s. It is easy enough to just list them all: 00001111, 00011111, 00011110, 10001111, 11110000,
11111000, 01111000, and 11110001, eight in all. Now applying the principle of inclusion-exclusion to what
we have calculated above, we obtain the answer to the entire problem: 107 + 48 — 8 = 147. There are only

256 bit strings of length eight altogether, so this answer is somewhat surprising, in that more than half of
them satisfy the stated condition.

We can solve this problem by computing the number of positive integers not exceeding 100 that are divisible
by 4, the number of them divisible by 6, and the number divisible by both 4 and 6; and then applying the
principle of inclusion-exclusion. There are clearly 100/4 = 25 multiples of 4 in this range, since every fourth
number is divisible by 4. The number of integers in this range divisible by 6 is [100/6| = 16; we needed to
round down because the multiples of 6 occur at the end of each consecutive block of 6 integers (6, 12, 18,
etc.). Furthermore a number is divisible by both 4 and 6 if and only if it is divisible by their least common
multiple, namely 12. Therefore there are [100/12] = 8 numbers divisible by both 4 and 6 in this range.
Finally, applying inclusion-exclusion, we see that the number of positive integers not exceeding 100 that are
divisible either by 4 or by 6 is 254 16 — 8 = 33.

a) We are told that there are 26 +26 + 10 4+ 6 = 68 available characters. A password of length k using these
characters can be formed in 68F ways. Therefore the number of passwords with the specified length restriction
is 688 + 68° + 6810 + 68! + 68'2 = 9,920,671,339,261,325,541,376, which is about 9.9 x 10?! or about ten
sextillion.

b) For a password not to contain one of the special characters, it must be constructed from the other 62
characters. There are 628 + 629 + 6210 + 62! + 62'? = 3,279,156,377,874,257,103,616 of these. Thus there
are 6,641,514,961,387,068,437,760 ~ 6.6 x 102! (about seven sextillion) passwords that do contain at least one
occurrence of one of the special symbols.

c¢) Assuming no restrictions, it will take one nanosecond (one billionth of a second, or 1072 sec) for each
password. We just multiply this by our answer in part (a) to find the number of seconds the hacker will

require. We can convert this to years by dividing by 60 - 60 - 24 - 365.2425 (the average number of seconds in
a year). It will take about 314,374 years.

Suppose the name has length k, where 1 <k < 65535. There are 26 4+ 26 + 1 + 1 + 10 = 64 choices for each
character, except that the first character cannot be a digit, so there are only 54 choices for the first character.
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By the product rule there are 54 - 6451 choices for such a string. To get the final answer, we need t s

this over all lengths, for a total of
65535

Y 5464570
k=1
Applying the formula for the sum of a geometric series gives 54(6465%3¢ — 1) /63, which is about 5.5 x 10118365

A programmer will never run out of variable names!

By the result of Example 8, there are C' = 6,400,000,000 possible numbers of the form NXX-NXX-XXxx
To determine the number of different telephone numbers worldwide, then, we need to determine how many
country codes there are and multiply by C'. There are clearly 10 country codes of length 1, 100 country
codes of length 2, and 1000 country codes of length 3. Thus there are 10+ 100+ 1000 = 1110 country codes
in all, by the sum rule. Our final answer is 1110 - C' = 7,104,000,000,000.

There are 16 hexadecimal digits. We just apply the sum rule and the product rule to obtain the answer
160 + 1626 + 1658 ~ 6.9 x 10%9. Almost all of this comes from the last term (16°%).

Every fourth number is divisible by 4, and every sixth number is divisible by 6. Therefore [999,999/4| =
249,999 numbers in the given range are divisible by 4, and [999,999/6| = 166,666 numbers in the given range
are divisible by 6. We want to exclude these from the 999,999 numbers we have. However, numbers can be
divisible by both 4 and 6; namely those divisible by 12, the least common multiple of 4 and 6. There are
1999,999/12] = 83,333 such numbers. Using the principle of inclusion—exclusion, we must add this number
back in to avoid overcounting. Therefore our answer is 999,999 — 249,999 — 166,000 + 83,000 = 666,667 .

We assume that what is intended is that each of the 4 letters is to be used exactly once. There are at least
two ways to do this problem. First let us break it into two cases, depending on whether the a comes at the
end of the string or not. If a is not at the end, then there are 3 places to put it. After we have placed the a,
there are only 2 places to put the b, since it cannot go into the position occupied by the a and it cannot go
into the position following the a. Then there are 2 positions in which the ¢ can go, and only 1 position for
the d. Therefore, there are by the product rule 3-2-2-1 = 12 allowable strings in which the a does not come
last. Second, if the a comes last, then there are 3-2-1 = 6 ways to arrange the letters b, ¢, and d in the
first three positions. The answer, by the sum rule, is therefore 12 + 6 = 18.

Here is another approach. Ignore for a moment the restriction that a b cannot follow an a. Then we
need to choose the letter that comes first (which can be done in 4 ways), then the letter that comes second
(which can be done in 3 ways, since one letter has already been used), then the letter that comes third (which
can be done in 2 ways, since two of the letters have already been used), and finally the letter that comes last
(which can only be done in 1 way, since there is only one unused letter at that point). Therefore there are, by
the product rule, 4-3-2-1 = 24 such strings. Now we need to subtract from this total the number of strings
in which the a is immediately followed by the b. To count these, let us imagine the a and b glued together
into one superletter, ab. (This gluing technique often comes in handy.) Now there are 3 things to arrange.
We can choose any of them (the letters ¢ or d or the superletter ab) to come first, and that can be done in
3 ways. We can choose either of the other two to come second (which can be done in 2 ways), and we are
forced to choose the remaining one to come third. By the product rule there are 3-2-1 = 6 ways to make
these choices. Therefore our final answer is 24 — 6 = 18.

There are at least two approaches that are effective here. In our first tree, we let each branching point represent
a decision as to whether to include the next element in the set (starting with the largest element). At the top
of the tree, for example, we can either choose to include 24 or to exclude it (denoted —24). We branch one

cou“ting
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way for each possibility. In the first figure below, the entire subtree to the right represents those sets that do
not include 24, and the subtree to the left represents those that do. At the point below and to the left of the
24, we have only one branch, —11, since after we have included 24 in our set, we cannot include 11, because
the sum would not be less than 28 if we did. At the point below and to the right of the —24, however, we
again branch twice, since we can choose either to include 11 or to exclude it. To answer the question, we
look at the points in the last row of the tree. Each represents a set whose sum is less than 28. For example,

the sixth point from the right represents the set {11,3}. Since there are 17 such points, the answer to the
problem is 17.

Our other solution is more compact. In the tree below we show branches from a point only for the
inclusion of new numbers in the set. The set formed by including no more numbers is represented by the point
itself. This time every point represents a set. For example, the point at the top represents the empty set, the
point below and to the right of the number 11 represents the set {11}, and the left-most point on the bottom
row represents the set {3,7,9}. In general the set that a point represents is the set of numbers found on the
path up the tree from that point to the root of the tree (the point at the top). We only included branches

when the sum would be less than 28. Since there are 17 points altogether in this figure, the answer to the
problem is 17.

a) The tree shown here enumerates the possible outcomes. First we branch on gender, then on size, and finally
on color. There are 22 ends, so the answer to the question is 22.

wWrbwrbwrbwrb wbwbwbwbwb

b) First we apply the sum rule: the number of shoes is the sum of the number of men’s shoes and the number
of women'’s shoes. Next we apply the product rule. For a woman’s shoe we need to specify size (4 choices)
and then for each choice of size, we need to specify color (3 choices). Therefore there are 4 - 3 = 12 possible
women’s models. Similarly, there are 5 -2 = 10 men’s models. Therefore the answer is 12 4+ 10 = 22.
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71. We want to prove P(m), the sum rule for m tasks, which says that if tasks Ty, T5, ..., T, can be dop,

n ny, ny, .. ong, ways, respectively, and no two of them can be done at the same time, then there 4,
N1+ Ny + -+ 4+ n, ways to do one of the tasks. The basis step of our proof by mathematical inductig, is
m = 2, and that has already been given. Now assume that P(m) is true, and we want to prove P(y, 4 1)
There are m + 1 tasks, no two of which can be done at the same time; we want to do one of them. Either ,,,
choose one from among the first m, or we choose the task Tp41- By the sum rule for two tasks, the numb,
of ways we can do this is n + nm41, where n is the number of ways we can do one of the tasks among ¢,
first m. But by the inductive hypothesis n = nj +ng + - - + nm . Therefore the number of ways we cay ¢,

one of the m + 1 tasks is n; +ng + -+ + N + Nmg1, as desired.

73. A diagonal joins two vertices of the polygon, but they must be vertices that are not already joined by a side
of the polygon. Thus there are n — 3 diagonals emanating from each vertex of the polygon (we've excludeq
two of the n — 1 other vertices as possible targets for diagonals). If we multiply n — 3 by n, the number (f
vertices, we will have counted each diagonal exactly twice—once for each endpoint. We compensate for this
overcounting by dividing by 2. Therefore there are n(n — 3)/2 diagonals. (Note that the convexity of the
polygon had nothing to do with the problem—we were counting the diagonals, whether or not we could be
sure that they all lay inside the polygon.)

SECTION 6.2 The Pigeonhole Principle

The pigeonhole principle seems so trivial that it is difficult to realize how powerful it is in solving some
mathematical problems. As usual with combinatorial problems, the trick is to look at things the right way.
which usually means coming up with the clever insight, perhaps after hours of agonizing and frustrating
exploration with a problem.

Try to solve these problems by invoking the pigeonhole principle explicitly, even if you can see other ways
of doing them; you will gain some insights by formulating the problem and your solution in this way. The
trick, of course, is to figure out what should be the pigeons and what should be the pigeonholes. Many of the
the hints of Section 6.1 apply here, as well as general problem-solving techniques, especially the willingness to
play with a problem for a long time before giving up.

Many of the elegant applications are quite subtle and difficult, and there are even more subtle and difficult
applications not touched on here. Not every problem, of course, fits into the model of one of the examples
in the text. In particular, Exercise 42 looks deceptively like a problem amenable to the technique discussed
in Example 10. Keep in mind that the process of grappling with problems such as these is worthwhile and
educational in itself, even if you never find the solution.

1. There are six classes: these are the pigeons. There are five days on which classes may meet (Monday through
Friday): these are the pigeonholes. Each class must meet on a day (each pigeon must occupy a pigeonhole).
By the pigeonhole principle at least one day must contain at least two classes.

3. a) There are two colors: these are the pigeonholes. We want to know the least number of pigeons needed
to insure that at least one of the pigeonholes contains two pigeons. By the pigeonhole principle the answer
is 3. If three socks are taken from the drawer, at least two must have the same color. On the other hand two
socks are not enough, because one might be brown and the other black. Note that the number of socks was
irrelevant (assuming that it was at least 3).

b) He needs to take out 14 socks in order to insure at least two black socks. If he does so, then at most 12
of them are brown, so at least two are black. On the other hand, if he removes 13 or fewer socks, then 12 of
them could be brown, and he might not get his pair of black socks. This time the number of socks did matter. 1

e
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There are four possible remainders when an integer is divided by 4 (these are the pigeonholes here): 0, 1, 2,

or 3. Therefore, by the pigeonhole principle at least two of the five given remainders (these are the pigeons)
must the same.

. Let the n consecutive integers be denoted z+1, £+2, ..., z+n, where z is some integer. We want to show

that exactly one of these is divisible by n. There are n possible remainders when an integer is divided by n,
namely 0, 1, 2, ..., n — 1. There are two possibilities for the remainders of our collection of n numbers:
either they cover all the possible remainders (in which case exactly one of our numbers has a remainder of 0
and is therefore divisible by n), or they do not. If they do not, then by the pigeonhole principle, since there
are then fewer than n pigeonholes (remainders) for n pigeons (the numbers in our collection), at least one
remainder must occur twice. In other words, it must be the case that £+ and x+ j have the same remainder
when divided by n for some pair of numbers ¢ and j with 0 < ¢ < j < n. Since z + i and z + j have the
same remainder when divided by n, if we subtract z+i from x+ j, then we will get a number divisible by n.
This means that j — i is divisible by n. But this is impossible, since j — ¢ is a positive integer strictly less

than n. Therefore the first possibility must hold, that exactly one of the numbers in our collection is divisible
by n.

. The generalized pigeonhole principle applies here. The pigeons are the students (no slur intended), and the

pigeonholes are the states, 50 in number. By the generalized pigeonhole principle if we want there to be
at least 100 pigeons in at least one of the pigeonholes, then we need to have a total of N pigeons so that
[N/50] > 100. This will be the case as long as N > 99 - 50 + 1 = 4951. Therefore we need at least 4951
students to guarantee that at least 100 come from a single state.

We must recall from analytic geometry that the midpoint of the segment whose endpoints are (a,b,c) and
(d,e, f) is ((a+d)/2, (b+e)/2,(c+f)/2). We are concerned only with integer values of the original coordinates.
Clearly the coordinates of these fractions will be integers as well if and only if ¢ and d have the same parity
(both odd or both even), b and e have the same parity, and ¢ and f have the same parity. Thus what matters
in this problem is the parities of the coordinates. There are eight possible triples of parities: (odd,odd,odd),
(odd,odd, even), (odd,even,odd), ..., (even,even,even). Since we are given nine points, the pigeonhole
principle guarantees that at least two of them will have the same triple of parities. The midpoint of the
segment joining these two points will therefore have integer coordinates.

a) We can group the first eight positive integers into four subsets of two integers each, each subset adding up
to 9: {1,8}, {2,7}, {3,6}, and {4,5}. If we select five integers from this set, then by the pigeonhole principle
(at least) two of them must come from the same subset. These two integers have a sum of 9, as desired.

b) No. If we select one element from each of the subsets specified in part (a), then no sum will be 9. For
example, we can select 1, 2, 3, and 4.

We can apply the pigeonhole principle by grouping the numbers cleverly into pairs (subsets) that add up to 7,
namely {1,6}, {2,5}, and {3,4}. If we select four numbers from the set {1,2,3,4,5,6}, then at least two of
them must fall within the same subset, since there are only three subsets. Two numbers in the same subset
are the desired pair that add up to 7. We also need to point out that choosing three numbers is not enough,
since we could choose {1,2,3}, and no pair of them add up to more than 5.

. The given information tells us that there are 50-85-5 = 21,250 bins. If we had this many products, then each

could be stored in a separate bin. By the pigeonhole principle, however, if there are at least 21,251 products,
then at least two of them must be stored in the same bin. This is the number the problem is asking us for.
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a) If this statement were not true, then there would be at most 8 from each class standing, for a tot) of g

in the class.
most 24 students. This contradicts the fact that there are 25 students 1

b) If this statement were not true, then there would be at most 2 freshmen, at most 18 sophomores, apq a

most 4 juniors, for a total of at most 24 students. This contradicts the fact that there are 25 students ip

class.

One way to do this is to have the sequence contain four groups of four numbers each, so that the numbep
within each group are decreasing, and so that the numbers between groups are increasing. For example, we
could take the sequence to be 4, 3, 2, 1; 8, 7, 6, 5; 12, 11, 10, 95 16, 15, 14, 13. There can be n
increasing subsequence of five terms, because any increasing subsequence can have only one element from each
of the four groups. There can be no decreasing subsequence of five terms, because any decreasing subsequence

cannot have elements from more than one group.

The key here is that 25 is an odd number. If there were an even number of boys and the same even number
of girls, then we could position them around the table in the order BBGGBBGG. .. and never have a person
both of whose neighbors are boys. But with an odd number of each sex, that cannot happen. Here is one nice
way to see why when there are 25 of each. Number the seats around the table from 1 to 50, and think of seat
50 as being adjacent to seat 1. There are 25 seats with odd numbers and 25 seats with even numbers. If no
more than 12 boys occupied the odd-numbered seats, then at least 13 boys would occupy the even-numbered
seats, and vice versa. Without loss of generality, assume that at least 13 boys occupy the 25 odd-numbered
seats. Then at least two of those boys must be in consecutive odd-numbered seats. The person sitting between
those two boys will have boys as both of his or her neighbors.

This is actually a fairly hard problem, in terms of what we need to keep track of. Call the given sequence
ai, az, ..., a,. We will keep track of the lengths of long increasing or decreasing subsequences by assigning
values i, and dj for each k from 1 to n, indicating the length of the longest increasing subsequence ending
with ar and the length of the longest decreasing subsequence ending with ay, respectively. Thus i; =d; =1,
since a; is both an increasing and a decreasing subsequence of length 1. If as < a;, then i3 =1 and dy =2,
since the longest increasing subsequence ending at as is just az, but the longest decreasing subsequence ending
at ap is aj,a. If az > a;, then it is the other way around: i =2 and dy = 1. In general, we can determine
i in the following manner (the determination of dj, is similar, with the roles of i and d, and the roles of <
and >, reversed). We look at the numbers a;, ag, ..., ax—;. For each a; that is less than aj, we know that
the value of i is at least i; + 1, since the increasing subsequence of length i; ending at a; can be extended
by following it by ay, resulting in an increasing subsequence of length i; + 1, ending at ax. Furthermore,
there is no other way of producing an increasing subsequence ending at aj, other than the subsequence of
length 1. Thus we set i, equal to either 1 or the maximum of the numbers i; + 1 for those values of j < k
for which a; < ax. Finally, once we have determined all the values i; and di, we choose the largest of these

2n numbers as our answer.

The procedure just described, however, does not keep track of what the longest subsequence is, so we
need to use two more sets of variables, iprev, and dprev,. These will point back to the terms in the sequence
that caused the values of iy and di to be what they are. To retrieve the longest increasing or decreasing
subsequence, once we know which type it is and where it ends, we follow these pointers, thereby exhibiting
the subsequence backwards. We will not write the pseudocode for this final phase of the algorithm. (See the
answer in the back of the textbook for an alternative procedure, which explicitly computes the sequence.)
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procedure long subsequence(ay,asz,...,a, : distinct integers)
for k:=1ton
ir:=1;dp:=1
iprevy = k; dprevy 1=k
for j:=1tok-1
if a; <ax and i; +1 > i then

I = ’ij +1
1prevy 1= j
if a; > ai and d; +1 > d; then

dy, = dj +1

dprevy :=j
{at this point correct values of i; and dj have all been assigned }
longest := 1
for k:=2ton

if iy > longest then longest := iy
if di. > longest then longest := d
{ longest is the length of the longest increasing or decreasing subsequence }

We can prove these statements using both the result and the method of Example 13. First note that the role
of “mutual friend” and “mutual enemy” is symmetric, so it is really enough to prove one of these statements;
the other will follow by interchanging the roles. So let us prove that in every group of 10 people, either there
are 3 mutual friends or 4 mutual enemies. Consider one person; call this person A. Of the 9 other people,
either there must be 6 enemies of A, or there must be 4 friends of A (if there were 5 or fewer enemies and 3
or fewer friends, that would only account for 8 people). We need to consider the two cases separately. First
suppose that A has 6 enemies. Apply the result of Example 13 to these 6 people: among them either there
are 3 mutual friends or there are 3 mutual enemies. If there are 3 mutual friends, then we are done. If there
are 3 mutual enemies, then these 3 people, together with A, form a group of 4 mutual enemies, and again
we are done. That finishes the first case. The second case was that A had 4 friends. If some pair of these
people are friends, then they, together with A, form the desired group of 3 mutual friends. Otherwise, these 4
people are the desired group of 4 mutual enemies. Thus in either case we have found either 3 mutual friends
or 4 mutual enemies.

We need to show two things: that if we have a group of n people, then among them we must find either a
pair of friends or a subset of n of them all of whom are mutual enemies; and that there exists a group of
n — 1 people for which this is not possible. For the first statement, if there is any pair of friends, then the
condition is satisfied, and if not, then every pair of people are enemies, so the second condition is satisfied.
For the second statement, if we have a group of n — 1 people all of whom are enemies of each other, then
there is neither a pair of friends nor a subset of n of them all of whom are mutual enemies.

First we need to figure out how many distinct combinations of initials and birthdays there are. The product
rule tells us that since there are 26 ways to choose each of the 3 initials and 366 ways to choose the birthday,
there are 26 - 26 - 26 - 366 = 6,432,816 such combinations. By the generalized pigeonhole principle, with these
combinations as the pigeonholes and the 37 million people as the pigeons, there must be at least [37,000,
000/6,432,816] = 6 people with the same combination.

The numbers from 1 to 200,000 are the pigeonholes, and the inhabitants of Paris are the pigeons, which
number at least 800,001. Therefore by Theorem 1 there are at least two Parisians with the same number of
hairs on their heads; and by Theorem 2 there are at least [800,001/200,000] = 5 Parisians with the same
number of hairs on their heads.
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37.

39.

41.

43.

45.
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The 38 time periods are the pigeonholes, and the 677 classes are the pigeons. By the generalized pigeonhole
principle there is some time period in which at least [677/38] = 18 classes are meeting. Since each class must

meet in a different room, we need 18 rooms.

Let ¢; be the number of computers that the i*" computer is connected to. Each of these integers is between 0
and 5, inclusive. The pigeonhole principle does not allow us to conclude immediately that two of these numbers
must be the same, since there are six numbers (pigeons) and six possible values (pigeonholes). However, if not
all of the values are used, then the pigeonhole principle would allow us to draw the desired conclusion. Let
us therefore show that not all of the numbers can be used. The only way that the value 5 can appear as one
of the ¢;’s is if one computer is connected to each of the others. In that case, the number 0 cannot appear,
since no computer could be connected to none of the others. Thus not both 5 and 0 can appear in our list,

and the above argument is valid.

This is similar to Example 9. Label the computers C; through Cigo, and label the printers P; through Pp.
If we connect Cy, to Py for k =1,2,...,20 and connect each of the computers C3; though Cigo to all the
printers, then we have used a total of 20+80-20 = 1620 cables. Clearly this is sufficient, because if computers
C1 through C5 need printers, then they can use the printers with the same subscripts, and if any computers
with higher subscripts need a printer instead of one or more of these, then they can use the printers that are
not being used, since they are connected to all the printers. Now we must show that 1619 cables are not
enough. Since there are 1619 cables and 20 printers, the average number of computers per printer is 1619/20,
which is less than 81. Therefore some printer must be connected to fewer than 81 computers (the average of
a set of numbers cannot be bigger than each of the numbers in the set). That means it is connected to 80 or
fewer computers, so there are at least 20 computers that are not connected to it. If those 20 computers all
needed a printer simultaneously, then they would be out of luck, since they are connected to at most the 19

other printers.

This problem is similar to Example 10, so we follow the method of solution suggested there. Let a; be the

number of matches held during or before the j** hour. Then a;, ag, ..., a7s is an increasing sequence of
distinct positive integers, since there was at least one match held every hour. Furthermore 1 < a; < 125,
since there were only 125 matches altogether. Moreover, a; + 24, as + 24, ..., ars + 24 is also an increasing
sequence of distinct positive integers, with 25 < a; + 24 < 149.

Now the 150 positive integers a1, az, ..., ars, a1 +24, az +24, ..., ars + 24 are all less than or equal
to 149. Hence by the pigeonhole principle two of these integers are equal. Since the integers a;, a2, ..., ars
are all distinct, and the integers a; +24, ag+24, ..., a7s + 24 are all distinct, there must be distinct indices

¢ and j such that a; = a; + 24. This means that exactly 24 matches were held from the beginning of hour

7+ 1 to the end of hour j, precisely the occurrence we wanted to find.

This is exactly a restatement of the generalized pigeonhole principle. The pigeonholes are the elements in the
codomain (the elements of the set 7'), and the pigeons are the elements of the domain (the elements of the
set S). To say that a pigeon s is in pigeonhole ¢ is just to say that f(s) =¢. The elements s;, s, ..., Sn
are just the m pigeons guaranteed by the generalized pigeonhole principle to occupy a common pigeonhole.

Let d; be jz — N(jz), where N(jz) is the integer closest to jz, for 1 < j < n. We want to show that
|d;] < 1/n for some j. Note that each d; is an irrational number strictly between —1/2 and 1/2 (since jz is
irrational and every irrational number is closer than 1/2 to the nearest integer). The proof is slightly messier
if m is odd, so let us assume that n is even. Consider the n intervals

B2 () (222, (). () (222)
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The intervals are the pigeonholes and the d;’s are the pigeons. If the interval (0,1/n) or (—1/n,0) is occupied,
then we are done, since the d; in that interval tells us which j makes |d;| < 1/n. If not, then there are n
pigeons for at most n—2 pigeonholes, so by the pigeonhole principle there is some interval, say ((k— 1)/n,k/ n) ;
with two pigeons in it, say d, and dy, with r < s. Now we will consider sz — rz and show that it is within
1/n of its nearest integer; that will complete our proof, since sz —rx = (s—r)x, and s—r is a positive integer
less than n.

We can write rz = N(rz) + d, and sz = N(sz) +d,, where (k —1)/n < d, < k/n and (k—1)/n <
ds < k/n. Subtracting, we have that sz —rz = [N(sz) — N(rz)] + [ds — d;]. Now the quantity in the first
pair of square brackets is an integer. Furthermore the quantity in the second pair of square brackets is the
difference of two numbers in the interval ((k — 1)/n,k/n) and hence has absolute value less than 1/n (the
extreme case would be when one of them is very close to (k — 1)/n and the other is very close to k/n).
Therefore, by definition of “closest integer” sz — rx is at most a distance 1/n from its closest integer, i.e.,
|(sz —rz) — N(sx — rz)| < 1/n, as desired. (The case in which n is odd is similar, but we need to extend
our intervals slightly past +1/2, using n + 1 intervals rather than n. This is okay, since when we subtract 2
from n 4+ 1 we still have more pigeons than pigeonholes.)

a) Assuming that each iy < n, there are only n pigeonholes (namely 1, 2, ..., n) for the n? + 1 numbers
i1, 42, ..., in24; . Hence, by the generalized pigeonhole principle at least [(n®+1)/n] = n+1 of the numbers
are in the same pigeonhole, i.e., equal.

b) If ax, < ax,,,, then the subsequence consisting of ai, followed by a maximal increasing subsequence of
length ix,,, starting at ay,,, contradicts the fact that iy, =ix,,,. Hence ax; > ax,,, -

c) If there is no increasing subsequence of length greater than n, then parts (a) and (b) apply. Therefore we
have a,,, > ag, > --- > ax, > ax,, a decreasing subsequence of length n + 1.

SECTION 6.3 Permutations and Combinations

In this section we look at counting problems more systematically than in Section 6.1. We have some formulae
that apply in many instances, and the trick is to recognize the instances. If an ordered arrangement without
repetitions is asked for, then the formula for permutations usually applies; if an unordered selection without
repetition is asked for, then the formula for combinations usually applies. Of course the product rule and
the sum rule (and common sense and cleverness) are still needed to solve some of these problems—having
formulae for permutations and combinations definitely does not reduce the solving of counting problems to a
mechanical algorithm.

Again the general comments of Section 6.1 apply. Try to solve problems more than one way and come
up with the same answer—you will learn from the process of looking at the same problem from two or more
different angles, and you will be (almost) sure that your answer is correct.

. Permutations are ordered arrangements. Thus we need to list all the ordered arrangements of all 3 of these

letters. There are 6 such: a,b,c; a,c,b; b,a,c; b,c,a; c,a,b; and ¢,b,a. Note that we have listed them in
alphabetical order. Algorithms for generating permutations and combinations are discussed in Section 6.6.

. If we want the permutation to end with a, then we may as well forget about the a, and just count the number

of permutations of {b,c,d, e, f,g}. Each permutation of these 6 letters, followed by a, will be a permutation
of the desired type, and conversely. Therefore the answer is P(6,6) = 6! = 720.
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. Thisis P(9,5)=9-8-7-6-5=15,120 by Theorem 1.

. We need to pick 3 horses from the 12 horses in the race,

Chapter 6
uﬂting

_ n(n—1)(n- 9).--(n—r+ 1), given in Theorem 1. Note tpy ¢
n,r) =" his is the same as P(n,r) =n!/ (n—r)!, but the lattey form
he fact that each of the factors in the denominator cancelg OnZ
(n—r)! and then to divide is to do a lot of extra arithmet;,
extra work, so we note that P(n,n)=P(n,n-1) = 0
c) P(8, 1)=8
f) P(10,9) = 10! = 3,628,800

here

We simply plug into the formula P(
are r terms in this product, starting with n. T
is not as nice for computation, since it ignores t
factor in the numerator. Thus to compute 7! and
Of course if the denominator is 1, then there is 110
a) P(6,3)=6-5-4=120 b) P(6,5)=6!=720
d) P(8,5)=8-7-6-5-4=6720 e) P(88)=8=40,320

and third), in order to specify the win, place, and show. Thus there are P(12,3) = 12-11-10 = 13

possibilities.

a) To specify a bit string of length 10 that contains exactly four 1’s, we simply need to choose the four
positions that contain the 1’s. There are C(10,4) = 210 ways to do that.

b) To contain at most four 1’s means to contain four 1’s, three 1’s, two 1’s, one 1, or no 1’s. Reasoning as in
part (a), we see that there are C'(10,4)+C(10,3)+C(10,2)+C(10, 1)+C(10,0) = 210+120+45+10+1 = 386
such strings.

c) To contain at least four 1’s means to contain four 1’s, five 1’s, six 1’s, seven 1’s, eight 1’s, nine 1’s, or
ten 1’s. Reasoning as in part (b), we see that there are C(10,4) + C(10,5) + C(10,6) + C(10, 7)+ C(10,8) +
C(10,9) + C(10,10) = 210 + 252 + 210 + 120 + 45 + 10 + 1 = 848 such strings. A simpler approach would
be to figure out the number of ways not to have at least four 1’s (i.e., to have three 1’s, two 1’s, one 1,
or no 1’s) and then subtract that from 2!, the total number of bit strings of length 10. This way we get
1024 — (120 + 45 + 10 + 1) = 848, fortunately the same answer as before. Solving a combinatorial problem in
more than one way is a useful check on the correctness of the answer.

d) To have an equal number of 0’s and 1’s in this case means to have five 1’s. Therefore the answer is
C(10,5) = 252. Incidentally, this gives us another way to do part (b). If we don’t have an equal number of
0’s and 1’s, then we have either at most four 1’s or at least six 1’s. By symmetry, having at most four 1's
occurs in half of these cases. Therefore the answer to part (b) is (2!° — C(10,5))/2 = 386, as above.

:
1
|
%
and we need to arrange them in order (first, second. 1
|
1

We assume that the row has a distinguished head. Consider the order in which the men appear relative to
each other. There are n men, and all of the P(n,n) = n! arrangements is allowed. Similarly, there are n!
arrangements in which the women can appear. Now the men and women must alternate, and there are the
same number of men and women; therefore there are exactly two possibilities: either the row starts with
a man and ends with a woman (MWMW ... MW) or else it starts with a woman and ends with a man
(WMWM ...WM). We have three tasks to perform, then: arrange the men among themselves, arrange the
women among themselves, and decide which sex starts the row. By the product rule there are n!-n!-2 = 2(n!)

ways in which this can be done.

We assume that a combination is called for, not a permutation, since we are told to select a set, not form an
arrangement. We need to choose 5 things from 26, so there are C(26,5) = 26 - 25 - 24 - 23 - 22/5! = 65,780

ways to do so.

We know that there are 2190 subsets of a set with 100 elements. All of them have more than two elements
except the empty set, the 100 subsets consisting of one element each, and the C(100,2) = 4950 subsets with
two elements. Therefore the answer is 219 — 5051 a~ 1.3 x 1030,




.
3
g >

-
3

okl fhe 2 i

L

el SRl ot Db KD it Sl B ARE) S Bl L el et S e fialiieed e X

Section 6.3 Permutations and Combinations 213

19.

21.

23.

25.

a) Each flip can be either heads or tails, so there are 21° = 1024 possible outcomes.

b) To specify an outcome that has exactly two heads, we simply need to choose the two flips that came up
heads. There are C(10,2) = 45 such outcomes.

c) To contain at most three tails means to contain three tails, two tails, one tail, or no tails. Reasoning as
in part (b), we see that there are C(10,3) + C(10,2) + C(10,1) + C(10,0) = 120 + 45+ 10 + 1 = 176 such
outcomes.

d) To have an equal number of heads and tails in this case means to have five heads. Therefore the answer is
C(10,5) = 252.

a) If BCD is to be a substring, then we can think of that block of letters as one superletter, and the problem
is to count permutations of five items—the letters A, E, F, and G, and the superletter BC'D. Therefore
the answer is P(5,5) = 5! = 120.

b) Reasoning as in part (a), we see that the answer is P(4,4) = 4! = 24.

c) As in part (a), we glue BA into one item and glue GF into one item. Therefore we need to permute five
items, and there are P(5,5) = 5! = 120 ways to do it.

d) This is similar to part (c). Glue ABC into one item and glue DFE into one item, producing four items,
so the answer is P(4,4) = 4! = 24.

e) If both ABC and CDE are substrings, then ABCDE has to be a substring. So we are really just
permuting three items: ABCDE, F, and G. Therefore the answer is P(3,3) = 3! = 6.

f) There are no permutations with both of these substrings, since B cannot be followed by both A and F at
the same time.

First position the men relative to each other. Since there are eight men, there are P(8,8) ways to do this.
This creates nine slots where a woman (but not more than one woman) may stand: in front of the first
man, between the first and second men, ..., between the seventh and eight men, and behind the eighth
man. We need to choose five of these positions, in order, for the first through fifth woman to occupy (order
matters, because the women are distinct people). This can be done is P(9,5) ways. Therefore the answer is
P(8,8) - P(9,5) = 8! - 9!/4! = 609,638,400.

a) Since the prizes are different, we want an ordered arrangement of four numbers from the set of the first
100 positive integers. Thus there are P(100,4) = 94,109,400 ways to award the prizes.

b) If the grand prize winner is specified, then we need to choose an ordered set of three tickets to win the
other three prizes. This can be done is P(99,3) = 941,094 ways.

c) We can first determine which prize the person holding ticket 47 will win (this can be done in 4 ways), and
then we can determine the winners of the other three prizes, exactly as in part (b). Therefore the answer is
4P(99,3) = 3,764,376.

d) This is the same calculation as in part (a), except that there are only 99 viable tickets. Therefore the
answer is P(99,4) = 90,345,024. Note that this answer plus the answer to part (c) equals the answer to
part (a), since the person holding ticket 47 either wins a prize or does not win a prize.

e) This is similar to part (¢). There are 4-3 = 12 ways to determine which prizes these two lucky people
will win, after which there are P(98,2) = 9506 ways to award the other two prizes. Therefore the answer is
12.9506 = 114,072.

f) This is like part (e). There are P(4,3) = 24 ways to choose the prizes for the three people mentioned, and
then 97 ways to choose the other winner. This gives 24 - 97 = 2328 ways in all.

g) Here it is just a matter of ordering the prizes for these four people, so the answer is P(4,4) = 24.

h) This is similar to part (d), except that this time the pool of viable numbers has only 96 numbers in it.
Therefore the answer is P(96,4) = 79,727,040.
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i) There are four ways to determine the grand prize winner under these conditions. Then there are P(gg,3)

ways to award the remaining prizes. This gives an answer of 4P(99,3) = 3,764,376. |

j) First we need to choose the prizes for the holder of 19 and 47. $1nce there‘af'e fou'r prizes, there g,
P(4,2) = 12 ways to do this. Then there are 96 people who might win the remaining prizes, and there 4,
P(96,2) = 9120 ways to award these prizes. Therefore the answer is 12 - 9120 = 109,440.

a) Since the order of choosing the members is not relevant (the offices are not differentiated), we need to yse

a combination. The answer is clearly C(25,4) = 12,650.
b) In contrast, here we need a permutation, since the order matters (we choose first a president, then a vice

president, then a secretary, then a treasurer). The answer is clearly P(25,4) = 303,600.

a) In this part the permutation 5,6,32,7, for example, is to be counted, since it contains the consecutive
numbers 5, 6, and 7 in their correct order (even though separated by the 32). In order to specify such a
4-permutation, we first need to choose the 3 consecutive integers. They can be anything from {1,2,3} to
{98,99,100} ; thus there are 98 possibilities. Next we need to decide which slot is to contain a number not
in this set; there are 4 possibilities. Finally, we need to decide which of the 97 other positive integers not
exceeding 100 is to fill this slot, and there are of course 97 choices. Thus our first attempt at an answer gives
us, by the product rule, 98 -4 -97.

Unfortunately, this answer is not correct, because we have counted some 4-permutations more than once.
Consider the 4-permutation 4,5,6,7, for example. We cannot tell whether it arose from choosing 4, 5, and 6
as the consecutive numbers, or from choosing 5, 6, and 7. (These are the only two ways it could have arisen.)
In fact, every 4-permutation consisting of 4 consecutive numbers, in order, has been double counted. Therefore
to correct our count, we need to subtract the number of such 4-permutations. Clearly there are 97 of them
(they can begin with any number from 1 to 97). Further thought shows that every other 4-permutation in our
collection arises in a unique way (in other words, there is a unique subsequence of three consecutive integers).
Thus our final answer is 98 -4 - 97 — 97 = 37,927.

b) In this part we are insisting that the consecutive numbers be consecutive in the 4-permutation as well.
The analysis in part (a) works here, except that there are only 2 places to put the fourth number—in slot 1
or in slot 4. Therefore the answer is 98 -2 - 97 — 97 = 18,915.

We need to be careful here, because strings can have repeated letters.

a) We need to choose the position for the vowel, and this can be done in 6 ways. Next we need to choose
the vowel to use, and this can be done in 5 ways. Each of the other five positions in the string can contain
any of the 21 consonants, so there are 21° ways to fill the rest of the string. Therefore the answer is
6-5-215 = 122,523,030.

b) We need to choose the position for the vowels, and this can be done in C(6,2) = 15 ways (we need to choose
two positions out of six). We need to choose the two vowels (52 ways). Each of the other four positions in
the string can contain any of the 21 consonants, so there are 21* ways to fill the rest of the string. Therefore
the answer is 15 - 52 - 214 = 72,930,375.

c) The best way to do this is to count the number of strings with no vowels and subtract this from the total
number of strings. We obtain 26% — 216 = 223,149,655.

d) Asin part (c), we will do this by subtracting from the total number of strings, the number of strings with
no vowels and the number of strings with one vowel (this latter quantity having been computed in part (a)).
We obtain 266 — 216 — 65 21° = 223149655 — 122523030 = 100,626,625

We are told that we must select three of the 10 men and three of the 15 women. This can be done is
C(10,3)C(15,3) = 54,600 ways.
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35.

37.

39.

41.

43.

45.

To implement the condition that every 0 be immediately followed by a 1, let us think of “gluing” a 1 to the
right of each 0. Then the objects we have to work with are eight blocks consisting of the string 01 and two 1’s.
The question is, then, how many strings are there consisting of these ten objects? This is easy to calculate,
for we simply have to choose two of the “positions” in the string to contain the 1’s and fill the remaining
“positions” with the 01 blocks. Therefore the answer is C(10,2) = 45.

Perhaps the most straightforward way to do this is to look at the several cases. The string might contain three
1's and seven 0’s, four 1’s and six 0’s, five of each, six 1’s and four 0’s, or seven 1’s and three 0’s. In each
case we can determine the number of strings by calculating a binomial coefficient, since we simply need to

choose the positions for the 1’s. Therefore the answer is C(10,3) + C(10,4) +C(10,5) + C(10,6) + C(10,7) =
120 + 210 4+ 252 4 210 + 120 = 912.

To specify such a license plate we need to write down a 3-permutation of the set of 26 letters and follow it

by a 3-permutation of the set of 10 digits. By the product rule the answer is therefore P(26,3)- P(10,3) =
26-25-24-10-9-8 =11,232,000.

Designate the head of the table and seat the people clockwise. Clearly there are P(n,r) ways to do this.

Because rotations of the table do not make for a “different” seating, this overcounts by a factor of r. Therefore
the answer is P(n,r)/r =n!l/(r(n —r)!).

If there are no ties, then there are 3! = 6 possible finishes. If two of the horses tie and the third has a different
time, then there are 3 ways to decide which horse is not tied and then 2 ways to decide whether that horse

finishes first or last. That gives 3 -2 = 6 possibilities. Finally, all three horses can tie. So the answer is
6+6+1=13.

We can solve this problem by breaking it down into cases depending on the ties. There are four basic cases.
(1) If there are unique gold and silver winners, then we can choose these winners in 6 -5 = 30 ways. Any
nonempty subset of the remaining four runners can win the bronze medal. There are 2* — 1 = 15 ways
to choose these people, giving us 30 - 15 = 450 ways in all for this case. (2) If there is a 2-way tie for
first place, then there are C(6,2) = 15 ways to choose the gold medalists. Any nonempty subset of the
remaining four runners can win the bronze medal, so there are 2* — 1 = 15 ways to choose these people,
giving us 15 - 15 = 225 ways in all for this case. (3) If there is a k-way tie for first with & > 3, then
there are C(6,k) ways to choose the gold medalists (there are no other medals in this case). This gives us
C(6,3)+C(6,4) + C(6,5) + C(6,6) = 20+ 15+ 6 + 1 = 42 more possibilities. (4) The only other case is that
there is a single gold medal winner and a k-way tie for second with £ > 2. We can choose the winner in 6
ways and the silver medalists in 2° — C(5,1) — C(5,0) = 32 — 5 — 1 = 26 ways. This gives us 6 - 26 = 156
possibilities. Putting this all together, the answer is 450 + 225 4+ 42 + 156 = 873.

SECTION 6.4 Binomial Coefficients and Identities

In this section we usually write the binomial coefficients using the (') notation, rather than the C(n,r)
notation. These numbers tend to come up in many parts of discrete mathematics.
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O 1 H . . ”
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Using the formula (Theorem 2 in Section 6.3) we have

<k . 1) + (Z) T k- 1)!(nn—!— k-1 lc!(nni 0!
_nk+nln-k+1)

(having found a common denominator)

k!(n —k + 1)!
_ {n+Dnlo (n+1)! B (n+1)
Sk ((n+1)—k)! K((n+1) =k \ k)

y, a) We show that each side counts the number of ways to choose from a set with n elements a subset with &
dements and a distinguished element of that set. For the left-hand side, first choose the k-set (this can be
done in (}) ways) and then choose one of the k elements in this subset to be the distinguished element (this
can be done in k ways). For the right-hand side, first choose the distinguished element out of the entire n-set
(this can be done in n ways), and then choose the remaining k — 1 elements of the subset from the remaining

n—1

1-1 elements of the set (this can be done in (}~]) ways).
b) This is straightforward algebra:

k(:) = k!(nni DI (kn—'f;(; 1—)!19)! - "(Z: D

1. This identity can be proved algebraically or combinatorially. Algebraically, we compute as follows, starting
with the right-hand side (we use twice the fact that (z + 1)z! = (z + 1)!):

(n+ 1)) _ (n+ 1)n!
k S (k=1D!(n-(k-1))k
s (n+1)!
Ck(n—(k—1))!
i (n+1)!
T k((n+1) —k)!

n+1
-("F)

For a combinatorial argument, we need to construct a situation in which both sides count the same thing.
SWpose that we have a set of n + 1 people, and we wish to choose k of them. Clearly there are ("'kH)
‘Ways to do this. On the other hand, we can choose our set of k people by first choosing one person to be
I the set (there are n + 1 choices), and then choosing k — 1 additional people to be in the set, from the
" beople remaining. This can be done in (,*,) ways. Therefore apparently there are (n + 1)(,",) ways
0 choose the set of k people. However, we have overcounted: there are k ways that every such set can be
tosen, since once we have the set, we realize that any of the k& people could have been chosen first. Thus we
‘.a".@ overcounted by a factor of k, and the real answer is (n+ 1)(,",)/k (we correct for the overcounting by
j::s::g :y k). Somparing our two ap?proiihles,—one Yieldhlg th(? answer (":1), and the other yielding the

(n+1)(,",)/k, we conclude that ("}') = (n+1)(,",)/k.

N
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Finally, we are asked to use this identity to give a recursive definition of the (2) ’s. Note that this identity
expresses (2) in terms of (J’) for values of 7 and j less than n and k, respectively (namely i =n -1 ang
J =k —1). Thus the identity will be the recursive part of the definition. We need the base cases to hande
n =0 or k=0. Our full definition becomes

1 ifk=0
(n).—_ 0 ifk>0andn=0
5 n(?7Y)/k ifn>0and k> 0.
Actually, if we assume (as we usually do) that k < n, then we do not need the second line of the definitiop
Note that (?) = 0 for n < k under the definition given here, which is consistent with the combinatorig]
definition, since there are no ways to choose k different elements from a set with fewer than k elements.

We use Pascal’s identity twice (Theorem 2 of this section) and Corollary 1 of the previous section:
2n 2 2n\ _ (2n+1\ 1 /((2n+1 + 2n+1
n+1 n) \n+1) 2\\n+1 n+1
_1/(2n+1 + 2n+1)) _1 2n+2>)
T2 n+1 n T2 n+1

The reason this is called the “hockey stick identity” is that the binomial coefficients being summed lie along a
line in Pascal’s triangle, and the sum is the entry in the triangle that, together with that line, forms a shape
vaguely resembling a hockey stick.

a) We need to find something to count so that the left-hand side of the equation counts it in one way and the
right-hand side counts it in a different way. After much thought, we might try the following. We will count
the number of bit strings of length n+ 7+ 1 containing exactly 7 0’s and n+1 1’s. There are ("+:+l) such
strings, since a string is completely specified by deciding which r of the bits are to be the 0’s. To see that the
left-hand side of the identity counts the same thing, let [ + 1 be the position of the last 1 in the string. Since
there are n+ 1 1’s, we know that ! cannot be less than n. Thus there are disjoint cases for each [ from n to
n + r. For each such [, we completely determine the string by deciding which of the ! positions in the string

before the last 1 are to be 0’s. Since there are n 1’s in this range, there are [ — n 0’s. Thus there are (l—ln)
n+r

ways to choose the positions of the 0’s. Now by the sum rule the total number of bit strings will be (l—ln)'
l=n

By making the change of variable k = — n, this transforms into the left-hand side, and we are finished.

b) We need to prove this by induction on r; Pascal’s identity will enter at the crucial step. We let P(r) be

the statement to be proved. The basis step is clear, since the equation reduces to (8) = ("3’1), which is the

true proposition 1 = 1. Assuming the inductive hypothesis, we derive P(r + 1) in the usual way:

L (H) -G

k=0 k=0
n+r+1 n+r+1
- by the i i i
( . ) o ( el ) (by the inductive hypothesis)
n+(r+1)+1 S
= Pascal’
( o ) (by Pascal’s identity)

We will follow the hint and count the number of ways to choose a committee with leader from a set of n
people. Note that the size of the committee is not specified, although it clearly needs to have at least one
person (its leader). On the one hand, we can choose the leader first, in any of n ways. We can then choose
the rest of the committee, which can be any subset of the remaining n — 1 people; this can be done in 2"
ways since there are this many subsets. Therefore the right-hand side of the proposed identity counts this.

Ll
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On the other hand, we can organize our count by the size of the committee. Let k be the number of people
who will serve on the committee. The number of ways to select a committee with k& people is clearly (Z),
and once we have chosen the committee, there are clearly k ways in which to choose its leader. By the sum

rule the left-hand side of the proposed identity therefore also counts the number of such committees. Since
the two sides count the same quantity, they must be equal.

31. Corollary 2 says that (g) -+ (5) - % () = 0. If we put all the negative terms on the other side, we

n

obtain (§) + (3) + (%) +---= (1) +(3) + - (one side ends at (*) and the other side ends at (,",)—which
is which depends on whether n is even or odd). Now the left-hand side counts the number of subsets with
even cardinality of a set with n elements, and the right-hand side counts the number of subsets with odd

cardinality of the same set. That these two quantities are equal is precisely what we wanted to prove.

33. a) Clearly a path of the desired type must consist of m moves to the right and n moves up. Therefore each
such path can be represented by a bit string consisting of m 0’s and n 1’s, with the 0’s representing moves
to the right and the 1’s representing moves up. Note that the total length of this bit string is m + n.

b) We know from this section that the number of bit strings of length m + n containing exactly n 1’s is
(™+™), since one need only specify the positions of the 1’s. Note that this is the same as (M.

35. We saw in Exercise 33 that the number of paths of length n was the same as the number of bit strings of
length n, which we know to be 2™, the right-hand side of the identity. On the other hand, a path of length n
must end up at some point the sum of whose coordinates is n, say at (n — k,k) for some k from 0 to n. We
saw in Exercise 33 that the number of paths ending up at (n — k, k) was equal to (*~F**) = (7). Therefore
the left-hand side of the identity counts the number of such paths, too.

37. The right-hand side of the identity we are asked to prove counts, by Exercise 33, the number of paths from
(0,0) to (n+1,r). Now let us count these paths by breaking them down into r + 1 cases, depending on how
many steps upward they begin with. Let k be the number of steps upward they begin with before taking a
step to the right. Then k can take any value from 0 to 7. The number of paths from (0,0) to (n+1,7) that
begin with exactly k steps upward before turning to the right is clearly the same as the number of paths from
(1,k) to (n+ 1,7), since after these k upward steps and the move to the right we have reached (1,k). This
latter quantity is the same as the number of paths from (0,0) to (n+1—1,7 — k) = (n,r — k), since we can
relabel our diagram to make (1,k) the origin. From Exercise 33, this latter quantity is ("':I;k) Therefore
the total number of paths is the desired sum

i (n+r—k> _i (n+k>
o\ Tk e AN ’

where the equality comes from changing the dummy variable from k to r — k. Since both sides count the

same thing, they are equal.

39. a) This looks like the third negatively sloping diagonal of Pascal’s triangle, starting with the leftmost entry

in the second row and reading down and to the right. In other words, the n'" term of this sequence is )
+1) _ (n+1

(o) = ("3Y).

b) This looks like the fourth negatively sloping diagonal of Pascal’s triangle, starting with the leftmost entry

in the third row and reading down and to the right. In other words, the n'* term of this sequence is

(n+2) — ('n.+2)

n—1 gl

¢) These seem to be the entries reading straight down the middle of the Pascal’s triangle. Only every other

row has a middle element. The first entry in the sequence is (g), the second is (2), the third is (1), the fourth

: . (2n—2
18 (g), and so on. In general, then, the n*® term is (7'7)).

B ‘
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d) These seem to be the entries reading down the middle of the Pascal’s triangle. Ofﬂy every other roy y,
there are two elements sharing the middle. The first entyy in

an exact middle element, but in the other rows, . 3 . (4
the sequence is (8), the second is (é), the third is (f) , the fourth is (1) , the fifth is (2), the fourth is (g)7

and so on. In general, then, the n*® term is (L(;:)l/zj)'

e) One pattern here is a wandering through Pascal’s triangle according to the following rule. The nth term

is in the n*® row of the triangle. We increase the position in that row as we go down, but as soon as we
about to reach the middle of the row, we jump back to the start of the next row. For example, the fifth tery

is the first entry in row 5; the sixth term is the second entry in row 6; the seventh term is the third entry i {
row 7; the eighth term is the fourth entry in row 8. The next entry following that pattern would take us t, |
the middle of the ninth row, so instead we jump back to the beginning, and the ninth term is the first entry of
row 9. To come up with a formula here, we see that the nth entry is (2:11) for a particular k; let us determine

k as a function of n. A little playing around with the pattern reveals that k is n minus the largest power of

2 less than n (where for this purpose we consider 0 to be the largest power of 2 less than 1). For example,
the 14*h term has k=14 -8 =6, so it is (}’) = 1287.

f) The terms seem to come from every third row, so the n'! term is (3",:3) for some k. A little observation
3n-3

indicates that in fact these terms are (g), (:13), (g)’ (g)’ (142)’ and so on. Thus the n** term is ("“1)'

SECTION 6.5 Generalized Permutations and Combinations

As in Section 6.3, we have formulae that give us the answers to some combinatorial problems, if we can figure
out which formula applies to which problem, and in what way it applies. Here, even more than in previous
sections, the ability to see a problem from the right perspective is the key to solving it. Expect to spend
several minutes staring at each problem before any insight comes. Reread the examples in the section and
try to imagine yourself going through the thought processes explained there. Gradually your mind will begin
to think in the same terms. In particular, ask yourself what is being selected from what, whether ordered or
unordered selections are to be made, and whether repetition is allowed. In most cases, after you have answered
these questions, you can find the appropriate formula from Table 1.

Since order is important here, and since repetition is allowed, this is a simple application of the product rule.
There are 3 ways in which the first element can be selected, 3 ways in which the second element can be
selected, and so on, with finally 3 ways in which the fifth element can be selected, so there are 35 = 243 ways
in which the 5 elements can be selected. The general formula is that there are n* ways to select k elements

from a set of n elements, in order, with unlimited repetition allowed.

Since we are considering strings, clearly order matters. The choice for each position in the string is from the

set of 26 letters. Therefore, using the same reasoning as in Exercise 1, we see that there are 26% = 308,915,

776 strings.

We assume that the jobs and the employees are distinguishable. For each job, we have to decide which employee
gets that job. Thus there are 5 ways in which the first job can be assigned, 5 ways in which the second job
can be assigned, and 5 ways in which the third job can be assigned. Therefore, by the multiplication principle
(just as in Exercise 1) there are 5% = 125 ways in which the assignments can be made. (Note that we do not

require that every employee get at least one job.)

Since the selection is to be an unordered one, Theorem 2 applies. We want to choose r = 3 items from a
set with n = 5 elements. Theorem 2 tells us that there are C(5+3 —1,3) = C(7,3) =7-6-5/(3-2) = 35
ways to do so. (Equivalently, this problem is asking us to count the number of nonnegative integer solutions
to z; + 22+ 23+ x4+ x5 = 3, where z; represents the number of times that the 7*" element of the 5-element

set gets selected.)
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9. Let by, ba, ..., bs be the number of bagels of the 8 types listed (in the order listed) that are selected. Order

11.

13.

15,

Joes not matter: we are presumably putting the bagels into a bag to take home, and the order in which we
put them there is irrelevant.

a) If we want to choose 6 bagels, then we are asking for the number of nonnegative solutions to the equation
by + by + -+ +bg = 6. Theorem 2 applies, with n =8 and r = 6, giving us the answer C(8 +6 — 1,6) =
C(13,6) = 1716.

b) This is the same as part (a), except that r = 12 rather than 6. Thus there are C'(8 + 12 — 1, 12) =
0(19,12) = C(19,7) = 50,388 ways to make the selection. (Note that C(19,7) was easier to compute than
(C(19,12), and since they are equal, we chose the latter form.)

c) This is the same as part (a), except that r = 24 rather than 6. Thus there are C'(8 +24 —1,24) =
C(31,24) = C(31,7) = 2,629,575 ways to make the selection.

d) This one is more complicated. Here we want to solve the equation by + bz + -+ + bg = 12, subject to
the constraint that each b; > 1. We reduce this problem to the form in which Theorem 2 is applicable
with the following trick. Let b, = b; — 1; then b, represents the number of bagels of type i, in excess
of the required 1, that are selected. If we substitute b; = b} + 1 into the original equation, we obtain
(B, 4+ 1)+ (b +1)+---+ (b + 1) = 12, which reduces to b} + b5+ - -+ + by = 4. In other words, we are asking
how many ways are there to choose the 4 extra bagels (in excess of the required 1 of each type) from among
the 8 types, repetitions allowed. By Theorem 2 the number of solutions is C'(8 +4 —1,4) = C(11,4) = 330.
e) This final part is even trickier. First let us ignore the restriction that there can be no more than 2 salty
bagels (i.e., that by < 2). We will take into account, however, the restriction that there must be at least 3 egg
bagels (i.e., that b3 > 3). Thus we want to count the number of solutions to the equation by +ba+---+bg = 12,
subject to the condition that b; > 0 for all ¢ and b3 > 3. As in part (d), we use the trick of choosing the 3
egg bagels at the outset, leaving only 9 bagels free to be chosen; equivalently, we set b = b3 — 3, to represent
the extra egg bagels, above the required 3, that are chosen. Now Theorem 2 applies to the number of solutions
of by + by + by + by + -+ bg =9, so there are C(8+9 — 1,9) = C(16,9) = C(16,7) = 11,440 ways to make
this selection.

Next we need to worry about the restriction that by < 2. We will impose this restriction by subtracting
from our answer so far the number of ways to violate this restriction (while still obeying the restriction
that b3 > 3). The difference will be the desired answer. To violate the restriction means to have by > 3.
Thus we want to count the number of solutions to by + by + -+ + bg = 12, with b3 > 3 and by > 3.
Using the same technique as we have just used, this is equal to the number of nonnegative solutions to
the equation by + by + b3 + by + bs + -+ + bg = 6 (the 6 on the right being 12 — 3 — 3). By Theorem 2
there are C(8 + 6 — 1,6) = C(13,6) = 1716 ways to make this selection. Therefore our final answer is
11440 — 1716 = 9724.

This can be solved by common sense. Since the pennies are all identical and the nickels are all identical, all
that matters is the number of each type of coin selected. We can select anywhere from 0 to 8 pennies (and
the rest nickels); since there are nine numbers in this range, the answer is 9. (The number of pennies and
nickels is irrelevant, as long as each is at least eight.) If we wanted to use a high-powered theorem for this
problem, we could observe that Theorem 2 applies, with n = 2 (there are two types of coins) and r = 8. The
formula gives C(2 +8—-1,8) =C(9,8) =9.

Assuming that the warehouses are distinguishable, let w; be the number of books stored in warehouse i.
Then we are asked for the number of solutions to the equation w; + wg + wg = 3000. By Theorem 2 there
are C'(3 + 3000 — 1,3000) = C(3002, 3000) = C(3002,2) = 4,504,501 of them.

a) Let z; = z} + 1; thus 2} is the value that ) has in excess of its required 1. Then the problem
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17.

19.

21.

23.

h
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asks for the number of nonnegative solutions to z} + z2 + 3 + Ta + Ts
C(5 +20 — 1,20) = C(24, 20) = C(24,4) = 10,626 of them.

b) Substitute x; = z! + 2 into the equation for each i; thus z; is the value that z; has in exceg of i

required 2. Then the problem asks for the number of nonnegative solutions to 7 + a5 + a3 + 2 + T} < 118
By Theorem 2 there are C(5 + 11 — 1,11) = C(15,11) = C(15,4) = 1365 of them. :
c) There are C(5 + 21 — 1,21) = C(25,21) = C(25,4) = 12650 solutions with no restriction on T1. The
restriction on z; will be violated if z; > 11. Following the procedure in part (a), we find that there ate
C(5+10-1,10) = C(14,10) = C(14,4) = 1001 solutions in which the restriction is violated. Therefore there
are 12650 — 1001 = 11,649 solutions of the equation with its restriction.

d) First let us impose the restrictions that z3 > 15 and x3 > 1. Then the problem is equivalent to counting
the number of solutions to z; + 25 + 4 + ¥4 + x5 = 5, subject to the constraints that z; < 3 and Th <9
(the latter coming from the original restriction that 2 < 4). Note that these two restrictions cannot be
violated simultaneously. Thus if we count the number of solutions to z1 + 2% + x5 + x4 + 5 = 5, subtract
the number of its solutions in which x; > 4, and subtract the numbers of its solutions in which z > 3,
then we will have the answer. By Theorem 2 there are C(5+ 5 — 1,5) = C(9,5) = 126 solutions of the
unrestricted equation. Applying the first restriction reduces the equation to z} + x5 + 25 + 24 + 25 = |,
which has C(5+1—1,1) = C(5,1) = 5 solutions. Applying the second restriction reduces the equation to
Ty + x5 + T3 + x4 + x5 = 2, which has C(5+ 2 — 1,2) = C(6,2) = 15 solutions. Therefore the answer is

126 — 5 — 15 = 106.

= 20. By Theorem 9 there , |
I

Theorem 3 applies here, with n = 10 and k£ = 3. The answer is therefore
10!

S35 — 2020

Theorem 3 applies here, with n = 14, n; = ny = 3 (the triplets), ng = ngy = ns = 2 (the twins), and
ng = ny = 1. The answer is therefore
14!

331mIT — 502702400,

If we think of the balls as doing the choosing, then this is asking for the number of ways to choose six bins from
the nine given bins, with repetition allowed. (The number of times each bin is chosen is the number of balls in
that bin.) By Theorem 2 with n =9 and r = 6, this choice can be made in C(9+6 —1,6) = C(14,6) = 3003

ways.

There are several ways to count this. We can first choose the two objects to go into box #1 (C(12,2) ways),
then choose the two objects to go into box #2 (C(10,2) ways, since only 10 objects remain), then choose the
two objects to go into box #3 (C(8,2) ways), and so on. So the answer is C(12,2)-(C(10,2)-C(8,2)-C(6,2)-
C(4,2)-C(2,2) = (12-11/2)(10-9/2)(8-7/2)(6-5/2)(4-3/2)(2-1/2) = 12!/25 = 7,484,400. Alternatively, just
line up the 12 objects in a row (12! ways to do that), and put the first two into box #1, the next two into
box #2, and so on. This overcounts by a factor of 2%, since there are that many ways to swap objects in the
permutation without affecting the result (swap the first and second objects or not, and swap the third and
fourth objects or not, and so on). So this results in the same answer. Here is a third way to get this answer.
First think of pairing the objects. Think of the objects as ordered (a first, a second, and so on). There are
11 ways to choose a mate for the first object, then 9 ways to choose a mate for the first unused object, then
7 ways to choose a mate for the first still unused object, and so on. This gives 11-9-7-5-3 ways to do the
pairing. Then there are 6! ways to choose the boxes for the pairs. So the answer is the product of these two

quantities, which is again 7,484,400.
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25.

27.

29.

31.

33.

Let dy, d2, ..+, de be the digits of a natural number less than 1,000,000; they can each be anything from
0 to 9 (in particular, we may as well assume that there are leading 0’s if necessary to make the number
exactly 6 digits long). If we want the sum of the digits to equal 19, then we are asking for the number of
solutions to the equation dy +d + - 4+ dg = 19 with 0 < d; < 9 for each i. Ignoring the upper bound
restriction, there are, by Theorem 2, C(6 + 19 — 1,19) = C(24,19) = C(24,5) = 42504 of them. We must
subtract the number of solutions in which the restriction is violated. If the digits are to add up to 19 and one
or more of them is to exceed 9, then exactly one of them will have to exceed 9, since 10 + 10 > 19. There
are 6 ways to choose the digit that will exceed 9. Once we have made that choice (without loss of generality
assume it is d; that is to be made greater than or equal to 10), then we count the number of solutions to the
equation by counting the number of solutions to dj +d + -+ +ds = 19 — 10 = 9; by Theorem 2 there are
C(6+9-1,9) = C(14,9) = C(14,5) = 2002 of them. Thus there are 6 -2002 = 12012 solutions that violate

the restriction. Subtracting this from the 42504 solutions altogether, we find that 42504 — 12012 = 30,492 is
the answer to the problem.

We assume that each problem is worth a whole number of points. Then we want to find the number of integer
solutions to 1 + Z2 + - - - + 19 = 100, subject to the constraint that each z; > 5. Letting z be the number
of points assigned to problem i in excess of its required 5, and substituting z; = z; + 5 into the equation, we
obtain the equivalent equation z} + ), +--- + 2}, = 50. By Theorem 2 the number of solutions is given by
C(10+ 50 — 1,50) = C(59, 50) = C(59,9) = 12,565,671,261.

There are at least two good ways to do this problem. First we present a solution in the spirit of this section.
Let us place the 1’s and some gaps in a row. A 1 will come first, followed by a gap, followed by another 1,
another gap, a third 1, a third gap, a fourth 1, and a fourth gap. Into the gaps we must place the 12 0’s
that are in this string. Let g1, g2, g3, and g4 be the numbers of 0’s placed in gaps 1 through 4, respectively.
The only restriction is that each g; > 2. Thus we want to count the number of solutions to the equation
g1+92+93+94 = 12, with g; > 2 for each i. Letting g; = g;+2, we want to count, equivalently, the number of
nonnegative solutions to g} +g5+g5+9g4 = 4. By Theorem 2 there are C'(4+4—1,4) = C(7,4) = C(7,3) =35
solutions. Thus our answer is 35.

Here is another way to solve the problem. Since each 1 must be followed by two 0’s, suppose we glue 00
to the right end of each 1. This uses up 8 of the 0’s, leaving 4 unused 0’s. Now we have 8 objects, namely
4 0’s and 4 100’s. We want to find the number of strings we can form with these 8 objects, starting with
a 100. After placing the 100 first, there are 7 places left for objects, 3 of which have to be 100’s. Clearly
there are C(7,3) = 35 ways to choose the positions for the 100’s, so our answer is 35.

This is a direct application of Theorem 3, with n =11, ny =5, ng =2, ng =n4 =1, and ns = 2 (where n,
represents the number of A’s, etc.). Thus the answer is 11!/(5!2!1!1!2!) = 83,160.

We need to use the sum rule at the outermost level here, adding the number of strings using each subset of
letters. There are quite a few cases. First, there are 3 strings of length 1, namely O, R, and N. There are
several strings of length 2. If the string uses no O’s, then there are 2; if it uses 1 O, then there are 2 ways
to choose the other letter, and 2 ways to permute the letters in the string, so there are 4; and of course there
is just 1 string of length 2 using 2 O’s. Strings of length 3 can use 1, 2, or 3 O’s. A little thought shows
that the number of such strings is 3! = 6, 2-3 = 6, and 1, respectively. There are 3 possibilities of the choice
of letters for strings of length 4. If we omit an O, then there are 4!/2! = 12 strings; if we omit either of the
other letters (2 ways to choose the letter), then there are 4 strings. Finally, there are 5!/3! = 20 strings of
length 5. This gives a total of 3+2+4+1+6+6+1+12+2-4+ 20 = 63 strings using some or all of the
letters.
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35. We need to consider the three cases determined by the number of characters used in the string: 7, 8 or 9. It S
all nine letters are to be used, then Theorem 3 applies and we get A

9! L
o %0 !

strings. If only eight letters are used, then we need to consider which letter is left out. In each of the cageg in )
which the V, G, or N is omitted, Theorem 3 tells us that there are n
8! 4 \\v

TR “

strings, for a total of 2520 for these cases. If an R is left out, then Theorem 3 tells us that there are W
s

8! 0
a8 Al
strings, and if an E is left out, then Theorem 3 tells us that there are R\
8! ¢ ) ‘_n
3 o000 F

strings. This gives a total of 2520+ 1680+ 3360 = 7560 strings of length 8. (It was not an accident that there
are as many strings of length 8 as there are of length 9, since there is a one-to-one correspondence between
these two sets, given by associating with a string of length 9 its first 8 characters.) For strings of length 7
there are even more cases. We tabulate them here:

omitting VG 7!/(4!12!1!) = 105 strings

omitting VN  7!/(4!2!1!) = 105 strings

omitting GN  7!/(4!2!1!) = 105 strings

omitting VR 7!/(4!111!1!) = 210 strings

omitting GR  7!/(4!11111!) = 210 strings

omitting NR  7!/(4!1!1!11!) = 210 strings il

omitting RR  7!/(4!1!111!) = 210 strings

omitting EV 7!/(3!2!1!1!) = 420 strings

omitting EG  7!/(3!2!111!) = 420 strings

omitting EN  7!/(3!2!1!1!) = 420 strings

omitting ER  7!/(3!1!1!1!1!) = 840 strings

omitting EE  7!/(2!2!1!1!1!) = 1260 strings

Adding up these numbers we see that there are 4515 strings of length 7. Thus the answer is 7560 + 7560 +
4515 = 19,635.

37. We assume that all the fruit is to be eaten; in other words, this process ends after 7 days. This is a permutation
problem since the order in which the fruit is consumed matters (indeed, there is nothing else that matters here). ~
Theorem 3 applies, with n =7, n; =3, ny = 2, and n3 = 2. The answer is therefore 7!/(3!2!2!) = 210.

39. We can describe any such travel in a unique way by a sequence of 4 z’s, 3 y’s, and 5 2’s. By Theorem 3
there are

A2 27720

413151

such sequences.

41. This is like Example 8. If we approach it as is done there, we see that the answer is

52! 45! 381 31! 24! 52!
745! 71381 71311 7I24l TIT 7T
Applying Theorem 4 will yield the same answer; in this approach we think of the five players and the undealt
cards as the six distinguishable boxes.

C(52,7)C(45,7)C(38,7)C(31,7)C(24,7) = ~ 7.0 x 10%.
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43. We assume that we are to care about which player gets which cards. For example, a deal in which Laurel gets

45.

47.

49,

a royal flush in spades and Blaine gets a royal flush in hearts will be counted as different from a deal in which
Laurel gets a royal flush in hearts and Blaine gets a royal flush in spades (and the other four players get the
same cards each time). The order in which a player receives his or her cards is not relevant, however, so we
are dealing with combinations. We can look at one player at a time. There are C(48,5) ways to choose the
cards for the first player, then C(43,5) ways to choose the cards for the second player (because five of the
cards are gone), and so on. So the answer, by the multiplication principle, is C(48,5) - C'(43,5) - C(38,5) -
C(33,5) - C(28,5) - C(23,5) = 649,352,163,073,816,339,512,038,979,194,880 = 6.5 x 1032.

a) All that matters is how many copies of the book get placed on each shelf. Letting z; be the number of copies
of the book placed on shelf i, we are asking for the number of solutions to the equation z; +z2+---+zx = n,
with each z; a nonnegative integer. By Theorem 2 this is C(k+n — 1,n).

b) No generality is lost if we number the books by, bs, ..., b, and think of placing book b;, then placing
by, and so on. There are clearly k ways to place b;, since we can put it as the first book (for now) on any
of the shelves. After b; is placed, there are k + 1 ways to place by, since it can go to the right of b, or it
can be the first book on any of the shelves. We continue in this way: there are k + 2 ways to place bz (to
the right of by, to the right of by, or as the first book on some shelf), k + 3 ways to place bs, ..., k+n—1
ways to place b,. Therefore the answer is the product of these numbers, which can more easily be expressed
as (k+n—1)!/(k—1)!.

Another, perhaps easier, way to obtain this answer is to think of first choosing the locations for the
books, which is what we counted in part (a), and then choose a permutation of the n books to put into
those locations (shelf by shelf, from the top down, and from left to right on each shelf). Thus the answer is
C(k+mn —1,n) - n!, which evaluates to the same thing we obtained with our other analysis.

The first box holds n; objects, and there are C(n,n;) ways to choose those objects from among the n objects
in the collection. Once these objects are chosen, we can choose the objects to be placed in the second box
in C(n — n1,ny) ways, since there are n — n; objects not yet placed, and we need to put ny of them into
the second box. Similarly, there are then C(n — n; — ng,n3) ways to choose objects for the third box. We
continue in this way, until finally there are C(n —nj; —ng — -+ —ng_1,n,) ways to choose the objects to put
in the last (k*") box. Note that this last expression equals C(ng,ng) =1, since n; +ng +---+ng =n. Now
by the product rule the number of ways to make the entire assignment is

C(n,n;)-C(n—nq,n2)-C(n—ny —ng,n3)---C(n—ny —ng — -+ — ng_1,nk) .
We use the formula for combinations to write this as
n! (n—mny)! (n—ny —ny)! (m—ny—ng—-++ —ng_q)!
nm!(n —ni)! na!(n—ny —n2)! n3l(n—ny—ng—n3)! nElln—my —ng— -+ —ng—q —ng)!’

which simplifies after the telescoping cancellation to
n!
(we use the fact that n —n; —ng — -+ — ng_1 = ng, since ny +ng + -+ +ng = n), as desired.

a) The sequence was nondecreasing to begin with. By adding k — 1 to the k* term, we are adding more
to each term than was added to the previous term. Hence even if two successive terms in the sequence were
originally equal, the second term must strictly exceed the first after this addition is completed. Therefore the
sequence is made up of distinct numbers. The smallest can be no smaller than 1+ (1—1) =1, and the largest
can be no larger than n + (r — 1) = n +r — 1; therefore the terms all come from T'.

b) If we are given an increasing sequence of 7 terms from T, then by subtracting k — 1 from the k*" term we
have a nondecreasing sequence of r terms from S, repetitions allowed. (The k" term in the original sequence
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51.

53.

55.

57.

59.
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 so subtracting k — 1 leaves a number betweg,

must be bet —1-(r—k)=n+(k-1)
etween k and n+r ( ) ubtracted from the Previg,
§

and n, inclusive. Furthermore, only 1 more is subtracted from a term than is s -
term; thus no term can become strictly smaller than its predecessor, since it exceeded it by at least 1 ¢, St
with.) This operation exactly inverts the operation described in part (a), so the correspondence is one-to-gp,
c) The first two parts show that there are exactly as many r-combinations with repetition allowed frop, S

there are r-combinations (without repetition) from T'. Since T has n +r — 1 elements, this latter Quantify

is clearly C(n+r—1,r).

We use the formula for the Stirling numbers of the second kind stated near the end of this section, which giye,
the number of ways to distribute n distinguishable objects into j indistinguishable boxes with no box empty.

S AP
S(n,j) = —,—'Z(—l) <.)(J_Z)
J %o !
In this case, n =6 and j = 4, so we have

L1 (e (H\as (408 _ (4 16>=l 4096 — 2916 + 384 — 4) = 65.
5(6,4)_5«0)4 —<1)3 +<2)2 3 4!( )

If we want to work this out from scratch, we can argue as follows. There are two patterns possible. We can pyt
three of the objects into one box and each of the remaining objects into a separate box; there are C(6,3) =9
ways to choose the objects for the crowded box. Alternatively, we can choose a pair of objects for one box
(C(6,2) = 15 ways) and a pair of remaining objects for the second box (C(4,2) = 6 ways) and put the other
two objects into separate boxes, but divide by 2 because of the overcounting caused by the indistinguishability
of the first two boxes, for a total of 45 ways. Therefore the answer is 20 + 45 = 65.

We assume that people are distinguishable, so this problem is identical to Exercise 51. There are 65 ways to

place the employees.

Since each box has to contain at least one object, we might as well put one object into each box to begin
with. This leaves us with just two more objects, and there are only two choices: we can put them both into
the same box (so that the partition we end up with is 6 =3+ 1414 1), or we can put them into different
boxes (so that the partition we end up with is 6 =2+ 2+ 1+ 1). So the answer is 2.

Since each box has to contain at least two DVDs, we might as well put two DVDs into each box to begin
with. This leaves us with just three more DVDs, and there are only three choices: we can put them all into
the same box (so that the partition we end up with is 9 = 5+ 2+ 2), or we can put two into one box and
one into another (so that the partition we end up with is 9 =4+ 3 +2), or we can put them all into different
boxes (so that the partition we end up with is 9 =3+ 3 + 3). So the answer is 3.

To begin, notice that because each box must have at least one ball, there are only two basic arrangements: to
put three balls into one box and one ball into each of the other two boxes (denoted 3-1-1), or to put one ball
into one box and two balls into each of the other two boxes (denoted 1-2-2).

a) For the 3-1-1 arrangement, there are 3 ways to choose the crowded box, C(5,3) = 10 ways to choose the
balls to be put there, and 2 ways to decide where the other balls go, for a total of 3-10-2 = 60 possibilities.
For the 1-2-2 arrangement, there are 3 ways to choose the box that will have just one ball, 5 ways to choose
which ball goes there, and C(4,2) = 6 ways to decide which two balls go into the lower-numbered remaining
box, for a total of 3-5-6 =90 possibilities. Thus the answer is 60 + 90 = 150.

b) There are C(5,3) = 10 ways to choose the balls for the crowded box in the 3-1-1 arrangement. For
the 1-2-2 arrangement there are 5 ways to choose the lonely ball and 3 ways to choose the partner of the
lowest-numbered remaining ball. Therefore the answer is 10 4+ 5 - 3 = 25.
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; c) There are 3 ways to choose the crowded box for the 3-1-1 arrangement, and there are 3 ways to choose
the solo box for the 1-2-2 arrangement. Therefore the answer is 3+ 3 = 6.

d) There are just the 2 possibilities we have been discussing: 3-1-1 and 1-2-2.

61. Without the restriction on site X, we are simply asking for the number of ways to order the ten symbols

v, V, W, W, X, X, Y, Y, Z, Z (the ordering will give us the visiting schedule). By Theorem 3 this can be

‘ done in 10!/(2!)®> = 113,400 ways. If the inspector visits site X on consecutive days, then in effect we are

' ordering nine symbols (including only one X), where now the X means to visit site X twice in a row. There
| are 9!/ (2!)4 = 22,680 ways to do this. Therefore the answer is 113,400 — 22,680 = 90,720 .

63. When (21 + T2 + - + )" is expanded, each term will clearly be of the form Cz}'z5? .-zl for some

constants C' that depend on the exponents, where the exponents sum to n. Thus the form of the given
formula is correct, and the only question is whether the constants are correct. We need to count the number
of ways in which a product of one term from each of the n factors can be z]'z3?-- -z . In order for this to
happen, we must choose ny s, no z3’s, ..., N, Tnm's. By Theorem 3 this can be done in

n!
C(n;nl,ng,...,nm)=——' ' :
nilng! - npy!

ways.

65. By the multinomial theorem, given in Exercise 63, the coefficient is

10!  10-9-8-7-6
C(103,2,5) = 305 = 12

= 2520.

SECTION 6.6 Generating Permutations and Combinations

This section is quite different from the rest of this chapter. It is really about algorithms and programming.
These algorithms are not easy, and it would be worthwhile to “play computer” with them to get a feeling for
how they work. In constructing such algorithms yourself, try assuming that you will list the permutations or
combinations in a nice order (such as lexicographic order); then figure out how to find the “next” one in this

order.
14532, 15432, 21345, 23451, 23514, 31452, 31542, 43521, 45213, 45321.

\
;
l
i 1. Lexicographic order is the same as numerical order in this case, so the ordering from smallest to largest is '
E
/

3. Our list will have 3-3-3-2 = 54 items in it. Here it is in lexicographic order: AAA1, AAA2, AAB1, AAB2,
,;‘ AAC1, AAC2, ABA1, ABA2, ABBI1, ABB2, ABC1, ABC2, ACAl, ACA2, ACB1, ACB2, ACC1, ACC2,
BAA1, BAA2, BABI1, BAB2, BAC1, BAC2, BBA1l, BBA2, BBB1, BBB2, BBC1, BBC2, BCA1l, BCA2,
BCB1, BCB2, BCC1, BCC2, AAA1, CAA2, CAB1, CAB2, CAC1, CAC2, CBA1, CBA2, CBB1, CBB2,
CBC1, CBC2, CCA1, CCA2, CCB1, CCB2, CCC1, CCC2.
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i 14, a) See Example 5 in Section 6.5. b) C(4+17-1,17)

¢) C4+13-1, 13) (see Exercise 15a in Section 6.5)
15. a) See Theorem 3 in Section 6.5. b) 14!/(2!121113!1111!3!1!)
16. See pp. 435-436.
17, a) C(52,5)- C(47,5) - C(42,5) - C(37,5) - C(32,5) - C(27,5) b) See Theorem 4 in Section 6.5.

18. See pp- 437-438.

SUPPLEMENTARY EXERCISES FOR CHAPTER 6

1. In each part of this problem we have n =10 and r = 6.

a) If the items are to be chosen in order with no repetition allowed, then we need a simple permutation.
Therefore the answer is P(10,6) =10-9-8-7-6-5 = 151,200.

b) If repetition is allowed, then this is just a simple application of the product rule, with 6 tasks, each of
which can be done in 10 ways. Therefore the answer is 106 = 1,000,000.

c) If the items are to be chosen without regard to order but with no repetition allowed, then we need a simple
combination. Therefore the answer is C(10,6) = C(10,4)=10-9-8-7-/(4-3-2) = 210.

d) Unordered choices with repetition allowed are counted by C(n+r —1,r), which in this case is C(15,6) =
5005.

3. The student has 3 choices for each question: true, false, and no answer. There are 100 questions, so by the
product rule there are 3'%° ~ 5.2 x 10%7 ways to answer the test.

5. We will apply the inclusion—exclusion principle from Section 6.1. First let us calculate the number of these
strings with exactly three a’s. To specify such a string we need to choose the positions for the a’s, which can
be done in C(10,3) ways. Then we need to choose either a b or a c to fill each of the other 7 positions in
the string, which can be done in 27 ways. Therefore there are C(10,3)-27 = 15360 such strings. Similarly,
there are C(10,4) - 26 = 13440 strings with exactly four b’s. Next we need to compute the number of strings
satisfying both of these conditions. To specify a string with exactly three a’s and exactly four b’s, we need
to choose the positions for the a’s, which can be done in C(10,3) ways, and then choose the positions for the
b’s, which can be done in C(7,4) ways (only seven slots remain after the a’s are placed). Therefore there
are C(10,3) - C(7,4) = 4200 such strings. Finally, by the inclusion-exclusion principle the number of strings
having either exactly three a’s or exactly four b’s is 15360 + 13440 — 4200 = 24,600.

7. a) We want a combination with repetition allowed, with n = 28 and r = 3. By Theorem 2 of Section 6.5,
there are C(28 +3 — 1,3) = C(30,3) = 4060 possibilities.
b) This is just a simple application of the product rule. There are 28 ways to choose the ice cream, 8 ways
to choose the sauce, and 12 ways to choose the topping, so there are 28812 = 2688 possible small sundaes.
¢) By the product rule we have to multiply together the number of ways to choose the ice cream, the number
of ways to choose the sauce, and the number of ways to choose the topping. There are C'(28 + 3 — 1,3) ways
to choose the ice cream, just as in part (a). There are C(8,2) ways to choose the sauce, since repetition is
not allowed. There are similarly C(12,3) ways to choose the toppings. Multiplying these numbers together,
we find that the answer is 4060 - 28 - 220 = 25,009,600 different large sundaes.




S

232 Chapter 6 COUﬂting

9. We can solve this problem by counting the number of numbers that have the given digit in 1, 2, or 3 Placeg
a) The digit 0 appears in 1 place in some two-digit numbers and in some three-digit numbers. There arej
clearly 9 two-digit numbers in which 0 appears, namely 10, 20, ..., 90. We can count the number of three.
digit numbers in which 0 appears exactly once as follows: first choose the place in which it is to appear (2
ways, since it cannot be the leading digit), then choose the left-most of the remaining digits (9 ways, since it
cannot be a 0), then choose the final digit (also 9 ways). Therefore there are 9+2-9-9 = 171 numbers in
which the 0 appears exactly once, accounting for 171 appearances of the digit 0. Finally there are another 9
numbers in which the digit 0 appears twice, namely 100, 200, ..., 900. This accounts for 18 more 0. And
of course the number 1000 contributes 3 0’s. Therefore our final answer is 171 + 18 + 3 = 192.

b) The analysis for the digit 1 is not the same as for the digit 0, since we can have leading 1’s but not
leading 0’s. One 1 appears in the one-digit numbers. Two-digit numbers can have a 1 in the ones place (and
there are 9 of these, namely 11, 21, ..., 91), or in the tens place (and there are 10 of these, namely 10
through 19). Of course the number 11 is counted in both places, but that is proper, since we want to count
each appearance of a 1. Therefore there are 1049 = 19 1’s appearing in two-digit numbers. Similarly, the
three-digit numbers have 90 1’s appearing in the ones place (every tenth number, and there are 900 numbers),
90 1’s in the tens place (10 per decade, and there are 9 decades), and 100 1’s in the hundreds place (100
through 199); therefore there are 280 ones appearing in three-digit numbers. Finally there is a 1 in 1000, so
the final answer is 1+ 19 + 280 + 1 = 301.

c) The analysis for the digit 2 is exactly the same as for the digit 1, with the exception that we do not get
any 2’s in 1000. Therefore the answer is 301 — 1 = 300.

d) The analysis for the digit 9 is exactly the same as for the digit 2, so the answer is again 300.

Let us check all of the answers to this problem simultaneously. There are 300 each of the digits 2
through 9, for a total of 2400 digits. There are 192 0’s and 301 1’s. Therefore 2400+ 192+ 301 = 2893 digits
are used altogether. Let us count this another way. There are 9 one-digit numbers, 90 two-digit numbers, 900
three-digit numbers, and 1 four-digit number, so the total number of digits is 9-1+90-2+900-3+1-4 = 2893.

This agreement tends to confirm our analysis.

11. This is a negative instance of the generalized pigeonhole principle. The worst case would be if the student
gets each fortune 3 times, for a total of 3 x 213 = 639 meals. If the student ate 640 or more meals, then the

student will get the same fortune at least [640/213] = 4 times.

13. We have no guarantee ahead of time that this will work, but we will try applying the pigeonhole principle. Let
us count the number of different possible sums. If the numbers in the set do not exceed 50, then the largest
possible sum of a 5-element subset will be 50 + 49 + 48 + 47 + 46 = 240. The smallest possible sum will be
14+2+4+3+4+5 = 15. Therefore the sum has to be a number between 15 and 240, inclusive, and there
are 240 — 15 + 1 = 226 such numbers. Now let us count the number of different subsets. That is of course
C(10,5) = 252. Since there are more subsets (pigeons) than sums (pigeonholes), we know that there must be

two subsets with the same sum.

15. We assume that the drawings of the cards is done without replacement (i.e., no repetition allowed).
a) The worst case would be that we drew 1 ace and the 48 cards that are not aces, a total of 49 cards.
Therefore we need to draw 50 cards to guarantee at least 2 aces (and it is clear that 50 is sufficient, since at
worst 2 of the 4 aces would then be left in the deck).
b) The same analysis as in part (a) applies, so again the answer is 50.
¢) In this problem we can use the pigeonhole principle. If we drew 13 cards, then they might all be of different
kinds (ranks). If we drew 14 cards, however, then since there are only 13 kinds we would be assured of having
at least two of the same kind. (The drawn cards are the pigeons and the kinds are the pigeonholes. )
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23.

d) If we drew 16 cards, we might get one of each kind except, say, aces, together with four aces. So 16 is not
sufficient. If we drew 17 cards, however, then there must be at least two cards of each of two different kinds.

This problem can be solved using the pigeonhole principle if we look at it correctly. Let s; be the sum of
the first i of these numbers, where 1 < i < m. Now if s; = 0 (mod m) for some i, then we have our
desired consecutive terms whose sum is divisible by m. Otherwise the numbers s; mod m, s mod m, ...,
s,, mod m are all integers in the set {1,2,...,m—1}. By the pigeonhole principle we know that two of them
are the same, say s; mod m = s; mod m with ¢ < j. Then s; — s; is divisible by m. But s; —s; is just the
sum of the (i + 1) through j*® terms in the sequence, and we are done.

The decimal expansion of a rational number a/b (we can assume that a and b are positive integers) can be
obtained by long division of the number b into the number a, where a is written with a decimal point and
an arbitrarily long string of 0’s following it. The basic step in long division is finding the next digit of the
quotient, which is just |r/b], where r is the current remainder with the next digit of the dividend brought
down. Now in our case, eventually the dividend has nothing but 0’s to bring down. Furthermore there are
only b possible remainders, namely the numbers from 0 to b — 1. Thus at some point in our calculation
after we have passed the decimal point, we will, by the pigeonhole principle, be looking at exactly the same
situation as we had previously. From that point onward, then, the calculation must follow the same pattern
as it did previously. In particular, the digits of the quotient will repeat.

For example, to compute the decimal expansion of the rational number 349/11, we divide 11 into
349.00.... The first digit of the quotient is 3, and the remainder is 1. The next digit of the quotient is
1 and the remainder is 8. At this point there are only 0’s left to bring down. The next digit of the quotient
is a 7 with a remainder of 3, and then a quotient digit of 2 with a remainder of 8. We are now in exactly the

same situation as at the previous appearance of a remainder of 8, so the quotient digits 72 repeat forever.
Thus 349/11 = 31.72.

a) This is a simple combination, so the answer is C(20,12) = 125,970.

b) The only choice is the choice of a variety, so the answer is 20.

c) We assume that order does not matter (all the donuts will go into a bag). Therefore, since repetitions are
allowed, Theorem 2 of Section 6.5 applies, and the answer is C'(20 4+ 12 —1,12) = C(31,12) = 141,120,525.
d) We can simply subtract from our answer to part (c) our answer to part (b), which asks for the number of
ways this restriction can be violated. Therefore the answer is 141,120,505.

e) We put the 6 blueberry filled donuts into our bag, and the problem becomes one of choosing 6 donuts
with no restrictions. In analogy with part (c), we obtain the answer C(20+6 — 1,6) = C(25,6) = 177,100.
f) There are C(20 + 5 — 1,5) = C(24,5) = 42504 ways to choose at least 7 blueberry donuts among our

dozen (the calculation is essentially the same as that in part (e)). Our answer is therefore 42504 less than
our unrestricted answer to part (c): 141120525 — 42504 = 141,078,021.

a) The given equation is equivalent to n(n — 1)/2 = 45, which reduces to n?2 —n — 90 = 0. The quadratic
formula (or factoring) tells us that the roots are n =10 and n = —9. Since n is assumed to be nonnegative,
the only relevant solution is n = 10.

b) The given equation is equivalent to n(n — 1)(n — 2)/6 = n(n — 1). Since P(n,2) is not defined for n < 2,
we know that neither n nor n — 1 is 0, so we can divide both sides by these factors, obtaining n — 2 = 6,
whence n = 8. (Alternatively, one can think of P(n,k) and C(n,k) as being defined to be 0 if n < k, in
which case all n less than 2 also satisfy this equation, as well as the equation in part (c).)

¢) Recall the identity C(n,k) = C(n,n — k). The given equation fits that model if n =7 and k = 5. Hence
n = 7 is a solution. That there are no more solutions follows from the fact that C(n,k) is an increasing
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function in k for 0 < k < n/2, and decreasing for n/2 < k < n, and hence there are no numbers f/ Othey
than k& and n — k for which C(n, k') = C(n, k).

Following the hint, we see that each element of S falls into exactly one of three categories: either it i an
element of A, or else it is not an element of A but is an element of B (in other words, is an element of B— A),
or else it is not an element of B either (in other words, is an element of S — B). So the number of ways to
choose sets A and B to satisfy these conditions is the same as the number of ways to place each element of
S into one of these three categories. Therefore the answer is 3". For example, if n =2 and S = {z, y}, then

there are 9 pajrs: (@, 0), (Q, {IL‘}), (Q’ {y})’ (Qa {x,y}), ({x},{x}), ({:D},{(L‘,y}), ({y},{y})’ ({y},{z,y}),
({z, 9} {z,y}).

We start with the right-hand side and use Pascal’s identity three times to obtain the left-hand side:

Cn+2,r+1)-2C(n+1,r+1)+C(n,r+1)
=C(n+1,r+1)+C(n+1,r)—2C(n+1,7+1)+C(n,r +1)

=C(n+1,r)-C(n+1,r+1)+C(n,r +1)
= [C(n,r) +C(n,r — 1)] = [C(n,r + 1) + C(n,r)] + C(n,r +1)

=C(n,r-1)

Substitute £ =1 and y = 3 into the binomial theorem (Theorem 1 in Section 6.4) and we obtain exactly this

identity.

We just have to notice that the summation runs over exactly all the triples (7, j, k) such that 1 <i < j < k<n.
Since we are adding 1 for each such triple, the sum simply counts the number of such triples, which is just all
the ways of choosing three distinct numbers from {1,2,3,...,n}. Therefore the sum must equal C(n,3).

The trick to the analysis here is to imagine what such a string has to look like. Every string of 0’s and 1's
can be thought of as consisting of alternating blocks—a block of 1’s (possibly empty) followed by a block of
0’s followed by a block of 1’s followed by a block of 0’s, and so on, ending with a block of 0’s (again, possibly
empty). If we want there to be exactly two occurrences of 01, then in fact there must be exactly six such
blocks, the middle four all being nonempty (the transitions from 0’s to 1’s create the 01’s) and the outer two
possibly being empty. In other words, the string must look like this:

1 U's — 22 0s — 23 I's — 24 0's — 25 1's — x4 0’s,

where z; + 22+ -+ 26 =n and 21 > 0, 76 > 0, and z; > 1 for i = 2,3,4,5. Clearly such a string is
totally specified by the values of the z;’s. Therefore we are simply asking for the number of solutions to the
equation z; +z2+---+2¢ = n subject to the stated constraints. This kind of problem is solved in Section 6.5
(Example 5 and several exercises). The stated problem is equivalent to finding the number of solutions to
x1 +xhH+ x5+ + 2} + 16 = n— 4 where each variable here is nonnegative (we let ; =z} +1 for i = 2,3,4,5
in order to insure that these z;’s are strictly positive). The number of such solutions is, by the results just
cited, C(6 +n —4 — 1,n — 4), which simplifies to C'(n + 1,n — 4) or C(n+1,5).

An answer key is just a permutation of 8 a’s, 3 b’s, 4 ¢’s, and 5 d’s. We know from Theorem 3 in Section 6.5
that there are
20!
R 3,491,888,400

such permutations.
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g7. We assume that each student is to get one advisor, that there are no other restrictions, and that the students

39.

41.

45,

and advisors are to be considered distinct. Then there are 5 ways to assign each student, so by the product
rule there are 524 & 6.0 x 10'® ways to assign all of them.

For all parts of this problem, Theorem 2 in Section 6.5 is used.

a) We let z1 = i +2, zo = 4 + 3, and z3 = z4 + 4. Then the restrictions are equivalent to requiring
that each of the z}’s be nonnegative. Therefore we want the number of nonnegative integer solutions to the
equation z} + x5 + z3 = 8. There are C(3 +8 — 1,8) = C(10,8) = C(10,2) = 45 of them.

b) The number of solutions with z3 > 5 is the same as the number of solutions to z; + z2 + 2% = 11, where
23 =z + 6. There are C(3+ 11 —1,11) = C(13,11) = C(13,2) = 78 of these. Now we want to subtract the
number of solutions for which also z; > 6. This is equivalent to the number of solutions to z} + 22 +x3 =5,
where 71 = ) + 6. There are C(3+5 —1,5) = C(7,5) = C(7,2) = 21 of these. Therefore the answer to the
problem is 78 — 21 = 57.

c) Arguing as in part (b), we know that there are 78 solutions to the equation z; 4+ x2 + x5 = 11, which is
equivalent to the number of solutions to x; + x5 + 3 = 17 with 23 > 5. We now need to subtract the number
of these solutions that violate one or both of the restrictions z; < 4 and z2 < 3. The number of solutions
with z; > 4 is the number of solutions to z} 4+ x5 + 25 = 7, namely C(3+7—1,7) = C(9,7) = C(9,2) = 36.
The number of solutions with z5 > 3 is the number of solutions to z; + x5 + % = 8, namely C(3+8—1,7) =
C(10,8) = C(10,2) = 45. However, there are also solutions in which both restrictions are violated, namely
the solutions to z} + z + 4 = 4. There are C(3+4 —1,4) = C(6,4) = C(6,2) = 15 of these. Therefore the
number of solutions in which one or both conditions are violated is 36 + 45 — 15 = 66; we needed to subtract
the 15 so as not to count these solutions twice. Putting this all together, we see that there are 78 — 66 = 12

solutions of the given problem.

a) We want to find the number of r-element subsets for r = 0,1,2,3,4 and add. Therefore the answer is
C(10,0) + C(10,1) + C(10,2) + C(10,3) + C(10,4) = 1+ 10 + 45 + 120 + 210 = 386.

b) This time we want C(10,8) + C(10,9) + C(10,10) = C(10,2) + C(10,1) + C(10,0) =45+ 10+ 1 = 56.

c) This time we want C(10,1) + C(10,3) + C(10,5) + C(10,7) + C(10,9) = C(10,1) + C(10,3) + C(10,5) +
C(10,3) + C(10,1) = 10 + 120 + 252 + 120 4+ 10 = 512. We can also solve this problem by using the fact
from Exercise 31 in Section 6.4 that a set has the same number of subsets with an even number of elements
as it has subsets with an odd number of elements. Since the set has 210 = 1024 subsets altogether, half of
these—512 of them—must have an odd number of elements.

. Since the objects are identical, all that matters is the number of objects put into each container. If we let z;

be the number of objects put into the i*" container, then we are asking for the number of solutions to the
equation z; + z2 + - -+ + x,, = n with the restriction that each x; > 1. By the usual trick this is equivalent
to asking for the number of nonnegative integer solutions to z} + x4 + -+ + 2}, = n — m, where we have set
r; = x + 1 to insure that each container gets at least one object. By Theorem 2 in Section 6.5, there are
Cm+ (n—m)—1,n—m) = C(n—1,n—m) solutions. This can also be written as C(n — 1,m — 1), since
(n—1) = (n—m) =m — 1. (Of course if n < m, then there are no solutions, since it would be impossible to
put at least one object in each container. Our answer is consistent with this observation if we think of C(z,y)
as being 0 if y > z.)

a) This can be done with the multiplication principle. There are five choices for each ball, so the answer is

5% = 15,625.
b) This is like Example 10 in Section 6.5, and we can use the formula for the Stirling numbers of the second
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kind given near the end of that section:

<.
|
-

-
e

<

Il
—
'~

Il
<)

(~1)’ (j) G =i
with n =6 and k = 5. We get
1

%16+§(1.26_2.15)+%(1.36_3.26+3.16)+%(1-46—4-36+6~26—4-16)+gi(l-56—5-46+10-36—10-26+5.16))
which is 1+ 31 + 90 + 65 + 15 = 202. The command in Maple for this, using the “combinat” Package, i
sum(stirling2(6,j),j=1..5);.

c) We saw in the discussion surrounding Example 9 in Section 6.5 that the number of ways to distribyte n
unlabeled objects into k labeled boxes is C(n + k — 1,k — 1), because this is really the same as the probler
of choosing an n-combination from the set of k boxes, with repetitions allowed. In this case we have n =
and k =5, so the answer is C(10,4) = 210.

d) Since both the boxes and the objects are indistinguishable, what is really being asked is how many differep;
ways there are to write 6 as the sum of five nonnegative integers, with order ignored. We will just enumerate
the possibilities and count them. We have 6 =64+0+0+0+0; 6=5+1+04+0+0; 6 = 4+2+0+0+0;
6=4+1+1+0+0;6=3+3+0+0+0;6=34+2+1+0+0;6=3+1+1+1+0; 6=2+2+240+0;
6=2+2+1+1+0;and 6 =2+1+1+1+ 1. There are ten ways in all. Notice that we are allowing some
of the boxes to be empty.

a) If there are just two tables, then the only choice involved is the person to sit alone. Therefore ¢(3,2) =3.
b) There are two possibilities. If two people sit at each table, then there are three ways to decide who sits with
person A. If one person sits alone, there are four ways to choose that person and then two ways to arrange
the other three people at the second table. So c(4,2) =3+4-2=11.

c) There must be two people sitting alone and one pair sitting together. No other choices are involved, so
c(4,3) =C(4,2) =6.

d) This is similar to the previous case. There must be three people sitting alone and one pair sitting together,
so ¢(5,4) = C(5,2) = 10.

Here is one approach. There are two possibilities for seating n people at n — 2 tables. We might have three of
them at one table with everyone else sitting alone. This can be done in 2C(n,3) ways, because after choosing
the table-mates we have to seat them clockwise or counterclockwise. Or we might choose two groups of two
people to sit together and have everyone else sit alone. This can be done in C(n,2) - C(n — 2,2)/2 ways
(the division by 2 is to account for overcounting, because the order in which we pick the pairs is irrelevant).
Therefore c(n,n —2) =

nt 5n® 3 n

C(n,2)-C(n—2,2) n(n—-1)(n-2) 1 n(n-—1) (n-2)(n-3) _
2C(n,3)+ 5 = 3 +2 D) 2 —§ 1—2+—8‘ 12

Expanding (3n — 1)C(n,3)/4 gives the same polynomial.

Following the hint, we observe that there are (2n)!/2" permutations of 2n objects of n different types, two
of each type. Because this must be an integer, the denominator must divide the numerator, which is exactly

what we are asked to prove.

Because the second list contains GAAAG (which does not end in C or U), those letters must end the string.
Because it contains GGU, there must be two G’s together followed by a U, and, looking at the first list of
fragments, we infer that CCGGUCCG must be a substring. It follows that the original chain was CCGGUC-
CGAAAG.




