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Rooted trees

Recall that a tree is an acyclic connected graph. A rooted tree is a
(labeled) tree, together with a choice of special vertex.

parent of v

Level O

Level 1

Level 3

By convention, draw the root at the top.

The choice of root determines a grading on the
rooted tree, given by the distance from the root.
(Distance between vertices u and v is the length
of a shortest walk from u to v.)

Give a choice of vertex v, the parent of v is the
neighbor that is one level up (unique!). A child
of v is any neighbor one level down.

Recall a leaf is a vertex of degree 1; note that
leaves are the vertices with no children. Every-
thing else is called an internal vertex.
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Ordered rooted trees

Recall that a tree is an acyclic connected graph. A rooted tree is a
(labeled) tree, together with a choice of special vertex. An ordered
rooted tree (ORT) is a rooted tree, together on a choice of order on each
of the children of each vertex.

For example, the following are all equal as rooted trees, but are distinct
as ordered rooted trees:

Given a rooted tree, there are H (deg(v) — 1) | associated ORT's.

v internal

You try: How many ORT's are there on the vertex set V = {1,2,3,4}?
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Application 1: Binary search trees
Goal: Searching for items in an ordered set.

Building the tree: Let U be a totally ordered set (e.g. words, integers,
etc.), and let S € U be a finite subset. To build the search tree for S...

1. Pick some r € S to be the root.

2. Given a partial tree, insert a new vertex s € S by starting with the
root, compare s to vertices already in place. When at vertex v. ..
e if s <w, look for a left child. ..

- if v has a left child, then move there and return to 2;
- if not, insert s as a left child to v.

e if s > v, look for a right child. ..

- if v has a right child, then move there and return to 2;
- if not, insert s as a right child to v.

Theorem. The height of a binary search trees for a set S of size n is
between [log,(n+1)] —1 and n — 1. (The more “balanced”, the shorter.)

Remark: There are algorithms for balancing search trees as they get
built. (See: “data structures”)

Moral: Building the tree takes some work, but once it's built, it reduces
the computational complexity of finding items.
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Application 2: Game trees
Given a game played in turns, build a decision tree for that game.

Nim: 2 players start with piles of stones. Taking turns, each player takes
one or more stones from any one pile. The player to take the last stone
loses. Example: Start with 2, 2, and 1. The associated game tree is. ..

Next, assign +1 to leaves where player 1 wins, and -1 to leaves where
player 2 wins. For internal vertices: give player 1 the min value of its
children, give player 2 (and the root) the max value of its children.

Thm: The value says who will win if each player follows a min/max strategy.
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Let G be a simple connected graph, and put an order on the vertices.
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Ex: G =

Depth-first search:
1. Pick a vertex to start at.

2. Walk away from that vertex, never repeating previously visited
vertices, always picking the least available neighboring vertex, until
the walk cannot be extended.

3. Tracing backwards along your last walk, stop at the last vertex that
had an available neighbor. Repeat 2 from that vertex.

4. Stop when you're out of vertices.

The result is a rooted spanning tree.
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Searching graphs

Let G be a simple connected graph, and put an order on the vertices.
8 4

Breadth-first search:
1. Pick a vertex to start at.
2. Walk one step to each of the available neighbors.

3. Of the vertices visited in the previous step, moving in order, repeat
step 1.

4. Stop when you're out of vertices.

The result is also a rooted spanning tree. Note that at each recursion,
you're building all of the vertices at a given level.
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Prim's algorithm: Order the edges. O(mlogn)
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Random walks

Let G be a weighted directed graph (assume no multiple arrows),
satisfying the property that for any vertex v, the sum of the weights on
the out-arrows is 1.

A random walk is a walk generated iteratively, where each step is taken
with probability determined by the weight of the out arrows.

Example: Suppose you play a game of dice, where at each turn you roll
two six-sided dice. If you roll a multiple of 4 (prob 1/4), you get $3; if
you don't, you pay $1 (prob 3/4).

Relevant questions: Starting at vertex u. . .
1. What's the probability that you'll reach vertex v?
2. After n steps, what's the probability that you've landed at v?

3. Is it more likely for a walk gravitate toward any one vertex? s it
more likely that a random walk wanders off in any particular
direction?



