Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex.

Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex.

For example, if T is the tree

then there are 5 associated rooted trees:

Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex.

For example, if T is the tree

then there are 5 associated rooted trees:

(We typically draw trees with the root at the top.)

Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex.

For example, if T is the tree

then there are 5 associated rooted trees:

(We typically draw trees with the root at the top.)

Aside: How many rooted trees are there with vertex set $V = \{1, ..., n\}$? (Hint: recall Prüfer code)

Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex.

For example, if T is the tree

then there are 5 associated rooted trees:

(We typically draw trees with the root at the top.)

Aside: How many rooted trees are there with vertex set $V = \{1, \dots, n\}$?

(Hint: recall Prüfer code)
$$n^{n-2}*n=\boxed{n^{n-1}}$$

Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex.

By convention, draw the root at the top.

Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex.

By convention, draw the root at the top.

The choice of root determines a grading on the rooted tree, given by the distance from the root. (Distance between vertices u and v is the length of a shortest walk from u to v.)

Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex.

By convention, draw the root at the top.

The choice of root determines a grading on the rooted tree, given by the distance from the root. (Distance between vertices u and v is the length of a shortest walk from u to v.)

Give a choice of vertex v, the parent of v is the neighbor that is one level up (unique!).

Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex.

By convention, draw the root at the top.

The choice of root determines a grading on the rooted tree, given by the distance from the root. (Distance between vertices u and v is the length of a shortest walk from u to v.)

Give a choice of vertex v, the parent of v is the neighbor that is one level up (unique!). A child of v is any neighbor one level down.

Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex.

By convention, draw the root at the top.

The choice of root determines a grading on the rooted tree, given by the distance from the root. (Distance between vertices u and v is the length of a shortest walk from u to v.)

Give a choice of vertex v, the parent of v is the neighbor that is one level up (unique!). A child of v is any neighbor one level down.

Recall a leaf is a vertex of degree 1; note that leaves are the vertices with no children. Everything else is called an internal vertex.

Ordered rooted trees

Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex. An ordered rooted tree (ORT) is a rooted tree, together on a choice of order on each of the children of each vertex.

Ordered rooted trees

Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex. An ordered rooted tree (ORT) is a rooted tree, together on a choice of order on each of the children of each vertex.

For example, the following are all equal as rooted trees, but are distinct as *ordered* rooted trees:

Given a rooted tree, there are

associated ORT's.

Ordered rooted trees

Recall that a tree is an acyclic connected graph. A rooted tree is a (labeled) tree, together with a choice of special vertex. An ordered rooted tree (ORT) is a rooted tree, together on a choice of order on each of the children of each vertex.

For example, the following are all equal as rooted trees, but are distinct as *ordered* rooted trees:

Given a rooted tree, there are $\prod_{v \text{ internal}} (\deg(v) - 1)$ associated ORT's.

You try: How many ORT's are there on the vertex set $V = \{1, 2, 3, 4\}$?

Goal: Searching for items in an ordered set.

Goal: Searching for items in an ordered set.

Building the tree: Let U be a totally ordered set (e.g. words, integers, etc.), and let $S\subseteq U$ be a finite subset.

Goal: Searching for items in an ordered set.

Building the tree: Let U be a totally ordered set (e.g. words, integers, etc.), and let $S\subseteq U$ be a finite subset. To build the search tree for $S\dots$

- 1. Pick some $r \in S$ to be the root.
- 2. Given a partial tree, insert a new vertex $s \in S$ by starting with the root, compare s to vertices already in place. When at vertex $v \dots$
 - 3a. if s < v, look for a left child...
 - if v has a left child, then move there and return to 2;
 - if not, insert s as a left child to v.
 - 3b. if s > v, look for a right child...
 - if v has a right child, then move there and return to ${\bf 2}$;
 - if not, insert s as a right child to v.

Goal: Searching for items in an ordered set.

Building the tree: Let U be a totally ordered set (e.g. words, integers, etc.), and let $S\subseteq U$ be a finite subset. To build the search tree for $S\dots$

- 1. Pick some $r \in S$ to be the root.
- 2. Given a partial tree, insert a new vertex $s \in S$ by starting with the root, compare s to vertices already in place. When at vertex $v \dots$
 - 3a. if s < v, look for a left child...
 - if v has a left child, then move there and return to 2;
 - if not, insert s as a left child to v.
 - 3b. if s > v, look for a right child...
 - if v has a right child, then move there and return to 2;
 - if not, insert s as a right child to v.

```
Example: Build a search tree for { Searching, for, items, in, an, ordered, set } (ordered alphabetically).
```

- 1. Pick some $r \in S$ to be the root.
- 2. Given a partial tree, insert a new vertex $s \in S$ by starting with the root, compare s to vertices already in place. When at vertex v...
 - if s < v, look for a left child...
 if v has a left child, then move there and return to 2;
 - if not, insert s as a left child to v.
 - if s > v, look for a right child...
 - if v has a right child, then move there and return to 2;
 - if not, insert s as a right child to v.

{ searching, for, items, in, an, ordered, set } (ordered alphabetically).

searching O

- 1. Pick some $r \in S$ to be the root.
- 2. Given a partial tree, insert a new vertex $s \in S$ by starting with the root, compare s to vertices already in place. When at vertex $v \dots$
 - if s < v. look for a left child... - if v has a left child, then move there and return to 2;
 - if not, insert s as a left child to v. • if s > v, look for a right child...
 - if v has a right child, then move there and return to 2;
 - if not, insert s as a right child to v.

{ searching, for, items, in, an, ordered, set }

(ordered alphabetically).

- 1. Pick some $r \in S$ to be the root.
- 2. Given a partial tree, insert a new vertex $s \in S$ by starting with the root, compare s to vertices already in place. When at vertex $v \dots$
 - if s < v. look for a left child... - if v has a left child, then move there and return to 2;
 - if not, insert s as a left child to v. • if s > v, look for a right child...
 - if v has a right child, then move there and return to 2;
 - if not, insert s as a right child to v.

{ searching, for, items, in, an, ordered, set }

(ordered alphabetically).

- 1. Pick some $r \in S$ to be the root.
- 2. Given a partial tree, insert a new vertex $s \in S$ by starting with the root, compare s to vertices already in place. When at vertex $v \dots$
 - if s < v, look for a left child...
 - if v has a left child, then move there and return to ${\bf 2}$;
 - if not, insert \boldsymbol{s} as a left child to $\boldsymbol{v}.$
 - if s > v, look for a right child...
 - if v has a right child, then move there and return to 2;
 - if not, insert \boldsymbol{s} as a right child to $\boldsymbol{v}.$

{ searching, for, items, in, an, ordered, set } (ordered alphabetically).

searching O for items

- 1. Pick some $r \in S$ to be the root.
- 2. Given a partial tree, insert a new vertex $s \in S$ by starting with the root, compare s to vertices already in place. When at vertex $v \dots$
 - if s < v, look for a left child...
 - if v has a left child, then move there and return to ${\bf 2}$;
 - if not, insert s as a left child to v.
 - if s > v, look for a right child...
 - if v has a right child, then move there and return to 2;
 - if not, insert \boldsymbol{s} as a right child to $\boldsymbol{v}.$

{ searching, for, items, in, an, ordered, set }

(ordered alphabetically).

- 1. Pick some $r \in S$ to be the root.
- 2. Given a partial tree, insert a new vertex $s \in S$ by starting with the root, compare s to vertices already in place. When at vertex $v \dots$
 - if s < v, look for a left child. . .
 - if v has a left child, then move there and return to ${\bf 2}$;
 - if not, insert s as a left child to v.
 - if s > v, look for a right child...
 - if v has a right child, then move there and return to 2;
 - if not, insert \boldsymbol{s} as a right child to $\boldsymbol{v}.$

{ searching, for, items, in, an, ordered, set } (ordered alphabetically).

searching O for items

- 1. Pick some $r \in S$ to be the root.
- 2. Given a partial tree, insert a new vertex $s \in S$ by starting with the root, compare s to vertices already in place. When at vertex $v \dots$
 - if s < v, look for a left child...
 - if v has a left child, then move there and return to 2;
 - if not, insert s as a left child to v.
 if s > v, look for a right child...
 - if v has a right child, then move there and return to 2;
 - if not, insert s as a right child to v.

{ searching, for, items, in, an, ordered, set }

(ordered alphabetically).

- 1. Pick some $r \in S$ to be the root.
- 2. Given a partial tree, insert a new vertex $s \in S$ by starting with the root, compare s to vertices already in place. When at vertex $v \dots$
 - if s < v, look for a left child...
 - if v has a left child, then move there and return to 2;
 - if not, insert s as a left child to v.
 if s > v, look for a right child...
 - if v has a right child, then move there and return to 2;
 - if not, insert s as a right child to v.

{ searching, for, items, in, an, ordered, set }

(ordered alphabetically).

You try: add the words { build, the, search, tree } to the above ORT.

Goal: Searching for items in an ordered set.

Building the tree: Let U be a totally ordered set (e.g. words, integers, etc.), and let $S \subseteq U$ be a finite subset. To build the search tree for $S \dots$

- 1. Pick some $r \in S$ to be the root.
- 2. Given a partial tree, insert a new vertex $s \in S$ by starting with the root, compare s to vertices already in place. When at vertex $v \dots$
 - if s < v, look for a left child...
 - if v has a left child, then move there and return to 2;
 - if not, insert s as a left child to v.
 - if s > v, look for a right child...
 - if v has a right child, then move there and return to 2;
 - if not, insert s as a right child to v.

Theorem. The height of a binary search trees for a set S of size n is between $\lceil \log_2(n+1) \rceil - 1$ and n-1. (The more "balanced", the shorter.)

Goal: Searching for items in an ordered set.

Building the tree: Let U be a totally ordered set (e.g. words, integers, etc.), and let $S \subseteq U$ be a finite subset. To build the search tree for $S \dots$

- 1. Pick some $r \in S$ to be the root.
- 2. Given a partial tree, insert a new vertex $s \in S$ by starting with the root, compare s to vertices already in place. When at vertex $v \dots$
 - if s < v, look for a left child...
 - if v has a left child, then move there and return to ${\bf 2}$;
 - if not, insert s as a left child to v.
 - if s > v, look for a right child...
 - if v has a right child, then move there and return to 2;
 - if not, insert s as a right child to v.

Theorem. The height of a binary search trees for a set S of size n is between $\lceil \log_2(n+1) \rceil - 1$ and n-1. (The more "balanced", the shorter.)

Remark: There are algorithms for balancing search trees as they get built. (See: "data structures")

Moral: Building the tree takes some work, but once it's built, it reduces the computational complexity of finding items.

Given a game played in turns, build a decision tree for that game.

Given a game played in turns, build a decision tree for that game.

Nim: 2 players start with piles of stones. Taking turns, each player takes one or more stones from any one pile. The player to take the last stone loses.

Given a game played in turns, build a decision tree for that game.

Given a game played in turns, build a decision tree for that game.

```
[2, 2, 1]
```

Given a game played in turns, build a decision tree for that game.

Given a game played in turns, build a decision tree for that game.

Given a game played in turns, build a decision tree for that game.

Given a game played in turns, build a decision tree for that game.

Given a game played in turns, build a decision tree for that game.

Nim: 2 players start with piles of stones. Taking turns, each player takes one or more stones from any one pile. The player to take the last stone loses. Example: Start with 2, 2, and 1. The associated game tree is...

Next, assign +1 to leaves where player 1 wins, and -1 to leaves where player 2 wins.

Application 2: Game trees

Given a game played in turns, build a decision tree for that game.

Nim: 2 players start with piles of stones. Taking turns, each player takes one or more stones from any one pile. The player to take the last stone loses. Example: Start with 2, 2, and 1. The associated game tree is...

Next, assign +1 to leaves where player 1 wins, and -1 to leaves where player 2 wins.

Application 2: Game trees

Given a game played in turns, build a decision tree for that game.

Nim: 2 players start with piles of stones. Taking turns, each player takes one or more stones from any one pile. The player to take the last stone loses. Example: Start with 2, 2, and 1. The associated game tree is...

Next, assign +1 to leaves where player 1 wins, and -1 to leaves where player 2 wins. For internal vertices: give player 1 the min value of its children, give player 2 (and the root) the max value of its children.

Application 2: Game trees

Given a game played in turns, build a decision tree for that game.

Nim: 2 players start with piles of stones. Taking turns, each player takes one or more stones from any one pile. The player to take the last stone loses. Example: Start with 2, 2, and 1. The associated game tree is...

Next, assign +1 to leaves where player 1 wins, and -1 to leaves where player 2 wins. For internal vertices: give player 1 the min value of its children, give player 2 (and the root) the max value of its children.

Thm: The value says who will win if each player follows a min/max strategy.

Let ${\cal G}$ be a simple connected graph, and put an order on the vertices.

Let ${\cal G}$ be a simple connected graph, and put an order on the vertices.

Let G be a simple connected graph, and put an order on the vertices.

Depth-first search:

1. Pick a vertex to start at.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- 2. Walk away from that vertex, never repeating previously visited vertices, always picking the least available neighboring vertex, until the walk cannot be extended.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- 2. Walk away from that vertex, never repeating previously visited vertices, always picking the least available neighboring vertex, until the walk cannot be extended.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- Walk away from that vertex, never repeating previously visited vertices, always picking the least available neighboring vertex, until the walk cannot be extended.
- 3. Tracing backwards along your last walk, stop at the last vertex that had an available neighbor.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- Walk away from that vertex, never repeating previously visited vertices, always picking the least available neighboring vertex, until the walk cannot be extended.
- 3. Tracing backwards along your last walk, stop at the last vertex that had an available neighbor. Repeat 2 from that vertex.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- Walk away from that vertex, never repeating previously visited vertices, always picking the least available neighboring vertex, until the walk cannot be extended.
- 3. Tracing backwards along your last walk, stop at the last vertex that had an available neighbor. Repeat 2 from that vertex.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- Walk away from that vertex, never repeating previously visited vertices, always picking the least available neighboring vertex, until the walk cannot be extended.
- 3. Tracing backwards along your last walk, stop at the last vertex that had an available neighbor. Repeat 2 from that vertex.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- Walk away from that vertex, never repeating previously visited vertices, always picking the least available neighboring vertex, until the walk cannot be extended.
- 3. Tracing backwards along your last walk, stop at the last vertex that had an available neighbor. Repeat 2 from that vertex.
- 4. Stop when you're out of vertices.

Let G be a simple connected graph, and put an order on the vertices.

Depth-first search:

- 1. Pick a vertex to start at.
- Walk away from that vertex, never repeating previously visited vertices, always picking the least available neighboring vertex, until the walk cannot be extended.
- 3. Tracing backwards along your last walk, stop at the last vertex that had an available neighbor. Repeat 2 from that vertex.
- 4. Stop when you're out of vertices.

The result is a rooted spanning tree.

Let ${\cal G}$ be a simple connected graph, and put an order on the vertices.

Let ${\cal G}$ be a simple connected graph, and put an order on the vertices.

Breadth-first search:

1. Pick a vertex to start at.

Let ${\cal G}$ be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- 2. Walk one step to each of the available neighbors.

Let ${\cal G}$ be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- 2. Walk one step to each of the available neighbors.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- 2. Walk one step to each of the available neighbors.
- 3. Of the vertices visited in the previous step, moving in order, repeat step 1.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- 2. Walk one step to each of the available neighbors.
- 3. Of the vertices visited in the previous step, moving in order, repeat step 1.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- 2. Walk one step to each of the available neighbors.
- 3. Of the vertices visited in the previous step, moving in order, repeat step 1.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- 2. Walk one step to each of the available neighbors.
- 3. Of the vertices visited in the previous step, moving in order, repeat step 1.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- 2. Walk one step to each of the available neighbors.
- 3. Of the vertices visited in the previous step, moving in order, repeat step 1.

Let G be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- 2. Walk one step to each of the available neighbors.
- 3. Of the vertices visited in the previous step, moving in order, repeat step 1.

Let ${\cal G}$ be a simple connected graph, and put an order on the vertices.

- 1. Pick a vertex to start at.
- 2. Walk one step to each of the available neighbors.
- 3. Of the vertices visited in the previous step, moving in order, repeat step 1.
- 4. Stop when you're out of vertices.

Let G be a simple connected graph, and put an order on the vertices.

Breadth-first search:

- 1. Pick a vertex to start at.
- 2. Walk one step to each of the available neighbors.
- 3. Of the vertices visited in the previous step, moving in order, repeat step 1.
- 4. Stop when you're out of vertices.

The result is also a *rooted spanning tree*. Note that at each recursion, you're building all of the vertices at a given level.

You try: Starting from vertex 1, compute the depth-first and breadth-first search trees for the graph

You try: Starting from vertex 1, compute the depth-first and breadth-first search trees for the graph

Relevant questions:

- Given vertices u and v, what's the smallest-weight walk from u to v? (Think: flights, cab rides, production lines, etc.)
- What is the smallest-weight spanning tree?

See also: Traveling salesman problem.

Relevant questions:

- Given vertices u and v, what's the smallest-weight walk from u to v? (Think: flights, cab rides, production lines, etc.)
- What is the smallest-weight spanning tree?

See also: Traveling salesman problem.

Prim's algorithm: Order the edges.

- Pick an edge of minumum weight and add it (and its vertices) to your tree.
- 2. Of all edges incident to vertices already included, moving in order, add all edges of minimum available weight (without creating cycles).
- 3. Stop when you've covered all vertices.

Relevant questions:

- Given vertices u and v, what's the smallest-weight walk from u to v?
 (Think: flights, cab rides, production lines, etc.)
- What is the smallest-weight spanning tree?

See also: Traveling salesman problem.

Prim's algorithm: Order the edges.

- Pick an edge of minumum weight and add it (and its vertices) to your tree.
- 2. Of all edges incident to vertices already included, moving in order, add all edges of minimum available weight (without creating cycles).
- 3. Stop when you've covered all vertices.

Relevant questions:

- Given vertices u and v, what's the smallest-weight walk from u to v?
 (Think: flights, cab rides, production lines, etc.)
- What is the smallest-weight spanning tree?

See also: Traveling salesman problem.

Prim's algorithm: Order the edges.

 $O(m \log n)$

- Pick an edge of minumum weight and add it (and its vertices) to your tree.
- 2. Of all edges incident to vertices already included, moving in order, add all edges of minimum available weight (without creating cycles).
- 3. Stop when you've covered all vertices.

Relevant questions:

- Given vertices u and v, what's the smallest-weight walk from u to v? (Think: flights, cab rides, production lines, etc.)
- What is the smallest-weight spanning tree?

See also: Traveling salesman problem.

Kruskal's algorithm: Order the edges.

- Moving in order, add the first addable edge of minimum available weight. (Of all addable edges of minimum weight, pick the first according to your order.)
- 2. Repeat until you've covered all vertices.

Relevant questions:

- Given vertices u and v, what's the smallest-weight walk from u to v? (Think: flights, cab rides, production lines, etc.)
- What is the smallest-weight spanning tree?

See also: Traveling salesman problem.

Kruskal's algorithm: Order the edges.

 $O(m \log m)$

- Moving in order, add the first addable edge of minimum available weight. (Of all addable edges of minimum weight, pick the first according to your order.)
- 2. Repeat until you've covered all vertices.

Let G be a weighted directed graph (assume no multiple arrows), satisfying the property that for any vertex v, the sum of the weights on the out-arrows is $\mathbf{1}$.

Let G be a weighted directed graph (assume no multiple arrows), satisfying the property that for any vertex v, the sum of the weights on the out-arrows is $\bf 1$.

Let G be a weighted directed graph (assume no multiple arrows), satisfying the property that for any vertex v, the sum of the weights on the out-arrows is $\mathbf{1}$.

A random walk is a walk generated iteratively, where each step is taken with probability determined by the weight of the out arrows.

Let G be a weighted directed graph (assume no multiple arrows), satisfying the property that for any vertex v, the sum of the weights on the out-arrows is 1.

A random walk is a walk generated iteratively, where each step is taken with probability determined by the weight of the out arrows.

Example: Suppose you play a game of dice, where at each turn you roll two six-sided dice. If you roll a multiple of 4, you get \$3; if you don't, you pay \$1.

Let G be a weighted directed graph (assume no multiple arrows), satisfying the property that for any vertex v, the sum of the weights on the out-arrows is $\mathbf{1}$.

A random walk is a walk generated iteratively, where each step is taken with probability determined by the weight of the out arrows.

Example: Suppose you play a game of dice, where at each turn you roll two six-sided dice. If you roll a multiple of 4 (prob 1/4), you get \$3; if you don't, you pay \$1 (prob 3/4).

Let G be a weighted directed graph (assume no multiple arrows), satisfying the property that for any vertex v, the sum of the weights on the out-arrows is 1.

A random walk is a walk generated iteratively, where each step is taken with probability determined by the weight of the out arrows.

Example: Suppose you play a game of dice, where at each turn you roll two six-sided dice. If you roll a multiple of 4 (prob 1/4), you get \$3; if you don't, you pay \$1 (prob 3/4).

Relevant questions: Starting at vertex u...

- 1. What's the probability that you'll reach vertex v?
- 2. After n steps, what's the probability that you've landed at v?
- 3. Is it more likely for a walk gravitate toward any one vertex? Is it more likely that a random walk wanders off in any particular direction?