
We say a graph is acyclic if it doesn’t have any cycles.

Has a cycle: Acyclic:

A tree is a connected acyclic graph. A forrest a collection of trees
(i.e. a not necessarily connected acyclic graph).

Tree and forrest: Forrest but not tree : Not tree nor forrest:

Note that the connected components of a forrest are trees.
A leaf is a vertex of degree 1.

Lemma
Every tree with at least two vertices has at least two leaves.
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A tree is a connected acyclic graph.

Theorem
A tree with n vertices has exactly n´ 1 edges.

Prove by induction on the number of vertices.

Since every connected component of a forrest is a tree, we get the
following as a corollary.

Corollary

A forrest with k connected components has exactly |V | ´ k edges.

You try: Exercise 58.
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Spanning trees
A spanning tree for a connected graph G is a subgraph of G with
the same vertex set, but that is itself a tree.

For example, the
graph

G “

a b

c d

has exactly three spanning trees:

T1 “

a b

c d

, T2 “

a b

c d

, and T3 “

a b

c d

.

(G had once cycle. Deleting one edge from that cycle leaves you
with a tree.)
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Counting spanning trees

For a connected graph G, let tpGq be the number of spanning
trees in G (also a graph invariant).

How to count tpGq: Notice that for any fixed edge, you can split
the spanning trees into two categories: (1) those that do not
contain e and (2) those that do.

Case 1: Every spanning tree of G that doesn’t contain e is also a
spanning tree of G´ e, so
|t spanning trees of G not containing edge e u| “ tpG´ eq.

For example, in G from before, fix e “ a´c in

G “

a b

c d

,
the only spanning

tree not containing e is

a b

c d

which is the only spanning tree of G´ e (which is the tree).



Counting spanning trees

For a connected graph G, let tpGq be the number of spanning
trees in G (also a graph invariant).

How to count tpGq:

Notice that for any fixed edge, you can split
the spanning trees into two categories: (1) those that do not
contain e and (2) those that do.

Case 1: Every spanning tree of G that doesn’t contain e is also a
spanning tree of G´ e, so
|t spanning trees of G not containing edge e u| “ tpG´ eq.

For example, in G from before, fix e “ a´c in

G “

a b

c d

,
the only spanning

tree not containing e is

a b

c d

which is the only spanning tree of G´ e (which is the tree).



Counting spanning trees

For a connected graph G, let tpGq be the number of spanning
trees in G (also a graph invariant).

How to count tpGq: Notice that for any fixed edge, you can split
the spanning trees into two categories: (1) those that do not
contain e and (2) those that do.

Case 1: Every spanning tree of G that doesn’t contain e is also a
spanning tree of G´ e, so
|t spanning trees of G not containing edge e u| “ tpG´ eq.

For example, in G from before, fix e “ a´c in

G “

a b

c d

,
the only spanning

tree not containing e is

a b

c d

which is the only spanning tree of G´ e (which is the tree).



Counting spanning trees

For a connected graph G, let tpGq be the number of spanning
trees in G (also a graph invariant).

How to count tpGq: Notice that for any fixed edge, you can split
the spanning trees into two categories: (1) those that do not
contain e and (2) those that do.

Case 1: Every spanning tree of G that doesn’t contain e is also a
spanning tree of G´ e

, so
|t spanning trees of G not containing edge e u| “ tpG´ eq.

For example, in G from before, fix e “ a´c in

G “

a b

c d

,
the only spanning

tree not containing e is

a b

c d

which is the only spanning tree of G´ e (which is the tree).



Counting spanning trees

For a connected graph G, let tpGq be the number of spanning
trees in G (also a graph invariant).

How to count tpGq: Notice that for any fixed edge, you can split
the spanning trees into two categories: (1) those that do not
contain e and (2) those that do.

Case 1: Every spanning tree of G that doesn’t contain e is also a
spanning tree of G´ e, so
|t spanning trees of G not containing edge e u| “ tpG´ eq.

For example, in G from before, fix e “ a´c in

G “

a b

c d

,
the only spanning

tree not containing e is

a b

c d

which is the only spanning tree of G´ e (which is the tree).



Counting spanning trees

For a connected graph G, let tpGq be the number of spanning
trees in G (also a graph invariant).

How to count tpGq: Notice that for any fixed edge, you can split
the spanning trees into two categories: (1) those that do not
contain e and (2) those that do.

Case 1: Every spanning tree of G that doesn’t contain e is also a
spanning tree of G´ e, so
|t spanning trees of G not containing edge e u| “ tpG´ eq.

For example, in G from before, fix e “ a´c in

G “

a b

c d

,
the only spanning

tree not containing e is

a b

c d

which is the only spanning tree of G´ e (which is the tree).



For a connected graph G, let tpGq be the number of spanning
trees in G (also a graph invariant).
How to count tpGq: For any edge e, break into cases: (1) those
that do not contain e and (2) those that do.
Case 1:
|t spanning trees of G not containing edge e u| “ tpG´ eq.
Case 2: count trees containing e.

Recall G{e be the graph gotten by glueing the endpoints of e and
deleting e. For example, if e is the edge joining a and c in

G “

a b

c d

, then G{e “
a, c b

d
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deleting e. For example, if e is the edge joining a and c in
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And the spanning trees of G that contain e are in bijection with
the spanning trees of G{e:
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In general,
|t spanning trees of G containing edge e u| “ tpG{eq.
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For a connected graph G, let tpGq be the number of spanning
trees in G (also a graph invariant).
How to count tpGq: For any edge e, break into cases: (1) those
that do not contain e and (2) those that do.
Case 1:
|t spanning trees of G not containing edge e u| “ tpG´ eq.
Case 2: |t spanning trees of G containing edge e u| “ tpG{eq.

So
tpGq “ tpG´ eq ` tpG{eq.



u

v

w

x

y

e

u

v

w

x

y

G´
e

u

v,x

w

y

G{e

removing any edge of a cycle
produces a spanning tree:

5 of these

for each cycle, removing exactly one
edge produces a spanning tree:

2 ¨ 3 of these

Total: 5` 2 ¨ 3 “ 11 spanning trees
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Counting trees
For a connected graph G, let tpGq be the number of spanning
trees in G (also a graph invariant). We have the recursive formula

tpGq “ tpG´ eq ` tpG{eq,

for any edge e.

Counting trees in general: The goal is to count the number of
trees with n vertices labeled t1, 2, 3, . . . , nu. For example, up to
isomorphism, there is exactly one tree with three vertices:

If I naively try to label the three vertices with t1, 2, 3u, I would get
6 results:

1 2 3

3 2 1

2 1 3

3 1 2

1 3 2

2 3 1

But actually, the first two are just drawings of the same tree; so
are the second two; so are the last two!

So there are 3 labeled trees on 3 vertices.
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Goal: Count # trees with n vertices labeled t1, . . . , nu.

Example: Count the number of labeled trees with 4 vertices.
For example, up to isomorphism, there are exactly two trees with
four vertices:

and

For the path: choose the outer vertices –
`

4
2

˘

ways

, and then
choose the order of the inner vertices – 2 ways.

1 4

1 3 2 4

1 3

1 4 2 3

1 2

1 4 3 2

2 4

2 3 1 4

2 3

2 4 1 3

3 4

3 2 1 4

So there are
`

4
2

˘

¨ 2 “ 6 ¨ 2 “ 12 of these.
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Approach: find a bijection with something that’s easier to count.

t labeled trees with n vertices u
Ø

t sequence of length n´ 2 from t1, . . . , nu u

The associated sequence is called the tree’s Prüfer code.

Built as follows:

Prüfer code from tree:
1. Remove the lowest leaf possible and record its neighbor.
2. Iterate until there are exactly two leaves left.

Your code should have n´ 2 numbers.
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Prüfer code from tree:
1. Remove the lowest leaf possible and record its neighbor.
2. Iterate until there are exactly two leaves left.

Your code should have n´ 2 numbers.



Approach: find a bijection with something that’s easier to count.

t labeled trees with n vertices u
Ø

t sequence of length n´ 2 from t1, . . . , nu u

The associated sequence is called the tree’s Prüfer code.
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Reversing this process:
Tree from Prüfer code:
1. draw a bar (|) at the end of your code of length n´ 2, and draw
n vertices, labeled from 1 to n.
2. Let a be the first number in the code, and b be the smallest
missing number. (i) draw an edge from a to b, (ii) delete a, and
(iii) put b at the end (after the |).
3. Recurse until you’ve cycled the bar to the front. Then draw and
edge between the two numbers that are missing from your code.

Example: Take the code 1, 2, 5, 2, 7.
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3. Recurse until you’ve cycled the bar to the front. Then draw and
edge between the two numbers that are missing from your code.
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6
7

Done!
This is the tree!

Same tree as before!
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1. draw a bar (|) at the end of your code of length n´ 2, and draw
n vertices, labeled from 1 to n.
2. Let a be the first number in the code, and b be the smallest
missing number. (i) draw an edge from a to b, (ii) delete a, and
(iii) put b at the end (after the |).
3. Recurse until you’ve cycled the bar to the front. Then draw and
edge between the two numbers that are missing from your code.
Example: Take the code 1, 2, 5, 2, 7.

1 2

3

45

6
7

code: 1, 2, 5, 2, 7|
missing: 3, 4, 6

1 2

3

45

6
7

code: 2, 5, 2, 7|3
missing: 1, 4, 6

1 2

3

45

6
7

code: 5, 2, 7|3, 1
missing: 4, 6

1 2

3

45

6
7

code: 2, 7|3, 1, 4
missing: 5, 6

1 2

3

45

6
7

code: 7|3, 1, 4, 5
missing: 2, 6

1 2

3

45

6
7

code: |3, 1, 4, 5, 2
missing: 6, 7

3. Recurse until you’ve cycled the bar to the front. Then draw and
edge between the two numbers that are missing from your code.

1 2

3

45

6
7

Done!
This is the tree!

Same tree as before!



Reversing this process:
Tree from Prüfer code:
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You try:

1. Calculate the Prüfer code for the following tree

1

2

3

4

5

6

7

8

9

10

and verify your answer by then computing the tree that comes
from that code, and checking that they match.

2. Compute the tree that corresponds to the Prüfer code that
corresponds to the sequence 1, 5, 4, 4, 3, and verify your
answer by by then computing the code that comes from that
tree, and checking that they match.



These two processes are precisely inverses of each other!
Therefore, for each n, there is a bijection

t labeled trees with n vertices u
Ø

t sequences of length n´ 2 from t1, . . . , nu u
via Prüfer codes.

Theorem (Cayley’s formula)

There are nn´2 labeled trees on n vertices.

Proof: There are n ¨ n ¨ ¨ ¨n
loooomoooon

n´2

sequences of length n´ 2 from

t1, . . . , nu. ˝

Further:: very labeled tree with n vertices is a spanning tree of (a
labeled) Kn, and vice versa.

Corollary

There are nn´2 spanning trees in Kn.
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