
Math 365 – Wednesday 5/1/19

Exercise 57. (a) The chromatic polynomial for the cycle Cn is �(Cn, t) = (t� 1)
n
+(�1)

n
(t� 1).

(i) Draw all the ways of coloring the 3-cycle with 3 colors. Then compute �(C3, 3) and

compare your answers.

(ii) How many ways are there to color the 5-cycle with 3 colors?

(iii) How many ways are there to color the 6-cycle with 2 colors?

(iv) Use �(Cn, t) to verify that even cycles are bipartite and odd cycles are not.

(b) For G and H below, compute the number of ways to color the graph with a palate of 1 color,

of 2 colors, of 3 colors, and of 4 colors. For K, compute the number of ways to color the graph

with a palate of 1 color, of 2 colors, of 3 colors, of 4 colors, and of 5 colors.
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[Hint: For all three, break into cases based on how many colors you actually use. Then for any

coloring using exactly k colors, there will be k! colorings with that “color pattern” – so instead

of listing all colorings, list color patterns and then account for how many colorings correspond

to each pattern. For K, you might want to use some of what you’ve already computed about

colorings of C3 to count colorings of K e�ciently.]

(c) Calculate the chromatic polynomial for G and for H.

(d) Explain why �(Kn, t) = t(t� 1)(t� 2) · · · (t� (n� 1)).



Last time:

A coloring of a simple graph is the assignment of a color to each
vertex of the graph so that no two adjacent vertices are assigned
the same color.
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The chromatic number of a graph G, denoted �pGq, is the least
number of colors needed for a coloring of this graph.

To calculate, argue that the graph can’t be colored in � ´ 1 colors,
and then give a coloring with exactly � colors.

The chromatic polynomial

Question: Given a palate of t colors, how many ways are there to
color a (labeled) graph using that palate? (You don’t have to use
all the colors at once.)
Let �pG, tq be the number of colorings with a palate of t colors.

For example, the path graph

P3 “ a b c

cannot be colored at all with 0 or 1 colors. So
�pP3, 0q “ �pP3, 1q “ 0.

With 2 colors (say red and blue), it can be colored in 2 ways:
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So �pP3, 2q “ 2.



The chromatic polynomial

Let �pG, tq be the number of colorings with a palate of t colors.

For example, the path graph P3 “ a b c has

�pP3, 0q “ �pP3, 1q “ 0, and �pP3, 2q “ 2.
With 3 colors, we break into cases: use all 3 colors, or only use 2.
Using exactly 2 colors, this can happen in �pP3, 2q ˚
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The chromatic polynomial

Let �pG, tq be the number of colorings with a palate of t colors.

For example, the path graph P3 “ a b c has

�pP3, 0q “ �pP3, 1q “ 0, and �pP3, 2q “ 2.
With 3 colors, we break into cases: use all 3 colors, or only use 2.
Using exactly 2 colors, this can happen in �pP3, 2q ˚
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“ 6 ways.

Using exactly 3 colors, this can happen in exactly 3! “ 6 ways:
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So �pP3, 3q “ 6 ` 6 “ 12.
Note that �pP3, 4q is totally defined by these previous terms!



Let �pG, tq be the number of colorings with a palate of t colors.

In general, if a graph G has n vertices, then

�pG, 0q,�pG, 1q, . . . ,�pG,nq
determine �pG, tq for t ° n.

Theorem
For a simple (labeled) graph on n vertices, �pG, tq is a polynomial
in t of degree n, i.e. for some a0, . . . , an, we have

�pG, tq “ a0 ` a1t ` ¨ ¨ ¨ ` ant
n

for all t P Z•0.

Example: computing �pP3, tq in general.
We know �pP3, tq is a degree 3 polynomial, i.e.

�pP3, tq “ a0 ` a1t ` a2t2 ` a3t3

satisfying �pP3, 0q “ �pP3, 1q “ 0, �pP3, 2q “ 2, and
�pP3, 3q “ 12.

So we need to solve

0 “�pP3, 0q “ a0

0 “�pP3, 1q “ a0 ` a1 ` a2 ` a3

2 “�pP3, 2q “ a0 ` 2a1 ` 22a2 ` 23a3

12 “�pP3, 3q “ a0 ` 3a1 ` 32a2 ` 33a3

Solving this system gives
a0 “ 0, a1 “ 1, a2 “ ´2, a3 “ 1.

So �pP3, tq “ t ´ 2t2 ` t3 “ tpt ´ 1q2.
You try: Calculate the number of ways to color (a labeled) C4 with
palates of 0, 1, 2, 3, and 4 colors. Then compute �pC4, tq. Finally,
calculate the number of ways to color C4 with a palate of 5 colors
by counting and verify that your answer matches �pC4, 5q.
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calculate the number of ways to color C4 with a palate of 5 colors
by counting and verify that your answer matches �pC4, 5q.



Let �pG, tq be the number of colorings with a palate of t colors.

Theorem
For a simple (labeled) graph on n vertices, �pG, tq is a polynomial
in t of degree n, i.e. for some a0, . . . , an, we have

�pG, tq “ a0 ` a1t ` ¨ ¨ ¨ ` ant
n

for all t P Z•0.

Some properties of the �pG, tq that can help you error check:

§ If n ° 0, then �pG, 0q “ 0. So t is a factor of �pG, tq.
§ If n ° 1 and G has any edges, then �pG, 1q “ 0. So pt ´ 1q is
a factor of �pG, tq.

§ Similarly, G cannot be colored using any fewer that � “ �pGq
colors, so

�pG, 0q “ �pG, 1q “ ¨ ¨ ¨ “ �pG,� ´ 1q “ 0.
So

tpt ´ 1qpt ´ 2q ¨ ¨ ¨ pt ´ p� ´ 1qq
is a factor of �pG, tq.

Some properties of the �pG, tq that can help you error check:

1. G cannot be colored using any fewer that � “ �pGq colors, so
�pG, 0q “ �pG, 1q “ ¨ ¨ ¨ “ �pG,� ´ 1q “ 0.

So
tpt ´ 1qpt ´ 2q ¨ ¨ ¨ pt ´ p� ´ 1qq

is a factor of �pG, tq.
2. The coe�cient of tn in �pG, tq is 1.

3. The coe�cient of tn´1 in �pG, tq is ´|E|.
4. The coe�cients alternate in signs.

5. If G has connected components C1, . . . , C`, then

�pG, tq “ �pC1, tq�pC2, tq ¨ ¨ ¨�pC`, tq.

Namely, the coe�cients of t0, . . . , t`´1 in �pG, tq are all zero,
and the coe�cients of t`, . . . , tn in �pG, tq are all not zero.

For more notes, see
http://en.wikipedia.org/wiki/Chromatic polynomial.


