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A coloring of a simple graph is the assignment of a color to each
vertex of the graph so that no two adjacent vertices are assigned
the same color.
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The chromatic number of a graph G, denoted χpGq, is the least
number of colors needed for a coloring of this graph.

To calculate, argue that the graph can’t be colored in χ´ 1 colors,
and then give a coloring with exactly χ colors.



The chromatic polynomial

Question: Given a palate of t colors, how many ways are there to
color a (labeled) graph using that palate? (You don’t have to use
all the colors at once.)

Let χpG, tq be the number of colorings with a palate of t colors.

For example, the path graph

P3 “
a b c

cannot be colored at all with 0 or 1 colors. So
χpP3, 0q “ χpP3, 1q “ 0.

With 2 colors (say red and blue), it can be colored in 2 ways:

1

a
2

b
1

c
2

a
1

b
2

c .

So χpP3, 2q “ 2.
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Let χpG, tq be the number of colorings with a palate of t colors.

For example, the path graph P3 “
a b c has

χpP3, 0q “ χpP3, 1q “ 0, and χpP3, 2q “ 2.

With 3 colors, we break into cases: use all 3 colors, or only use 2.
Using exactly 2 colors, this can happen in χpP3, 2q ˚

`
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So χpP3, 3q “ 6` 6 “ 12.
Note that χpP3, 4q is totally defined by these previous terms!
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Let χpG, tq be the number of colorings with a palate of t colors.

In general, if a graph G has n vertices, then

χpG, 0q, χpG, 1q, . . . , χpG,nq

determine χpG, tq for t ą n.

Theorem
For a simple (labeled) graph on n vertices, χpG, tq is a polynomial
in t of degree n, i.e. for some a0, . . . , an, we have

χpG, tq “ a0 ` a1t` ¨ ¨ ¨ ` ant
n

for all t P Zě0.
Example: computing χpP3, tq in general.
We know χpP3, tq is a degree 3 polynomial, i.e.

χpP3, tq “ a0 ` a1t` a2t
2 ` a3t

3

satisfying χpP3, 0q “ χpP3, 1q “ 0, χpP3, 2q “ 2, and
χpP3, 3q “ 12. So we need to solve

0 “χpP3, 0q “ a0

0 “χpP3, 1q “ a0 ` a1 ` a2 ` a3

2 “χpP3, 2q “ a0 ` 2a1 ` 22a2 ` 23a3

12 “χpP3, 3q “ a0 ` 3a1 ` 32a2 ` 33a3

Solving this system gives
a0 “ 0, a1 “ 1, a2 “ ´2, a3 “ 1.

So χpP3, tq “ t´ 2t2 ` t3 “ tpt´ 1q2.
You try: Calculate the number of ways to color (a labeled) C4 with
palates of 0, 1, 2, 3, and 4 colors. Then compute χpC4, tq. Finally,
calculate the number of ways to color C4 with a palate of 5 colors
by counting and verify that your answer matches χpC4, 5q.
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Let χpG, tq be the number of colorings with a palate of t colors.

Theorem
For a simple (labeled) graph on n vertices, χpG, tq is a polynomial
in t of degree n, i.e. for some a0, . . . , an, we have

χpG, tq “ a0 ` a1t` ¨ ¨ ¨ ` ant
n

for all t P Zě0.

Some properties of the χpG, tq that can help you error check:

§ If n ą 0, then χpG, 0q “ 0. So t is a factor of χpG, tq.

§ If n ą 1 and G has any edges, then χpG, 1q “ 0. So pt´ 1q is
a factor of χpG, tq.

§ Similarly, G cannot be colored using any fewer that χ “ χpGq
colors, so

χpG, 0q “ χpG, 1q “ ¨ ¨ ¨ “ χpG,χ´ 1q “ 0.
So

tpt´ 1qpt´ 2q ¨ ¨ ¨ pt´ pχ´ 1qq
is a factor of χpG, tq.
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for all t P Zě0.
Some properties of the χpG, tq that can help you error check:

§ If n ą 0, then χpG, 0q “ 0. So t is a factor of χpG, tq.

§ If n ą 1 and G has any edges, then χpG, 1q “ 0. So pt´ 1q is
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2. The coefficient of tn in χpG, tq is 1.

3. The coefficient of tn´1 in χpG, tq is ´|E|.

4. The coefficients alternate in signs.

5. If G has connected components C1, . . . , C`, then

χpG, tq “ χpC1, tqχpC2, tq ¨ ¨ ¨χpC`, tq.

Namely, the coefficients of t0, . . . , t`´1 in χpG, tq are all zero,
and the coefficients of t`, . . . , tn in χpG, tq are all not zero.

For more notes, see
http://en.wikipedia.org/wiki/Chromatic polynomial.
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