Last time:

A coloring of a simple graph is the assignment of a color to each
vertex of the graph so that no two adjacent vertices are assigned
the same color.
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The chromatic number of a graph G, denoted x(G), is the least
number of colors needed for a coloring of this graph.

To calculate, argue that the graph can’t be colored in xy — 1 colors,
and then give a coloring with exactly x colors.
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all the colors at once.)
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X(P3,0) = x(P3,1) =0, and x(P3,2) = 2.
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For example, the path graph P3 = @ b C has
X(P3,0) = x(P3,1) = 0, and x(P3,2) = 2.
With 3 colors, we break into cases: use all 3 colors, or only use 2.
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So x(Ps,3) =6+ 6 = 12.

Note that x(Ps,4) is totally defined by these previous terms!
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We know x(Ps,t) is a degree 3 polynomial, i.e.
x(Ps,t) = ag + ait + ast?® + ast?

satisfying x(P3,0) = x(Ps,1) =0, x(Ps,2) = 2, and
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Solving this system gives

apg = 0, ay = 1, as = —2, az = 1.
So x(Ps,t) =t —2t + 3 = t(t — 1)
You try: Calculate the number of ways to color (a labeled) Cy with
palates of 0, 1, 2, 3, and 4 colors. Then compute x(C4,t). Finally,
calculate the number of ways to color Cy with a palate of 5 colors
by counting and verify that your answer matches x(Cy, 5).
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1. G cannot be colored using any fewer that x = x(G) colors, so

X(G,0) =x(G,1) = - =x(G,x —1) =0.
So
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If G has connected components C1, ..., Cy, then

X(G,t) = x(C1,t)x(C2,t) - - x(Cy, t).
Namely, the coefficients of 9, ..., t~Lin X(G,t) are all zero,
and the coefficients of t¢, ..., t" in x(G,t) are all not zero.

For more notes, see
http://en.wikipedia.org/wiki/Chromatic_polynomial.



