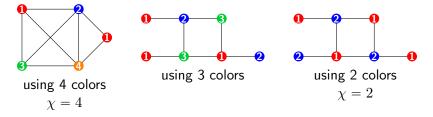
Last time:

A coloring of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color.



The chromatic number of a graph G, denoted $\chi(G)$, is the least number of colors needed for a coloring of this graph.

To calculate, argue that the graph can't be colored in $\chi - 1$ colors, and then give a coloring with exactly χ colors.

Question: Given a palate of t colors, how many ways are there to color a (labeled) graph using that palate? (You don't have to use all the colors at once.)

Question: Given a palate of t colors, how many ways are there to color a (labeled) graph using that palate? (You don't have to use all the colors at once.)

Let $\chi(G,t)$ be the number of colorings with a palate of t colors.

Question: Given a palate of t colors, how many ways are there to color a (labeled) graph using that palate? (You don't have to use all the colors at once.)

Let $\chi(G,t)$ be the number of colorings with a palate of t colors.

For example, the path graph

$$P_3 = a b c$$

cannot be colored at all with 0 or 1 colors.

Question: Given a palate of t colors, how many ways are there to color a (labeled) graph using that palate? (You don't have to use all the colors at once.)

Let $\chi(G,t)$ be the number of colorings with a palate of t colors.

For example, the path graph

Question: Given a palate of t colors, how many ways are there to color a (labeled) graph using that palate? (You don't have to use all the colors at once.)

Let $\chi(G,t)$ be the number of colorings with a palate of t colors.

For example, the path graph

$$P_3 = \begin{array}{c} \mathsf{a} \quad \mathsf{b} \quad \mathsf{c} \\ \bullet \quad \bullet \quad \bullet \quad \bullet \end{array}$$

cannot be colored at all with 0 or 1 colors. So

$$\chi(P_3, 0) = \chi(P_3, 1) = 0.$$

With 2 colors (say red and blue), it can be colored in 2 ways:

Question: Given a palate of t colors, how many ways are there to color a (labeled) graph using that palate? (You don't have to use all the colors at once.)

Let $\chi(G,t)$ be the number of colorings with a palate of t colors.

For example, the path graph

$$P_3 = \begin{array}{c} \mathsf{a} \quad \mathsf{b} \quad \mathsf{c} \\ \bullet \quad \bullet \quad \bullet \quad \bullet \end{array}$$

cannot be colored at all with 0 or 1 colors. So

$$\chi(P_3, 0) = \chi(P_3, 1) = 0.$$

With 2 colors (say red and blue), it can be colored in 2 ways:

Question: Given a palate of t colors, how many ways are there to color a (labeled) graph using that palate? (You don't have to use all the colors at once.)

Let $\chi(G,t)$ be the number of colorings with a palate of t colors.

For example, the path graph

$$P_3 = \begin{array}{c} \mathsf{a} \quad \mathsf{b} \quad \mathsf{c} \\ \bullet \quad \bullet \quad \bullet \\ \bullet \quad \bullet \quad \bullet \end{array}$$

cannot be colored at all with 0 or 1 colors. So

$$\chi(P_3, 0) = \chi(P_3, 1) = 0.$$

With 2 colors (say red and blue), it can be colored in 2 ways:

So $\chi(P_3, 2) = 2$.

Let $\chi(G,t)$ be the number of colorings with a palate of t colors.

For example, the path graph $P_3 = a$ b c has $\chi(P_3, 0) = \chi(P_3, 1) = 0$, and $\chi(P_3, 2) = 2$.

Let $\chi(G,t)$ be the number of colorings with a palate of t colors.

Let $\chi(G, t)$ be the number of colorings with a palate of t colors.

For example, the path graph $P_3 = \begin{bmatrix} a & b & c \\ a & b & c \end{bmatrix}$ has $\chi(P_3, 0) = \chi(P_3, 1) = 0$, and $\chi(P_3, 2) = 2$. With 3 colors, we break into cases: use all 3 colors, or only use 2. Using exactly 2 colors, this can happen in $\chi(P_3, 2) * {3 \choose 2} = 6$ ways: a b c a b 0 2 0 2 0 С color w/ red (1) and blue (2): b c a

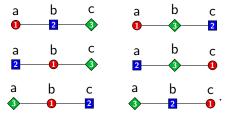
a b c a b 2 3 2 3 2

color w/ red (1) and green (3):

color w/ green (2) and blue (3):

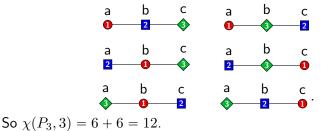
Let $\chi(G,t)$ be the number of colorings with a palate of t colors.

For example, the path graph $P_3 = \overset{a}{\bullet} \overset{b}{\bullet} \overset{c}{\bullet}$ has $\chi(P_3, 0) = \chi(P_3, 1) = 0$, and $\chi(P_3, 2) = 2$. With 3 colors, we break into cases: use all 3 colors, or only use 2. Using exactly 2 colors, this can happen in $\chi(P_3, 2) * {3 \choose 2} = 6$ ways. Using exactly 3 colors, this can happen in exactly 3! = 6 ways:



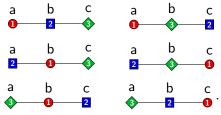
Let $\chi(G,t)$ be the number of colorings with a palate of t colors.

For example, the path graph $P_3 = a$ b c has $\chi(P_3, 0) = \chi(P_3, 1) = 0$, and $\chi(P_3, 2) = 2$. With 3 colors, we break into cases: use all 3 colors, or only use 2. Using exactly 2 colors, this can happen in $\chi(P_3, 2) * {3 \choose 2} = 6$ ways. Using exactly 3 colors, this can happen in exactly 3! = 6 ways:



Let $\chi(G,t)$ be the number of colorings with a palate of t colors.

For example, the path graph $P_3 = \overset{a}{\bullet} \overset{b}{\bullet} \overset{c}{\bullet}$ has $\chi(P_3, 0) = \chi(P_3, 1) = 0$, and $\chi(P_3, 2) = 2$. With 3 colors, we break into cases: use all 3 colors, or only use 2. Using exactly 2 colors, this can happen in $\chi(P_3, 2) * {3 \choose 2} = 6$ ways. Using exactly 3 colors, this can happen in exactly 3! = 6 ways:



So $\chi(P_3,3) = 6 + 6 = 12$. Note that $\chi(P_3,4)$ is totally defined by these previous terms! Let $\chi(G,t)$ be the number of colorings with a palate of t colors. In general, if a graph G has n vertices, then

 $\chi(G,0), \chi(G,1), \ldots, \chi(G,n)$

determine $\chi(G, t)$ for t > n.

Let $\chi(G, t)$ be the number of colorings with a palate of t colors. In general, if a graph G has n vertices, then

$$\chi(G,0), \chi(G,1), \ldots, \chi(G,n)$$

determine $\chi(G,t)$ for t > n.

Theorem

For a simple (labeled) graph on n vertices, $\chi(G,t)$ is a polynomial in t of degree n, i.e. for some a_0, \ldots, a_n , we have

$$\chi(G,t) = a_0 + a_1t + \dots + a_nt^n$$

for all $t \in \mathbb{Z}_{\geq 0}$.

Let $\chi(G, t)$ be the number of colorings with a palate of t colors. In general, if a graph G has n vertices, then

$$\chi(G,0), \chi(G,1), \ldots, \chi(G,n)$$

determine $\chi(G,t)$ for t > n.

Theorem

For a simple (labeled) graph on n vertices, $\chi(G,t)$ is a polynomial in t of degree n, i.e. for some a_0, \ldots, a_n , we have

$$\chi(G,t) = a_0 + a_1t + \dots + a_nt^n$$

for all $t \in \mathbb{Z}_{\geq 0}$.

Example: computing $\chi(P_3, t)$ in general.

Let $\chi(G, t)$ be the number of colorings with a palate of t colors. In general, if a graph G has n vertices, then

$$\chi(G,0), \chi(G,1), \ldots, \chi(G,n)$$

determine $\chi(G,t)$ for t > n.

Theorem

For a simple (labeled) graph on n vertices, $\chi(G,t)$ is a polynomial in t of degree n, i.e. for some a_0, \ldots, a_n , we have

$$\chi(G,t) = a_0 + a_1t + \dots + a_nt^n$$

for all $t \in \mathbb{Z}_{\geq 0}$.

Example: computing $\chi(P_3, t)$ in general. We know $\chi(P_3, t)$ is a degree 3 polynomial, i.e. $\chi(P_3, t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$ satisfying $\chi(P_3, 0) = \chi(P_3, 1) = 0$, $\chi(P_3, 2) = 2$, and $\chi(P_3, 3) = 12$.

$$0 = \chi(P_3, 0) = a_0$$

$$0 = \chi(P_3, 1) = a_0 + a_1 + a_2 + a_3$$

$$2 = \chi(P_3, 2) = a_0 + 2a_1 + 2^2a_2 + 2^3a_3$$

$$12 = \chi(P_3, 3) = a_0 + 3a_1 + 3^2a_2 + 3^3a_3$$

$$0 = \chi(P_3, 0) = a_0$$

$$0 = \chi(P_3, 1) = a_0 + a_1 + a_2 + a_3$$

$$2 = \chi(P_3, 2) = a_0 + 2a_1 + 2^2a_2 + 2^3a_3$$

$$12 = \chi(P_3, 3) = a_0 + 3a_1 + 3^2a_2 + 3^3a_3$$

Solving this system gives

$$a_0 = 0, \qquad a_1 = 1, \qquad a_2 = -2, \qquad a_3 = 1.$$

$$0 = \chi(P_3, 0) = a_0$$

$$0 = \chi(P_3, 1) = a_0 + a_1 + a_2 + a_3$$

$$2 = \chi(P_3, 2) = a_0 + 2a_1 + 2^2a_2 + 2^3a_3$$

$$12 = \chi(P_3, 3) = a_0 + 3a_1 + 3^2a_2 + 3^3a_3$$

Solving this system gives

$$a_0 = 0, \qquad a_1 = 1, \qquad a_2 = -2, \qquad a_3 = 1.$$

So $\chi(P_3, t) = t - 2t^2 + t^3$

$$0 = \chi(P_3, 0) = a_0$$

$$0 = \chi(P_3, 1) = a_0 + a_1 + a_2 + a_3$$

$$2 = \chi(P_3, 2) = a_0 + 2a_1 + 2^2a_2 + 2^3a_3$$

$$12 = \chi(P_3, 3) = a_0 + 3a_1 + 3^2a_2 + 3^3a_3$$

Solving this system gives

$$a_0 = 0, \qquad a_1 = 1, \qquad a_2 = -2, \qquad a_3 = 1.$$

So $\chi(P_3, t) = t - 2t^2 + t^3 = t(t - 1)^2.$

$$0 = \chi(P_3, 0) = a_0$$

$$0 = \chi(P_3, 1) = a_0 + a_1 + a_2 + a_3$$

$$2 = \chi(P_3, 2) = a_0 + 2a_1 + 2^2a_2 + 2^3a_3$$

$$12 = \chi(P_3, 3) = a_0 + 3a_1 + 3^2a_2 + 3^3a_3$$

Solving this system gives

$$a_0 = 0, \qquad a_1 = 1, \qquad a_2 = -2, \qquad a_3 = 1.$$

So $\chi(P_3, t) = t - 2t^2 + t^3 = t(t - 1)^2.$

You try: Calculate the number of ways to color (a labeled) C_4 with palates of 0, 1, 2, 3, and 4 colors. Then compute $\chi(C_4, t)$. Finally, calculate the number of ways to color C_4 with a palate of 5 colors by counting and verify that your answer matches $\chi(C_4, 5)$.

Theorem

For a simple (labeled) graph on n vertices, $\chi(G,t)$ is a polynomial in t of degree n, i.e. for some a_0, \ldots, a_n , we have

 $\chi(G,t) = a_0 + a_1t + \dots + a_nt^n$

for all $t \in \mathbb{Z}_{\geq 0}$.

Theorem

For a simple (labeled) graph on n vertices, $\chi(G,t)$ is a polynomial in t of degree n, i.e. for some a_0, \ldots, a_n , we have

$$\chi(G,t) = a_0 + a_1t + \dots + a_nt^n$$

for all $t \in \mathbb{Z}_{\geq 0}$.

• If
$$n > 0$$
, then $\chi(G, 0) = 0$.

Theorem

For a simple (labeled) graph on n vertices, $\chi(G,t)$ is a polynomial in t of degree n, i.e. for some a_0, \ldots, a_n , we have

$$\chi(G,t) = a_0 + a_1t + \dots + a_nt^n$$

for all $t \in \mathbb{Z}_{\geq 0}$.

Some properties of the $\chi(G, t)$ that can help you error check:

• If n > 0, then $\chi(G, 0) = 0$. So t is a factor of $\chi(G, t)$.

Theorem

For a simple (labeled) graph on n vertices, $\chi(G,t)$ is a polynomial in t of degree n, i.e. for some a_0, \ldots, a_n , we have

$$\chi(G,t) = a_0 + a_1t + \dots + a_nt^n$$

for all $t \in \mathbb{Z}_{\geq 0}$.

- If n > 0, then $\chi(G, 0) = 0$. So t is a factor of $\chi(G, t)$.
- If n > 1 and G has any edges, then $\chi(G, 1) = 0$.

Theorem

For a simple (labeled) graph on n vertices, $\chi(G,t)$ is a polynomial in t of degree n, i.e. for some a_0, \ldots, a_n , we have

$$\chi(G,t) = a_0 + a_1t + \dots + a_nt^n$$

for all $t \in \mathbb{Z}_{\geq 0}$.

- If n > 0, then $\chi(G, 0) = 0$. So t is a factor of $\chi(G, t)$.
- If n > 1 and G has any edges, then $\chi(G, 1) = 0$. So (t 1) is a factor of $\chi(G, t)$.

Theorem

For a simple (labeled) graph on n vertices, $\chi(G,t)$ is a polynomial in t of degree n, i.e. for some a_0, \ldots, a_n , we have

$$\chi(G,t) = a_0 + a_1t + \dots + a_nt^n$$

for all $t \in \mathbb{Z}_{\geq 0}$.

- If n > 0, then $\chi(G, 0) = 0$. So t is a factor of $\chi(G, t)$.
- If n > 1 and G has any edges, then $\chi(G, 1) = 0$. So (t 1) is a factor of $\chi(G, t)$.
- \blacktriangleright Similarly, G cannot be colored using any fewer that $\chi=\chi(G)$ colors

Theorem

For a simple (labeled) graph on n vertices, $\chi(G,t)$ is a polynomial in t of degree n, i.e. for some a_0, \ldots, a_n , we have

$$\chi(G,t) = a_0 + a_1t + \dots + a_nt^n$$

for all $t \in \mathbb{Z}_{\geq 0}$.

- If n > 0, then $\chi(G, 0) = 0$. So t is a factor of $\chi(G, t)$.
- If n > 1 and G has any edges, then $\chi(G, 1) = 0$. So (t 1) is a factor of $\chi(G, t)$.
- \blacktriangleright Similarly, G cannot be colored using any fewer that $\chi=\chi(G)$ colors, so

$$\chi(G,0) = \chi(G,1) = \dots = \chi(G,\chi-1) = 0.$$

Theorem

For a simple (labeled) graph on n vertices, $\chi(G,t)$ is a polynomial in t of degree n, i.e. for some a_0, \ldots, a_n , we have

$$\chi(G,t) = a_0 + a_1t + \dots + a_nt^n$$

for all $t \in \mathbb{Z}_{\geq 0}$.

Some properties of the $\chi(G,t)$ that can help you error check:

- If n > 0, then $\chi(G, 0) = 0$. So t is a factor of $\chi(G, t)$.
- If n > 1 and G has any edges, then $\chi(G, 1) = 0$. So (t 1) is a factor of $\chi(G, t)$.
- Similarly, G cannot be colored using any fewer that $\chi=\chi(G)$ colors, so

$$\chi(G,0) = \chi(G,1) = \dots = \chi(G,\chi-1) = 0.$$

So

is a factor

$$t(t-1)(t-2)\cdots(t-(\chi-1))$$
 of $\chi(G,t).$

1. G cannot be colored using any fewer that $\chi=\chi(G)$ colors, so $\chi(G,0)=\chi(G,1)=\cdots=\chi(G,\chi-1)=0.$ So

$$t(t-1)(t-2)\cdots(t-(\chi-1))$$

1. G cannot be colored using any fewer that $\chi=\chi(G)$ colors, so $\chi(G,0)=\chi(G,1)=\cdots=\chi(G,\chi-1)=0.$ So

$$t(t-1)(t-2)\cdots(t-(\chi-1))$$

is a factor of $\chi(G, t)$.

2. The coefficient of t^n in $\chi(G,t)$ is 1.

1. G cannot be colored using any fewer that $\chi=\chi(G)$ colors, so $\chi(G,0)=\chi(G,1)=\cdots=\chi(G,\chi-1)=0.$ So

$$t(t-1)(t-2)\cdots(t-(\chi-1))$$

- 2. The coefficient of t^n in $\chi(G,t)$ is 1.
- 3. The coefficient of t^{n-1} in $\chi(G,t)$ is -|E|.

1. G cannot be colored using any fewer that $\chi=\chi(G)$ colors, so $\chi(G,0)=\chi(G,1)=\cdots=\chi(G,\chi-1)=0.$ So

$$t(t-1)(t-2)\cdots(t-(\chi-1))$$

- 2. The coefficient of t^n in $\chi(G, t)$ is 1.
- 3. The coefficient of t^{n-1} in $\chi(G,t)$ is -|E|.
- 4. The coefficients alternate in signs.

1. G cannot be colored using any fewer that $\chi=\chi(G)$ colors, so $\chi(G,0)=\chi(G,1)=\cdots=\chi(G,\chi-1)=0.$ So

$$t(t-1)(t-2)\cdots(t-(\chi-1))$$

- 2. The coefficient of t^n in $\chi(G,t)$ is 1.
- 3. The coefficient of t^{n-1} in $\chi(G,t)$ is -|E|.
- 4. The coefficients alternate in signs.
- 5. If G has connected components C_1, \ldots, C_ℓ , then

$$\chi(G,t) = \chi(C_1,t)\chi(C_2,t)\cdots\chi(C_\ell,t).$$

1. G cannot be colored using any fewer that $\chi=\chi(G)$ colors, so $\chi(G,0)=\chi(G,1)=\cdots=\chi(G,\chi-1)=0.$ So

$$t(t-1)(t-2)\cdots(t-(\chi-1))$$

is a factor of $\chi(G,t)$.

- 2. The coefficient of t^n in $\chi(G,t)$ is 1.
- 3. The coefficient of t^{n-1} in $\chi(G,t)$ is -|E|.
- 4. The coefficients alternate in signs.
- 5. If G has connected components C_1, \ldots, C_{ℓ} , then

$$\chi(G,t) = \chi(C_1,t)\chi(C_2,t)\cdots\chi(C_\ell,t).$$

Namely, the coefficients of $t^0, \ldots, t^{\ell-1}$ in $\chi(G, t)$ are all zero, and the coefficients of t^{ℓ}, \ldots, t^n in $\chi(G, t)$ are all not zero.

1. G cannot be colored using any fewer that $\chi=\chi(G)$ colors, so $\chi(G,0)=\chi(G,1)=\cdots=\chi(G,\chi-1)=0.$ So

$$t(t-1)(t-2)\cdots(t-(\chi-1))$$

is a factor of $\chi(G,t)$.

- 2. The coefficient of t^n in $\chi(G,t)$ is 1.
- 3. The coefficient of t^{n-1} in $\chi(G,t)$ is -|E|.
- 4. The coefficients alternate in signs.
- 5. If G has connected components C_1, \ldots, C_{ℓ} , then

$$\chi(G,t) = \chi(C_1,t)\chi(C_2,t)\cdots\chi(C_\ell,t).$$

Namely, the coefficients of $t^0, \ldots, t^{\ell-1}$ in $\chi(G, t)$ are all zero, and the coefficients of t^{ℓ}, \ldots, t^n in $\chi(G, t)$ are all not zero.

For more notes, see http://en.wikipedia.org/wiki/Chromatic_polynomial.