
Welcome back warmup

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices).

Before looking through the notes, list as many “graph
invariants” as you can from memory. Then, for each, compute that
invariant on the following graphs.
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Once you run out, there is a list of graph invariants on the next
page–fill out your list and continue computing graph invariants.



Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices).

1. |V |, |E|

2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1
adjacent to vertex of degree d2, . . .

3. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, . . .

5. Edge connectivity λpGq and vertex connectivity κpGq.

6. Does it have an Euler trail/circuit?

7. Does it have a Hamilton path/cycle?



Maps coloring
Encode information about which regions on a map share a border.

Mark each region with a vertex. Draw an edge between to vertices
if the corresponding regions share a boarder.
Map coloring problems: color a map so that no two adjacent
regions get the same color.

Four color problem: In order to color the vertices of a plane map
so that no two adjacent vertices get the same color, you will need
no more than four colors. (No elementary proof!)
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A coloring of a simple graph is the assignment of a color to each
vertex of the graph so that no two adjacent vertices are assigned
the same color.
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using 2 colors
χ “ 2

The chromatic number of a graph G, denoted χpGq, is the least
number of colors needed for a coloring of this graph.

To calculate, argue that the graph can’t be colored in χ´ 1 colors,
and then give a coloring with exactly χ colors.
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A coloring of a simple graph is the assignment of a color to each vertex

of the graph so that no two adjacent vertices are assigned the same color.

The chromatic number of a graph G, denoted χpGq, is the least number

of colors needed for a coloring of this graph.

Lemma
The complete graph on n vertices can only be colored in exactly n
colors. Namely χpKnq “ n.
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Cliques

Notice: If H Ď G are graphs, a good coloring of G restricts to a
good coloring of H:

G “

1 2

4 3

1
Ñ H “

1 2

3

1

So χpGq ě χpHq .

Strategy: Look for complete graphs as subgraphs, since they have
high chromatic numbers!
Ex: the G has K4 as a subgraph, so χpGq ě χpK4q “ 4. And since

we gave a 4-coloring, we know χpGq ď 4. So χpGq “ 4 exactly.
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We call a complete subgraph of a graph G (a set of vertices that
are all adjacent to each other) a clique. The clique number ωpGq

of G is the size of a biggest clique. So ωpGq ď χpGq .

Similarly, define and independent set of G as set of vertices that
have no edges between them.
Ex: In

G “

a b

c d

e ,

αpHq “ 3

ta, du is an independent set; so is tc, eu; so is ta, c, eu. But
ta, d, eu is not, since d and e share an edge.

The independence number αpGq is the size of a largest
independent set. (Yet another graph invariant!)

Note: αpGq “ ωpḠq
(Recall Ḡ is the complement of G — toggle all of the edges.)

Also, in a coloring of a graph, the vertices of any given color are all
independent.

1 2

4 3

1

So χpGq ě |V |{αpGq and χpGq ě ωpGq

(Dividing |V | vertices evenly into sets of size αpGq gets you |V |{αpGq sets.)



We call a complete subgraph of a graph G (a set of vertices that
are all adjacent to each other) a clique. The clique number ωpGq

of G is the size of a biggest clique. So ωpGq ď χpGq .

Similarly, define and independent set of G as set of vertices that
have no edges between them.

Ex: In

G “

a b

c d

e ,

αpHq “ 3

ta, du is an independent set; so is tc, eu; so is ta, c, eu. But
ta, d, eu is not, since d and e share an edge.

The independence number αpGq is the size of a largest
independent set. (Yet another graph invariant!)

Note: αpGq “ ωpḠq
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(Recall Ḡ is the complement of G — toggle all of the edges.)

Also, in a coloring of a graph, the vertices of any given color are all
independent.

1 2

4 3

1

So χpGq ě |V |{αpGq and χpGq ě ωpGq

(Dividing |V | vertices evenly into sets of size αpGq gets you |V |{αpGq sets.)



We call a complete subgraph of a graph G (a set of vertices that
are all adjacent to each other) a clique. The clique number ωpGq

of G is the size of a biggest clique. So ωpGq ď χpGq .

Similarly, define and independent set of G as set of vertices that
have no edges between them. The independence number αpGq is
the size of a largest independent set. (Yet another graph
invariant!)

Note: αpGq “ ωpḠq
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