
Math 365 – Wed. 4/16/19 – 10.4 & 10.5 Connectivity, Euler trails, and Hamilton paths

Exercise 52.

(a) For each of the following graphs, compute the vertex and edge connectivity. Be sure to justify
your answers.

G1 =

a b c d

g f e

G2 =

a b c d

h g f e

G3 =

a b c

d e f

g h i

G4 =

a b c d

i h g fe

(b) Recall that (G) is the vertex connectivity of G and �(G) is the edge connectivity of G. Give
examples of graphs for which each of the following are satisfied.
(i) (G) = �(G) < minv2V deg(v)
(ii) (G) < �(G) = minv2V deg(v)
(iii) (G) < �(G) < minv2V deg(v)
(iv) (G) = �(G) = minv2V deg(v)

(c) For which values of m and n does the complete bipartite graph Km,n have a cut vertex? A cut
edge? What is are (Km,n) and �(Km,n)?

(d) For which values of n does the wheel Wn have a cut vertex? A cut edge? What is are (Wn)
and �(Wn)?

Exercise 53. (Euler trails and circuits)

(a) Decide which of the following graphs have Eulerian circuits, which have Eulerian trails, and
which have neither. For those that have an Eulerian circuits or trails, give an example.

a b c d

g f e

a b c d

h g f e

a b c d

h g f e

a b c d

i h g fe

(b) For which values of m, n do the following have an Euler trail? an Euler circuit?

(i) Kn (ii) Qn (iii) Km,n



Exercise 54. (Hamilton paths and cycles)

(a) Decide which of the following has a Hamilton path, a Hamilton cycle, or neither. If a cycle of
path exists, give an example. If not, give an argument as to why not.

(i)

a

b

c d

e

f

(ii)

a

b

c

d

e f

(iii)

a

b

c

d

e f

g

(b) For which values of m, n do the following have an Hamilton path? a Hamilton cycle?

(i) Kn (ii) Qn (iii) Km,n

(c) The Petersen graph is

P =

Argue that it does not have a Hamilton cycle, but the induced subgraph G� v, for any v 2 V ,
does.

(d) For each of the following, decide whether Dirac’s theorem applies, whether Ore’s theorem
applies, and whether the graph has a Hamilton cycle.

(i) (ii) (iii) (iv)

(e) Give an example of a simple graph with at least 3 vertices that satisfies (1) the degree of every
vertex is at least (|V |� 1)/2, but (2) does not have a Hamilton circuit. (This shows that that
Dirac’s bound is “sharp”.)



Warmup:

Let

G “

b c d

a g f e

1

2 3

4
5

6
7

8
910

11

12

(i) Verify that G is connected by giving an example of a walk
from vertex a to each of the vertices b–g.

(ii) What is the shortest path from a to c? to e?

(iii) What is the longest path from a to c? to e?

(iv) What is a longest path in G?

(v) Does G have any maximal paths that are shorter than the
path in part (iv)?

(Recall a path is a walk with no repeated vertices or edges, and a
maximal path is one that can’t be extended in either direction.)



Recall from last time: A graph is connected if for every pair of
vertices u and v, there is a walk from u to v. For example:

G “

a b c

d e f

H “

a b c

d e f

G is connected; H is not.
“Connected” is an equivalence relation on vertices: we say u „ v if
there is a walk from u to v. A connected component of a graph is
a maximally connected subgraph of G (H above has two
connected components), i.e. the equivalence classes under the
connectedness relation.

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|
2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1

adjacent to vertex of degree d2, . . .

3. Bipartite or not
If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths
Also: longest path or cycle length, maximal paths of certain
lengths, . . .



How connected?

Suppose G is connected – how can we evaluate how well connected
it is? For example, if you’re building a network of computers, can
your network be disconnected if one computer or one line fails?

If the subgraph G ´ v is not connected, we call v a cut vertex.
Similarly, if G ´ e is not connected, we call e a cut edge.

For example, in

G “

b c d

a g f e

f is a cut vertex. G doesn’t have any cut edges.

In

H “

b c d

a g f e

the cut vertices are b and f , and edge a´b is the only cut edge.

How connected?

If the subgraph G ´ v is not connected, we call v a cut vertex.
Similarly, if G ´ e is not connected, we call e a cut edge.

For example, in

G “

b c d

a g f e

f is a cut vertex. G doesn’t have any cut edges. In

H “

b c d

a g f e

the cut vertices are b and f , and edge a´b is the only cut edge.



You try:

Identify the cut edges and vertices (if any) of the following graphs:

G “

a b c d

efgh

H “

b c d

efga

K “

a b c d

efgh

If W Ä V has the property that GrV ´ W s is not connected, we
call W a vertex cut. If F Ä E has the property that G ´ E is not
connected, we say F is an edge cut.
For example, in

K “

a b c d

efgh

one example of a vertex cut is tc, d, fu.
Another vertex cut is tb, f, gu.
One example of an edge cut is tb´c, b´d, c´g, f´g, f´hu.
Another edge cut is tc´e, d´e, e´fu.
CAREFUL! In “cut vertex”, “vertex” is the noun and “cut” is the
adjective; in “vertex cut”, “cut” is the noun and “vertex” is the
adjective. Same thing in “cut edge” versus “edge cut”.



Vertex connectivity

Let pGq be the fewest number of vertices needed to disconnect a
graph (or to whittle it down to a single vertex, whichever is fewer).
We call pGq the (vertex) connectivity of G.
How to compute: To show pGq “ k, you have to give a vertex
cut of size k and show that removing all possible subsets of size
† k leaves a connected graphs.

G “

a b c d

efgh

pGq “ 3

Note that the complete graph has no vertex cut, so we define
pKnq “ n ´ 1. Thus

0 § pGq § |V | ´ 1.

The larger the , the more connected the graph. We say G is
k-connected if pGq • k.

Edge connectivity

Let �pGq be the fewest number of edges needed to disconnect a
graph. We call �pGq the edge connectivity of G.
How to compute: To show �pGq “ `, you have to give an edge cut
of size ` and show that removing all possible subsets of size † `

leaves a connected graphs.

G “

a b c d

efgh

�pGq “ 3

Note that we can disconnect a graph by removing all the edges
around a single vertex. So

�pGq § min
vPV

degpvq.
Moreover, if we remove all the vertices adjacent to v, then v is
isolated. So

pGq § �pGq § min
vPV

pdegpvqq.



G “

a b c d

efgh

pGq :
�pGq :

min
vPV

pdegpvqq :

H “

a b c d

efgh

pGq :
�pGq :

min
vPV

pdegpvqq :

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|
2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1

adjacent to vertex of degree d2, . . .

3. Bipartite or not
If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Paths or cycles of particular lengths
Also: longest path or cycle length, maximal paths of certain
lengths, . . .

5. Edge and vertex connectivity

You try: Exercise 52.



Aside: necessary and su�cient conditions

A necessary condition is a condition that must be present for an
event to occur.
Some examples:

§ Event: Passing 365; NC: take all three exams.

§ Event: Staying alive; NC: breathing.

§ Event: x2 “ 1; NC: x P Z.
A su�cient condition is a condition or set of conditions that will
produce the event.
Some examples:

§ Event: Passing 365;
SC: do all of the homework and get 100% on all exams and
quizzes.

§ Event: Being a parent; SC: having a daughter.

§ Event: x2 “ 1; SC: x “ ´1.

Su�cient conditions imply Event implies Necessary conditions



Eulerian trails and circuits

Suppose you’re trying to design a maximally e�cient route for postal delivery,

or street cleaning. You want walk on the city streets that visits every street

exactly once.

“The Seven Bridges of Königsberg”, Leonhard Euler (1736)
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∗65. Use a graph model and a path in your graph, as in Exer-
cise 64, to solve the jealous husbands problem. Two
married couples, each a husband and a wife, want to
cross a river. They can only use a boat that can carry
one or two people from one shore to the other shore.
Each husband is extremely jealous and is not willing
to leave his wife with the other husband, either in the
boat or on shore. How can these four people reach the
opposite shore?

66. Suppose that you have a three-gallon jug and a five-gallon
jug. You may fill either jug with water, you may empty
either jug, and you may transfer water from either jug
into the other jug. Use a path in a directed graph to
show that you can end up with a jug containing exactly
one gallon. [Hint: Use an ordered pair (a, b) to indicate
how much water is in each jug. Represent these ordered
pairs by vertices. Add an edge for each allowable opera-
tion with the jugs.]

10.5 Euler and Hamilton Paths

Introduction

Can we travel along the edges of a graph starting at a vertex and returning to it by traversing
each edge of the graph exactly once? Similarly, can we travel along the edges of a graph starting
at a vertex and returning to it while visiting each vertex of the graph exactly once? Although
these questions seem to be similar, the first question, which asks whether a graph has an Euler
circuit, can be easily answered simply by examining the degrees of the vertices of the graph,
while the second question, which asks whether a graph has a Hamilton circuit, is quite difficult
to solve for most graphs. In this section we will study these questions and discuss the difficulty
of solving them. Although both questions have many practical applications in many different
areas, both arose in old puzzles. We will learn about these old puzzles as well as modern
practical applications.

Euler Paths and Circuits

The town of Königsberg, Prussia (now called Kaliningrad and part of the Russian republic),
was divided into four sections by the branches of the Pregel River. These four sections included
the two regions on the banks of the Pregel, Kneiphof Island, and the region between the two
branches of the Pregel. In the eighteenth century seven bridges connected these regions. Figure 1
depicts these regions and bridges.Only five bridges connect

Kaliningrad today. Of
these, just two remain
from Euler’s day.

The townspeople took long walks through town on Sundays. They wondered whether it was
possible to start at some location in the town, travel across all the bridges once without crossing
any bridge twice, and return to the starting point.

The Swiss mathematician Leonhard Euler solved this problem. His solution, published
in 1736, may be the first use of graph theory. (For a translation of Euler’s original paper see
[BiLlWi99].) Euler studied this problem using the multigraph obtained when the four regions
are represented by vertices and the bridges by edges. This multigraph is shown in Figure 2.

C

A

B

D

FIGURE 1 The Seven Bridges of Königsberg.

A

C

B

D

FIGURE 2 Multigraph Model
of the Town of Königsberg.

Question: is it possible to start at some location in the town, travel
across all the bridges once without crossing any bridge twice?

Eulerian trails and circuits

What Euler did was model the problem as the multigraph
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In honor of his contribution, we say that an Eulerian trail in a
graph G is a trail (no repeated edges) that passes through every
edge of G (exactly once). An Eulerian circuit is an Eulerian trail
that ends where it started.
Necessary: Connected; at most two vertices of odd degree. This is
also a su�cient condition. Why? . . .



Eulerian trails and circuits

An Eulerian trail in a graph G is a trail (no repeated edges) that
passes through every edge of G (exactly once). An Eulerian circuit
is an Eulerian trail that ends where it started.

Necessary: Connected; at most two vertices of odd degree. This is
also a su�cient condition. Why? . . .

Algorithm for finding an Eulerian circuit in any graph with all even
degree vertices: Start anywhere and go until you get stuck – you’ll
be back where you started. Somewhere in the middle, you have a
vertex where you didn’t exhaust the edges incident. Go back and
start from there and go until you get stuck. Repeat.

a

b

c

d

e

f

Eulerian trails and circuits

An Eulerian trail in a graph G is a trail (no repeated edges) that
passes through every edge of G (exactly once). An Eulerian circuit
is an Eulerian trail that ends where it started.

Necessary: Connected; at most two vertices of odd degree. This is
also a su�cient condition. Why? . . .

Algorithm for finding an Eulerian trail in any graph with all but
two even degree vertices: Start at an odd-degree vertex and go
until you get stuck. Somewhere in the middle, you have a vertex
where you didn’t exhaust the edges incident. Go back and start
from there and go until you get stuck. Repeat.

a b c d

g f e



Eulerian trails and circuits

Theorem

A graph has an Eulerian trail if and only if it is connected and has
at most two vertices of odd degree. Further, a connected graph
has an Eulerian circuit if and only if every vertex is of even degree.



Hamilton paths and cycles

A Hamilton path is a path in G that visits every vertex exactly
once. A Hamilton cycle is a cycle that visits every vertex in G.

Famous puzzle: start with a dodecahedron, and imagine the
vertices are cities around the world, and the edges are routes from
one city to the next. The goal is to visit every city exactly once.

10.5 Euler and Hamilton Paths 699

(a) (b)

FIGURE 8 Hamilton’s “A Voyage Round the
World” Puzzle.

FIGURE 9 A Solution to
the “A Voyage Round the
World” Puzzle.

Because the author cannot supply each reader with a wooden solid with pegs and string, we
will consider the equivalent question: Is there a circuit in the graph shown in Figure 8(b) that
passes through each vertex exactly once?This solves the puzzle because this graph is isomorphic
to the graph consisting of the vertices and edges of the dodecahedron. A solution of Hamilton’s
puzzle is shown in Figure 9.

EXAMPLE 5 Which of the simple graphs in Figure 10 have a Hamilton circuit or, if not, a Hamilton path?

Solution:G1 has a Hamilton circuit: a, b, c, d, e, a. There is no Hamilton circuit inG2 (this can
be seen by noting that any circuit containing every vertex must contain the edge {a, b} twice),
but G2 does have a Hamilton path, namely, a, b, c, d. G3 has neither a Hamilton circuit nor a
Hamilton path, because any path containing all vertices must contain one of the edges {a, b},
{e, f }, and {c, d} more than once. ▲

a b

e c

d
G1

a b

d c
G2

a b

d c
G3

g

e f

FIGURE 10 Three Simple Graphs.

CONDITIONS FOR THE EXISTENCE OF HAMILTON CIRCUITS Is there a simple way
to determine whether a graph has a Hamilton circuit or path? At first, it might seem that there
should be an easy way to determine this, because there is a simple way to answer the similar
question of whether a graph has an Euler circuit. Surprisingly, there are no known simple
necessary and sufficient criteria for the existence of Hamilton circuits. However, many theorems
are known that give sufficient conditions for the existence of Hamilton circuits. Also, certain
properties can be used to show that a graph has no Hamilton circuit. For instance, a graph with a
vertex of degree one cannot have a Hamilton circuit, because in a Hamilton circuit, each vertex
is incident with two edges in the circuit. Moreover, if a vertex in the graph has degree two, then
both edges that are incident with this vertex must be part of any Hamilton circuit. Also, note
that when a Hamilton circuit is being constructed and this circuit has passed through a vertex,
then all remaining edges incident with this vertex, other than the two used in the circuit, can be
removed from consideration. Furthermore, a Hamilton circuit cannot contain a smaller circuit
within it.

Hamilton paths and cycles

A Hamilton path is a path in G that visits every vertex exactly
once. A Hamilton cycle is a cycle that visits every vertex in G.

Some simpler examples:

a b

c d

e

a b

c d

a b c

d e f g

The first has a Hamilton cycle, the second has a Hamilton path,
the third has neither (you’d get stuck at a, d, or g without hitting
at least one of those three).

See also: traveling salesman problem
“What is the shortest route a traveling salesperson should take to
visit a set of cities?”



A Hamilton path is a path in G that visits every vertex exactly
once. A Hamilton cycle is a cycle that visits every vertex in G.

In contrast to Eulerian trails, there are no simple necessary and

su�cient conditions for the existence of Hamilton paths and

cycles.

Necessary conditions

§ Paths: no more than two vertices of degree 1.
§ Cycles:

§ No vertices of degree 1.
§ If a vertex has degree 2, you know both edges incident must be
in the cycle.

§ No cut vertices or edges.

A Hamilton path is a path in G that visits every vertex exactly
once. A Hamilton cycle is a cycle that visits every vertex in G.

In contrast to Eulerian trails, there are no simple necessary and su�cient

conditions for the existence of Hamilton paths and cycles.

Su�cient conditions

Note: the more edges a graph has, the more likely it is that there’s a Hamilton cycle.

Dirac’s Theorem
If G is a simple connected graph with n • 3 vertices, such that

min
vPV

degpvq • n{2,

then G has a Hamilton circuit.

Ore’s Theorem
If G is a simple connected graph with n • 3 vertices such that

degpuq ` degpvq • n

for every pair of non-adjacent vertices u and v, then G has a
Hamilton circuit.

(Note that Ore’s theorem implies Dirac’s theorem.)


