Math 365 — Wed. 4/16/19 — 10.4 & 10.5 Connectivity, Euler trails, and Hamilton paths

Exercise 52.
(a) For each of the following graphs, compute the vertex and edge connectivity. Be sure to justify
your answers.
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(b) Recall that k(G) is the vertex connectivity of G and A(G) is the edge connectivity of G. Give
examples of graphs for which each of the following are satisfied.
(i) £(G) = A(G) < minyey deg(v)
(i) £(G) < A(G) = minyey deg(v)
(ili) k(G) < A(G) < minyey deg(v)
(iv) #(G) = MG) = minyey deg(v)
(c) For which values of m and n does the complete bipartite graph K, , have a cut vertex? A cut
edge? What is are k(K,,) and AN(Kpy,pn)?
(d) For which values of n does the wheel W,, have a cut vertex? A cut edge? What is are k(W)
and A(W,)?

Exercise 53. (Euler trails and circuits)

(a) Decide which of the following graphs have Eulerian circuits, which have Eulerian trails, and
which have neither. For those that have an Eulerian circuits or trails, give an example.
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(b) For which values of m, n do the following have an Euler trail? an Euler circuit?
(i) Kn (i) @ (i) K;mn



Exercise 54. (Hamilton paths and cycles)

(a) Decide which of the following has a Hamilton path, a Hamilton cycle, or neither. If a cycle of
path exists, give an example. If not, give an argument as to why not.
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(b) For which values of m, n do the following have an Hamilton path? a Hamilton cycle?

(i) Kn (i) @ (i) K;mn
(c) The Petersen graph is

Argue that it does not have a Hamilton cycle, but the induced subgraph G — v, for any v € V,
does.

(d) For each of the following, decide whether Dirac’s theorem applies, whether Ore’s theorem
applies, and whether the graph has a Hamilton cycle.

(i) (i) (i) (iv)

(e) Give an example of a simple graph with at least 3 vertices that satisfies (1) the degree of every
vertex is at least (|V| —1)/2, but (2) does not have a Hamilton circuit. (This shows that that
Dirac’s bound is “sharp”.)



Warmup:
Let

(i) Verify that G is connected by giving an example of a walk
from vertex a to each of the vertices b—g.

(i) What is the shortest path from a to ¢? to e?

(iii) What is the longest path from a to ¢? to e?

(iv) What is a longest path in G7

(v) Does G have any maximal paths that are shorter than the
path in part (iv)?

(Recall a path is a walk with no repeated vertices or edges, and a
maximal path is one that can't be extended in either direction.)



Recall from last time: A graph is connected if for every pair of
vertices u and v, there is a walk from u to v. For example:

G is connected; H is not.

“Connected” is an equivalence relation on vertices: we say u ~ v if
there is a walk from u to v. A connected component of a graph is
a maximally connected subgraph of G (H above has two
connected components), i.e. the equivalence classes under the
connectedness relation.

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don't need the labels to calculate the statistic, then it's
probably a graph invariant.

1. |V, |E|
2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d;
adjacent to vertex of degree do, ...

w

. Bipartite or not
If any subgraph is not bipartite, then GG is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, ...



How connected?

Suppose G is connected — how can we evaluate how well connected
it is? For example, if you're building a network of computers, can
your network be disconnected if one computer or one line fails?

If the subgraph G — v is not connected, we call v a cut vertex.
Similarly, if G — e is not connected, we call e a cut edge.

For example, in

f is a cut vertex. GG doesn't have any cut edges.

How connected?

If the subgraph G — v is not connected, we call v a cut vertex.
Similarly, if G — e is not connected, we call e a cut edge.

For example, in

f is a cut vertex. G doesn't have any cut edges. In
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the cut vertices are b and f, and edge a—b is the only cut edge.



You try:
Identify the cut edges and vertices (if any) of the following graphs:

a b c d
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If W < V has the property that G[V — W] is not connected, we
call W a vertex cut. If F' < E has the property that G — E' is not
connected, we say F'is an edge cut.

For example, in

one example of a vertex cut is {c, d, f}.
Another vertex cut is {b, f, g}.

One example of an edge cut is {b—c,b—d,c—g, f—g, f —h}.
Another edge cut is {c—e,d—e,e— f}.

CAREFUL! In “cut vertex", “vertex” is the noun and “cut” is the
adjective; in “vertex cut”, “cut” is the noun and ‘“vertex” is the
adjective. Same thing in “cut edge” versus “edge cut”.



Vertex connectivity

Let k(G) be the fewest number of vertices needed to disconnect a
graph (or to whittle it down to a single vertex, whichever is fewer).
We call kK(G) the (vertex) connectivity of G.

How to compute: To show x(G) = k, you have to give a vertex
cut of size k and show that removing all possible subsets of size

< k leaves a connected graphs.

Note that the complete graph has no vertex cut, so we define
k(K,) =n—1. Thus

0<k(G) <|V]-1.

The larger the k, the more connected the graph. We say G is
k-connected if K(G) = k.

Edge connectivity

Let A(G) be the fewest number of edges needed to disconnect a
graph. We call A\(G) the edge connectivity of G.

How to compute: To show A(G) = ¢, you have to give an edge cut
of size £ and show that removing all possible subsets of size < /¢
leaves a connected graphs.

Note that we can disconnect a graph by removing all the edges
around a single vertex. So
AMG) < mindeg(v).
: veV, : :
Moreover, if we remove all the vertices adjacent to v, then v is

isolated. So

k(G) < AG) < {)réi‘I/l(deg(v)).
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Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don't need the labels to calculate the statistic, then it's
probably a graph invariant.

1. |V, |E|
2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d;
adjacent to vertex of degree ds, ...
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. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, ...

5. Edge and vertex connectivity

You try: Exercise 52.



Aside: necessary and sufficient conditions

A necessary condition is a condition that must be present for an
event to occur.
Some examples:

» Event: Passing 365; NC: take all three exams.
» Event: Staying alive; NC: breathing.
» Event: 22 = 1; NC: z € Z.

A sufficient condition is a condition or set of conditions that will
produce the event.
Some examples:

» Event: Passing 365;
SC: do all of the homework and get 100% on all exams and

quizzes.
» Event: Being a parent; SC: having a daughter.
» Event: 22 = 1; SC: x = —1.

Sufficient conditions imply Event implies Necessary conditions




Eulerian trails and circuits

Suppose you're trying to design a maximally efficient route for postal delivery,
or street cleaning. You want walk on the city streets that visits every street

exactly once.

“The Seven Bridges of Konigsberg”, Leonhard Euler (1736)

Question: is it possible to start at some location in the town, travel
across all the bridges once without crossing any bridge twice?

Eulerian trails and circuits

What Euler did was model the problem as the multigraph
C
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In honor of his contribution, we say that an Eulerian trail in a
graph G is a trail (no repeated edges) that passes through every
edge of G (exactly once). An Eulerian circuit is an Eulerian trail
that ends where it started.

Necessary: Connected; at most two vertices of odd degree. This is
also a sufficient condition. Why? ...



Eulerian trails and circuits
An Eulerian trail in a graph G is a trail (no repeated edges) that
passes through every edge of G (exactly once). An Eulerian circuit
is an Eulerian trail that ends where it started.

Necessary: Connected; at most two vertices of odd degree. This is
also a sufficient condition. Why? ...

Algorithm for finding an Eulerian circuit in any graph with all even
degree vertices: Start anywhere and go until you get stuck — you'll
be back where you started. Somewhere in the middle, you have a
vertex where you didn't exhaust the edges incident. Go back and
start from there and go until you get stuck. Repeat.
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Eulerian trails and circuits

An Eulerian trail in a graph G is a trail (no repeated edges) that
passes through every edge of G (exactly once). An Eulerian circuit
is an Eulerian trail that ends where it started.

Necessary: Connected; at most two vertices of odd degree. This is
also a sufficient condition. Why? ...

Algorithm for finding an Eulerian trail in any graph with all but
two even degree vertices: Start at an odd-degree vertex and go
until you get stuck. Somewhere in the middle, you have a vertex
where you didn’t exhaust the edges incident. Go back and start
from there and go until you get stuck. Repeat.

a b c d




Eulerian trails and circuits

Theorem

A graph has an Eulerian trail if and only if it is connected and has
at most two vertices of odd degree. Further, a connected graph
has an Eulerian circuit if and only if every vertex is of even degree.



Hamilton paths and cycles

A Hamilton path is a path in GG that visits every vertex exactly
once. A Hamilton cycle is a cycle that visits every vertex in G.

Famous puzzle: start with a dodecahedron, and imagine the
vertices are cities around the world, and the edges are routes from
one city to the next. The goal is to visit every city exactly once.
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Hamilton paths and cycles

A Hamilton path is a path in G that visits every vertex exactly
once. A Hamilton cycle is a cycle that visits every vertex in G.

Some simpler examples:
a b a b a b c
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The first has a Hamilton cycle, the second has a Hamilton path,

the third has neither (you'd get stuck at a, d, or g without hitting
at least one of those three).

See also: traveling salesman problem
“What is the shortest route a traveling salesperson should take to
visit a set of cities?”



A Hamilton path is a path in G that visits every vertex exactly
once. A Hamilton cycle is a cycle that visits every vertex in G.

In contrast to Eulerian trails, there are no simple necessary and
sufficient conditions for the existence of Hamilton paths and
cycles.

Necessary conditions

» Paths: no more than two vertices of degree 1.
» Cycles:
» No vertices of degree 1.
» If a vertex has degree 2, you know both edges incident must be
in the cycle.
» No cut vertices or edges.

A Hamilton path is a path in G that visits every vertex exactly
once. A Hamilton cycle is a cycle that visits every vertex in G.

In contrast to Eulerian trails, there are no simple necessary and sufficient

conditions for the existence of Hamilton paths and cycles.

Sufficient conditions

Note: the more edges a graph has, the more likely it is that there's a Hamilton cycle.
Dirac’'s Theorem

If G is a simple connected graph with n > 3 vertices, such that

min deg(v) = n/2,

veV

then GG has a Hamilton circuit.

Ore's Theorem
If G is a simple connected graph with n > 3 vertices such that

deg(u) + deg(v) = n

for every pair of non-adjacent vertices u and v, then GG has a
Hamilton circuit.

(Note that Ore's theorem implies Dirac's theorem.)



