
Warmup: Find which pairs of the following graphs are isomorphic.
For any two graphs that are isomorphic, give an isomorphism.

G1 “

a

b

cd

e

G2 “

f

g

hi

j

G3 “

k

`

mn

p

G4 “

q

r

st

u

G5 “

v

w

xy

z

G6 “

α

β

γδ

ε

New graphs from old
Let G “ pV,Eq be a simple graph.

A subgraph of a graph
G “ pV,Eq is a graph H “ pW,F q such that W Ď V and F Ď E.
For example, let

G “

a b c

d e f

Some subgraphs include:

H1 “

a b c

d e f

H2 “

a b c

d e

H3 “

a b c

d e f

H4 “

a b c

d e f

H5 “
b H6 “ H H7 “

a b c

d e f

New graphs from old
Let G “ pV,Eq be a simple graph. A subgraph of a graph
G “ pV,Eq is a graph H “ pW,F q such that W Ď V and F Ď E.

For example, let

G “

a b c

d e f

Some subgraphs include:

H1 “

a b c

d e f

H2 “

a b c

d e

H3 “

a b c

d e f

H4 “

a b c

d e f

H5 “
b H6 “ H H7 “

a b c

d e f

New graphs from old
Let G “ pV,Eq be a simple graph. A subgraph of a graph
G “ pV,Eq is a graph H “ pW,F q such that W Ď V and F Ď E.
For example, let

G “

a b c

d e f

Some subgraphs include:

H1 “

a b c

d e f

H2 “

a b c

d e

H3 “

a b c

d e f

H4 “

a b c

d e f

H5 “
b H6 “ H H7 “

a b c

d e f

New graphs from old
Let G “ pV,Eq be a simple graph. A subgraph of a graph
G “ pV,Eq is a graph H “ pW,F q such that W Ď V and F Ď E.
For example, let

G “

a b c

d e f

Some subgraphs include:

H1 “

a b c

d e f

H2 “

a b c

d e

H3 “

a b c

d e f

H4 “

a b c

d e f

H5 “
b H6 “ H H7 “

a b c

d e f

New graphs from old
Let G “ pV,Eq be a simple graph. A subgraph of a graph
G “ pV,Eq is a graph H “ pW,F q such that W Ď V and F Ď E.
For example, let

G “

a b c

d e f

Some subgraphs include:

H1 “

a b c

d e f

H2 “

a b c

d e

H3 “

a b c

d e f

H4 “

a b c

d e f

H5 “
b H6 “ H H7 “

a b c

d e f

New graphs from old
Let G “ pV,Eq be a simple graph. A subgraph of a graph
G “ pV,Eq is a graph H “ pW,F q such that W Ď V and F Ď E.
For example, let

G “

a b c

d e f

Some subgraphs include:

H1 “

a b c

d e f

H2 “

a b c

d e

H3 “

a b c

d e f

H4 “

a b c

d e f

H5 “
b H6 “ H H7 “

a b c

d e f

New graphs from old
Let G “ pV,Eq be a simple graph. A subgraph of a graph
G “ pV,Eq is a graph H “ pW,F q such that W Ď V and F Ď E.
For example, let

G “

a b c

d e f

Some subgraphs include:

H1 “

a b c

d e f

H2 “

a b c

d e

H3 “

a b c

d e f

H4 “

a b c

d e f

H5 “
b H6 “ H H7 “

a b c

d e f

New graphs from old
Let G “ pV,Eq be a simple graph. A subgraph of a graph
G “ pV,Eq is a graph H “ pW,F q such that W Ď V and F Ď E.
For example, let

G “

a b c

d e f

Some subgraphs include:

H1 “

a b c

d e f

H2 “

a b c

d e

H3 “

a b c

d e f

H4 “

a b c

d e f

H5 “
b

H6 “ H H7 “

a b c

d e f

New graphs from old
Let G “ pV,Eq be a simple graph. A subgraph of a graph
G “ pV,Eq is a graph H “ pW,F q such that W Ď V and F Ď E.
For example, let

G “

a b c

d e f

Some subgraphs include:

H1 “

a b c

d e f

H2 “

a b c

d e

H3 “

a b c

d e f

H4 “

a b c

d e f

H5 “
b H6 “ H

H7 “

a b c

d e f

New graphs from old
Let G “ pV,Eq be a simple graph. A subgraph of a graph
G “ pV,Eq is a graph H “ pW,F q such that W Ď V and F Ď E.
For example, let

G “

a b c

d e f

Some subgraphs include:

H1 “

a b c

d e f

H2 “

a b c

d e

H3 “

a b c

d e f

H4 “

a b c

d e f

H5 “
b H6 “ H H7 “

a b c

d e f

New graphs from old

Let G “ pV,Eq be a simple graph.

For v P V , the graph G´ v is the graph made by deleting v and
any edge incident to v.

For example, if

G “

a b c

d e f

then

G´ a “

b c

d e f

G´ b “

a c

d e f

Let W Ď V . The subgraph induced by W , denoted GrW s, is the
subgraph made by deleting everything not in W . For example,
Grtb, c, d, e, fus “ G´ a.

New graphs from old

Let G “ pV,Eq be a simple graph.

For v P V , the graph G´ v is the graph made by deleting v and
any edge incident to v. For example, if

G “

a b c

d e f

then

G´ a

“

b c

d e f

G´ b “

a c

d e f

Let W Ď V . The subgraph induced by W , denoted GrW s, is the
subgraph made by deleting everything not in W . For example,
Grtb, c, d, e, fus “ G´ a.

New graphs from old

Let G “ pV,Eq be a simple graph.

For v P V , the graph G´ v is the graph made by deleting v and
any edge incident to v. For example, if

G “

a b c

d e f

then

G´ a

“

b c

d e f

G´ b “

a c

d e f

Let W Ď V . The subgraph induced by W , denoted GrW s, is the
subgraph made by deleting everything not in W . For example,
Grtb, c, d, e, fus “ G´ a.

New graphs from old

Let G “ pV,Eq be a simple graph.

For v P V , the graph G´ v is the graph made by deleting v and
any edge incident to v. For example, if

G “

a b c

d e f

then

G´ a “

b c

d e f

G´ b “

a c

d e f

Let W Ď V . The subgraph induced by W , denoted GrW s, is the
subgraph made by deleting everything not in W . For example,
Grtb, c, d, e, fus “ G´ a.

New graphs from old

Let G “ pV,Eq be a simple graph.

For v P V , the graph G´ v is the graph made by deleting v and
any edge incident to v. For example, if

G “

a b c

d e f

then

G´ a “

b c

d e f

G´ b

“

a c

d e f

Let W Ď V . The subgraph induced by W , denoted GrW s, is the
subgraph made by deleting everything not in W . For example,
Grtb, c, d, e, fus “ G´ a.

New graphs from old

Let G “ pV,Eq be a simple graph.

For v P V , the graph G´ v is the graph made by deleting v and
any edge incident to v. For example, if

G “

a b c

d e f

then

G´ a “

b c

d e f

G´ b

“

a c

d e f

Let W Ď V . The subgraph induced by W , denoted GrW s, is the
subgraph made by deleting everything not in W . For example,
Grtb, c, d, e, fus “ G´ a.

New graphs from old

Let G “ pV,Eq be a simple graph.

For v P V , the graph G´ v is the graph made by deleting v and
any edge incident to v. For example, if

G “

a b c

d e f

then

G´ a “

b c

d e f

G´ b “

a c

d e f

Let W Ď V . The subgraph induced by W , denoted GrW s, is the
subgraph made by deleting everything not in W . For example,
Grtb, c, d, e, fus “ G´ a.

New graphs from old

Let G “ pV,Eq be a simple graph.

For v P V , the graph G´ v is the graph made by deleting v and
any edge incident to v. For example, if

G “

a b c

d e f

then

G´ a “

b c

d e f

G´ b “

a c

d e f

Let W Ď V . The subgraph induced by W , denoted GrW s, is the
subgraph made by deleting everything not in W .

For example,
Grtb, c, d, e, fus “ G´ a.

New graphs from old

Let G “ pV,Eq be a simple graph.

For v P V , the graph G´ v is the graph made by deleting v and
any edge incident to v. For example, if

G “

a b c

d e f

then

G´ a “

b c

d e f

G´ b “

a c

d e f

Let W Ď V . The subgraph induced by W , denoted GrW s, is the
subgraph made by deleting everything not in W . For example,
Grtb, c, d, e, fus “ G´ a.

Counting subgraphs

Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.

If H Ď G, then VH Ď ta, b, cu. Possibilities:
H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu.

Possibilities:
H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.

In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H,

Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges.

This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it.

So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs.

1` 1` 1` 1` 2` 1` 2` 22 “ 13

Counting subgraphs
Step 1: Break into cases based on the vertex set.

For example, let G “ a b c

G hase vertex set V “ VG “ ta, b, cu.
If H Ď G, then VH Ď ta, b, cu. Possibilities:

H, tau, tbu, tcu, ta, bu,
ta, cu, tb, cu, or ta, b, cu.

Step 2: Draw the induced graphs for each vertex subset.
In our example,

GrHs “ H, Grtaus “
a
, Grtbus “ b , Grtcus “

c
,

Grta, bus “ a b , Grta, cus “
a c

, Grtb, cus “ b c

Grta, b, cus “ G “ a b c .

Step 3: Count the number of subgraphs of the induced graphs that
have the same vertex set, but possibly fewer edges. This reduces
to looking at each edge and deciding to keep it or lose it. So there
are 2#edges such subgraphs. 1` 1` 1` 1` 2` 1` 2` 22 “ 13

Edge operations.

Subtraction: Let ε P E. Then G´ ε is the subgraph of G with
vertex set V and edge set E ´ tεu.

For example, if

G “

a b c

d e f

then

G´ pa´bq “

a b c

d e f

Edge operations.

Subtraction: Let ε P E. Then G´ ε is the subgraph of G with
vertex set V and edge set E ´ tεu.
For example, if

G “

a b c

d e f

then

G´ pa´bq “

a b c

d e f

Edge operations.

If F Ď E, the graph G is the subgraph with vertex set V and edge
set E ´ F .

For example, if

G “

a b c

d e f

then

G´ ta´b, c´f, e´fu “

a b c

d e f

Edge operations.

If F Ď E, the graph G is the subgraph with vertex set V and edge
set E ´ F .
For example, if

G “

a b c

d e f

then

G´ ta´b, c´f, e´fu “

a b c

d e f

Edge operations.

Addition: For an edge ε on the vertex set V but not in E, G` ε is
the graph containing G satisfying pG` εq ´ ε “ G.

For example, if

G “

a b c

d e f

then

G` pa´eq “

a b c

d e f

Edge operations.

Addition: For an edge ε on the vertex set V but not in E, G` ε is
the graph containing G satisfying pG` εq ´ ε “ G. For example, if

G “

a b c

d e f

then

G` pa´eq “

a b c

d e f

Edge operations.

Let ε P E. There are two kinds of “contraction” of ε: contraction
of graphs (allowing for multiple edges and loops) and contraction
of simple graphs (not allowing for multiple edges and loops).

Contraction of an edge in graphs: If we’re considering all graphs,
then the graph G{ε is the graph obtained by contracting the edge
ε, which means merging the vertices that are incident to ε.
For example, if

G “

a b c

d e f

and ε “ a´d, then

G{ε “

b c

e f

Edge operations.

Let ε P E. There are two kinds of “contraction” of ε: contraction
of graphs (allowing for multiple edges and loops) and contraction
of simple graphs (not allowing for multiple edges and loops).
Contraction of an edge in graphs: If we’re considering all graphs,
then the graph G{ε is the graph obtained by contracting the edge
ε, which means merging the vertices that are incident to ε.

For example, if

G “

a b c

d e f

and ε “ a´d, then

G{ε “

b c

e f

Edge operations.

Let ε P E. There are two kinds of “contraction” of ε: contraction
of graphs (allowing for multiple edges and loops) and contraction
of simple graphs (not allowing for multiple edges and loops).
Contraction of an edge in graphs: If we’re considering all graphs,
then the graph G{ε is the graph obtained by contracting the edge
ε, which means merging the vertices that are incident to ε.
For example, if

G “

a b c

d e f

and ε “ a´d, then

G{ε “

a

d

b c

e f

Edge operations.

Let ε P E. There are two kinds of “contraction” of ε: contraction
of graphs (allowing for multiple edges and loops) and contraction
of simple graphs (not allowing for multiple edges and loops).
Contraction of an edge in graphs: If we’re considering all graphs,
then the graph G{ε is the graph obtained by contracting the edge
ε, which means merging the vertices that are incident to ε.
For example, if

G “

a b c

d e f

and ε “ a´d, then

G{ε “
a{d

b c

e f

Edge operations.
Let ε P E. There are two kinds of “contraction” of ε: contraction
of graphs (allowing for multiple edges and loops) and contraction
of simple graphs (not allowing for multiple edges and loops).
Contraction of an edge in simple graphs: If we’re considering only
simple graphs, then the graph G{ε is the graph obtained by
contracting the edge ε, and then deleting any loops or multiple
edges.

For example, if

G “

a b c

d e f

and ε “ a´d, then

pG{εqsimple “

b c

e f

Note that G{e and pG{εqsimple are not in general subgraphs of G.

Edge operations.
Let ε P E. There are two kinds of “contraction” of ε: contraction
of graphs (allowing for multiple edges and loops) and contraction
of simple graphs (not allowing for multiple edges and loops).
Contraction of an edge in simple graphs: If we’re considering only
simple graphs, then the graph G{ε is the graph obtained by
contracting the edge ε, and then deleting any loops or multiple
edges.
For example, if

G “

a b c

d e f

and ε “ a´d, then

pG{εqsimple “

a

d

b c

e f

Note that G{e and pG{εqsimple are not in general subgraphs of G.

Edge operations.
Let ε P E. There are two kinds of “contraction” of ε: contraction
of graphs (allowing for multiple edges and loops) and contraction
of simple graphs (not allowing for multiple edges and loops).
Contraction of an edge in simple graphs: If we’re considering only
simple graphs, then the graph G{ε is the graph obtained by
contracting the edge ε, and then deleting any loops or multiple
edges.
For example, if

G “

a b c

d e f

and ε “ a´d, then

pG{εqsimple “

a{d

b c

e f

Note that G{e and pG{εqsimple are not in general subgraphs of G.

Edge operations.
Let ε P E. There are two kinds of “contraction” of ε: contraction
of graphs (allowing for multiple edges and loops) and contraction
of simple graphs (not allowing for multiple edges and loops).
Contraction of an edge in simple graphs: If we’re considering only
simple graphs, then the graph G{ε is the graph obtained by
contracting the edge ε, and then deleting any loops or multiple
edges.
For example, if

G “

a b c

d e f

and ε “ a´d, then

pG{εqsimple “

a{d

b c

e f

Note that G{e and pG{εqsimple are not in general subgraphs of G.

Edge operations.
Let ε P E. There are two kinds of “contraction” of ε: contraction
of graphs (allowing for multiple edges and loops) and contraction
of simple graphs (not allowing for multiple edges and loops).
Contraction of an edge in simple graphs: If we’re considering only
simple graphs, then the graph G{ε is the graph obtained by
contracting the edge ε, and then deleting any loops or multiple
edges.
For example, if

G “

a b c

d e f

and ε “ a´d, then

pG{εqsimple “

a{d

b c

e f

Note that G{e and pG{εqsimple are not in general subgraphs of G.

Unions
The union of two graphs G1 “ pV1, E1q and G2 “ pV2, E2q is

G1 YG2 “ pV1 Y V2, E1 Y E2q.

Examples:
If

G1 “
a b c and G2 “

x y z

then

G1 YG2 “

a b c

x y z

If
G1 “

a b c and G2 “
a d b

then

G1 YG2 “

a b c

d

Unions
The union of two graphs G1 “ pV1, E1q and G2 “ pV2, E2q is

G1 YG2 “ pV1 Y V2, E1 Y E2q.

Examples:
If

G1 “
a b c and G2 “

x y z

then

G1 YG2 “

a b c

x y z

If
G1 “

a b c and G2 “
a d b

then

G1 YG2 “

a b c

d

Unions
The union of two graphs G1 “ pV1, E1q and G2 “ pV2, E2q is

G1 YG2 “ pV1 Y V2, E1 Y E2q.

Examples:
If

G1 “
a b c and G2 “

x y z

then

G1 YG2 “

a b c

x y z

If
G1 “

a b c and G2 “
a d b

then

G1 YG2 “

a b c

d

Unions
The union of two graphs G1 “ pV1, E1q and G2 “ pV2, E2q is

G1 YG2 “ pV1 Y V2, E1 Y E2q.

Examples:
If

G1 “
a b c and G2 “

x y z

then

G1 YG2 “

a b c

x y z

If
G1 “

a b c and G2 “
a d b

then

G1 YG2 “

a b c

d

Complements
Consider G as a subgraph of KrV s, the complete graph on the
vertex set V . The complement of the graph G is

Ḡ “ pV,EKrV s ´ Eq.

In other words, G and Ḡ have the same vertex set, but u and v are
adjacent in Ḡ if and only if u and v are not adjacent in G.

Example: Let

G “
a

b

c

d

Then

KrV s “
a

b

c

d

so G “
a

b

c

d

Complements
Consider G as a subgraph of KrV s, the complete graph on the
vertex set V . The complement of the graph G is

Ḡ “ pV,EKrV s ´ Eq.

In other words, G and Ḡ have the same vertex set, but u and v are
adjacent in Ḡ if and only if u and v are not adjacent in G.
Example: Let

G “
a

b

c

d

Then

KrV s “
a

b

c

d

so G “
a

b

c

d

Complements
Consider G as a subgraph of KrV s, the complete graph on the
vertex set V . The complement of the graph G is

Ḡ “ pV,EKrV s ´ Eq.

In other words, G and Ḡ have the same vertex set, but u and v are
adjacent in Ḡ if and only if u and v are not adjacent in G.
Example: Let

G “
a

b

c

d

Then

KrV s “
a

b

c

d

so G “
a

b

c

d

Complements
Consider G as a subgraph of KrV s, the complete graph on the
vertex set V . The complement of the graph G is

Ḡ “ pV,EKrV s ´ Eq.

In other words, G and Ḡ have the same vertex set, but u and v are
adjacent in Ḡ if and only if u and v are not adjacent in G.
Example: Let

G “
a

b

c

d

Then

KrV s “
a

b

c

d

so G “
a

b

c

d

Complements
Consider G as a subgraph of KrV s, the complete graph on the
vertex set V . The complement of the graph G is

Ḡ “ pV,EKrV s ´ Eq.

In other words, G and Ḡ have the same vertex set, but u and v are
adjacent in Ḡ if and only if u and v are not adjacent in G.
Example: Let

G “
a

b

c

d

Then

KrV s “
a

b

c

d

so G “
a

b

c

d

Complements
Consider G as a subgraph of KrV s, the complete graph on the
vertex set V . The complement of the graph G is

Ḡ “ pV,EKrV s ´ Eq.

In other words, G and Ḡ have the same vertex set, but u and v are
adjacent in Ḡ if and only if u and v are not adjacent in G.
Example: Let

G “
a

b

c

d

Then

KrV s “
a

b

c

d

so G “
a

b

c

d

Connectedness
Let G “ pV,Eq be a graph. A walk is an alternating sequence of
vertices and edges

w “ pv0, e1, v1, e2, ¨ ¨ ¨ , en, vnq

such that ei has endpoints vi´1 and vi. We say w has length n.

For example, if

G “

a b c

d e f

,

the walk

pa, a´b, b, b´c, c, c´f, f , f´b, b, b´c, c, c´d, dq

looks like
a b c

d e f

Connectedness
Let G “ pV,Eq be a graph. A walk is an alternating sequence of
vertices and edges

w “ pv0, e1, v1, e2, ¨ ¨ ¨ , en, vnq

such that ei has endpoints vi´1 and vi. We say w has length n.
For example, if

G “

a b c

d e f

,

the walk

pa, a´b, b, b´c, c, c´f, f , f´b, b, b´c, c, c´d, dq

looks like
a b c

d e f

Connectedness
Let G “ pV,Eq be a graph. A walk is an alternating sequence of
vertices and edges

w “ pv0, e1, v1, e2, ¨ ¨ ¨ , en, vnq

such that ei has endpoints vi´1 and vi. We say w has length n.
For example, if

G “

a b c

d e f

,

the walk pa

, a´b, b, b´c, c, c´f, f , f´b, b, b´c, c, c´d, dq

looks like
b c

d e f

a

Connectedness
Let G “ pV,Eq be a graph. A walk is an alternating sequence of
vertices and edges

w “ pv0, e1, v1, e2, ¨ ¨ ¨ , en, vnq

such that ei has endpoints vi´1 and vi. We say w has length n.
For example, if

G “

a b c

d e f

,

the walk pa, a´b, b

, b´c, c, c´f, f , f´b, b, b´c, c, c´d, dq

looks like
c

d e f

a b1

Connectedness
Let G “ pV,Eq be a graph. A walk is an alternating sequence of
vertices and edges

w “ pv0, e1, v1, e2, ¨ ¨ ¨ , en, vnq

such that ei has endpoints vi´1 and vi. We say w has length n.
For example, if

G “

a b c

d e f

,

the walk pa, a´b, b, b´c, c

, c´f, f , f´b, b, b´c, c, c´d, dq

looks like

d e f

a b c1 2

Connectedness
Let G “ pV,Eq be a graph. A walk is an alternating sequence of
vertices and edges

w “ pv0, e1, v1, e2, ¨ ¨ ¨ , en, vnq

such that ei has endpoints vi´1 and vi. We say w has length n.
For example, if

G “

a b c

d e f

,

the walk pa, a´b, b, b´c, c, c´f, f

, f´b, b, b´c, c, c´d, dq

looks like

d e f

a b c1 2

3

Connectedness
Let G “ pV,Eq be a graph. A walk is an alternating sequence of
vertices and edges

w “ pv0, e1, v1, e2, ¨ ¨ ¨ , en, vnq

such that ei has endpoints vi´1 and vi. We say w has length n.
For example, if

G “

a b c

d e f

,

the walk pa, a´b, b, b´c, c, c´f, f , f´b, b

, b´c, c, c´d, dq

looks like

d e

a b c

f

1 2

3
4

Connectedness
Let G “ pV,Eq be a graph. A walk is an alternating sequence of
vertices and edges

w “ pv0, e1, v1, e2, ¨ ¨ ¨ , en, vnq

such that ei has endpoints vi´1 and vi. We say w has length n.
For example, if

G “

a b c

d e f

,

the walk pa, a´b, b, b´c, c, c´f, f , f´b, b, b´c, c

, c´d, dq

looks like

d e

a b c

f

1

3
4

2, 5

Connectedness
Let G “ pV,Eq be a graph. A walk is an alternating sequence of
vertices and edges

w “ pv0, e1, v1, e2, ¨ ¨ ¨ , en, vnq

such that ei has endpoints vi´1 and vi. We say w has length n.
For example, if

G “

a b c

d e f

,

the walk pa, a´b, b, b´c, c, c´f, f , f´b, b, b´c, c, c´d, dq
looks like

e

a b c

d f

1

3
4

2, 5

6

Special kinds of walks:

1. A closed walk or circuit is a walk where v0 “ vn.

2. A path is a walk so that no vertices (and therefore edges) are
repeated.

3. A cycle is a walk where v0 “ vn but no other vertices are
repeated.

4. A trail is a walk where no edges are repeated.

Note: See the remark on p. 679 of the book to reconcile the
difference between the terminology we’re using and the
terminology in the book!!

In a simple graph, the sequence of vertices determines the walk,
since there’s at most one edge between any two vertices.

Walk: Circuit: Path:
a, b, c, f, b, c, d a, b, c, f, b, c, d, a a, e, b, f
a b c

d e f

1 2, 5

346

a b c

d e f

1 2, 5

3467

a b c

d e f

1

2
3

Special kinds of walks:

1. A closed walk or circuit is a walk where v0 “ vn.
2. A path is a walk so that no vertices (and therefore edges) are

repeated.

3. A cycle is a walk where v0 “ vn but no other vertices are
repeated.

4. A trail is a walk where no edges are repeated.

Note: See the remark on p. 679 of the book to reconcile the
difference between the terminology we’re using and the
terminology in the book!!

In a simple graph, the sequence of vertices determines the walk,
since there’s at most one edge between any two vertices.

Walk: Circuit: Path:
a, b, c, f, b, c, d a, b, c, f, b, c, d, a a, e, b, f
a b c

d e f

1 2, 5

346

a b c

d e f

1 2, 5

3467

a b c

d e f

1

2
3

Special kinds of walks:

1. A closed walk or circuit is a walk where v0 “ vn.
2. A path is a walk so that no vertices (and therefore edges) are

repeated.
3. A cycle is a walk where v0 “ vn but no other vertices are

repeated.

4. A trail is a walk where no edges are repeated.

Note: See the remark on p. 679 of the book to reconcile the
difference between the terminology we’re using and the
terminology in the book!!

In a simple graph, the sequence of vertices determines the walk,
since there’s at most one edge between any two vertices.

Walk: Circuit: Path:
a, b, c, f, b, c, d a, b, c, f, b, c, d, a a, e, b, f
a b c

d e f

1 2, 5

346

a b c

d e f

1 2, 5

3467

a b c

d e f

1

2
3

Special kinds of walks:

1. A closed walk or circuit is a walk where v0 “ vn.
2. A path is a walk so that no vertices (and therefore edges) are

repeated.
3. A cycle is a walk where v0 “ vn but no other vertices are

repeated.
4. A trail is a walk where no edges are repeated.

Note: See the remark on p. 679 of the book to reconcile the
difference between the terminology we’re using and the
terminology in the book!!

In a simple graph, the sequence of vertices determines the walk,
since there’s at most one edge between any two vertices.

Walk: Circuit: Path:
a, b, c, f, b, c, d a, b, c, f, b, c, d, a a, e, b, f
a b c

d e f

1 2, 5

346

a b c

d e f

1 2, 5

3467

a b c

d e f

1

2
3

Special kinds of walks:

1. A closed walk or circuit is a walk where v0 “ vn.
2. A path is a walk so that no vertices (and therefore edges) are

repeated.
3. A cycle is a walk where v0 “ vn but no other vertices are

repeated.
4. A trail is a walk where no edges are repeated.

Note: See the remark on p. 679 of the book to reconcile the
difference between the terminology we’re using and the
terminology in the book!!

In a simple graph, the sequence of vertices determines the walk,
since there’s at most one edge between any two vertices.

Walk: Circuit: Path:
a, b, c, f, b, c, d a, b, c, f, b, c, d, a a, e, b, f
a b c

d e f

1 2, 5

346

a b c

d e f

1 2, 5

3467

a b c

d e f

1

2
3

Special kinds of walks:

1. A closed walk or circuit is a walk where v0 “ vn.
2. A path is a walk so that no vertices (and therefore edges) are

repeated.
3. A cycle is a walk where v0 “ vn but no other vertices are

repeated.
4. A trail is a walk where no edges are repeated.

Note: See the remark on p. 679 of the book to reconcile the
difference between the terminology we’re using and the
terminology in the book!!

In a simple graph, the sequence of vertices determines the walk,
since there’s at most one edge between any two vertices.

Walk: Circuit: Path:
a, b, c, f, b, c, d a, b, c, f, b, c, d, a a, e, b, f
a b c

d e f

1 2, 5

346

a b c

d e f

1 2, 5

3467

a b c

d e f

1

2
3

Special kinds of walks:

1. A closed walk or circuit is a walk where v0 “ vn.
2. A path is a walk so that no vertices (and therefore edges) are

repeated.
3. A cycle is a walk where v0 “ vn but no other vertices are

repeated.
4. A trail is a walk where no edges are repeated.

Note: See the remark on p. 679 of the book to reconcile the
difference between the terminology we’re using and the
terminology in the book!!

In a simple graph, the sequence of vertices determines the walk,
since there’s at most one edge between any two vertices.

Walk: Circuit: Path:
a, b, c, f, b, c, d a, b, c, f, b, c, d, a a, e, b, f
a b c

d e f

1 2, 5

346

a b c

d e f

1 2, 5

3467

a b c

d e f

1

2
3

Special kinds of walks:

1. A closed walk or circuit is a walk where v0 “ vn.
2. A path is a walk so that no vertices (and therefore edges) are

repeated.
3. A cycle is a walk where v0 “ vn but no other vertices are

repeated.
4. A trail is a walk where no edges are repeated.

Note: See the remark on p. 679 of the book to reconcile the
difference between the terminology we’re using and the
terminology in the book!!

In a simple graph, the sequence of vertices determines the walk,
since there’s at most one edge between any two vertices.

Cycle: Trail:
a, b, f, e, a a, e, b, a, d, e, f

a b c

d e f

1

2

3

4

a b c

d e f

1

2

3

4

5 6

Special kinds of walks:

1. A closed walk or circuit is a walk where v0 “ vn.

2. A path is a walk so that no vertices (and therefore edges) are
repeated.

3. A cycle is a walk where v0 “ vn but no other vertices are
repeated.

4. A trail is a walk where no edges are repeated.

Note:

{ walks }

{ circuits }

{ trails } { paths }

{ max’l paths }

{ cycles }

Ą

Ą

Ą

Ą

Ą

Ą

A maximal path is a path that cannot be extended on either end to
be a longer path.

Special kinds of walks:

1. A closed walk or circuit is a walk where v0 “ vn.

2. A path is a walk so that no vertices (and therefore edges) are
repeated.

3. A cycle is a walk where v0 “ vn but no other vertices are
repeated.

4. A trail is a walk where no edges are repeated.

Note:

{ walks }

{ circuits }

{ trails } { paths }

{ max’l paths }

{ cycles }

Ą

Ą

Ą

Ą

Ą

Ą

A maximal path is a path that cannot be extended on either end to
be a longer path.

Special kinds of walks:

1. A closed walk or circuit is a walk where v0 “ vn.

2. A path is a walk so that no vertices (and therefore edges) are
repeated.

3. A cycle is a walk where v0 “ vn but no other vertices are
repeated.

4. A trail is a walk where no edges are repeated.

Note:

{ walks }

{ circuits }

{ trails } { paths } { max’l paths }

{ cycles }

Ą

Ą

Ą

Ą Ą

Ą

A maximal path is a path that cannot be extended on either end to
be a longer path.

A graph is connected if for every pair of vertices u and v, there is a
walk from u to v.

For example:

G “

a b c

d e f

H “

a b c

d e f

G is connected; H is not.
A connected component of a graph is a maximally connected
subgraph of G (H above has two connected components). Note
that every connected component (or union of connected
components) is an induced subgraph. Further, if W is the set of
vertices in some connected component, then the induced subgraph
H by W has the property that the degrees of the vertices in H are
the same as the degrees of the corresponding vertices in G.

A graph is connected if for every pair of vertices u and v, there is a
walk from u to v. For example:

G “

a b c

d e f

H “

a b c

d e f

G is connected; H is not.

A connected component of a graph is a maximally connected
subgraph of G (H above has two connected components). Note
that every connected component (or union of connected
components) is an induced subgraph. Further, if W is the set of
vertices in some connected component, then the induced subgraph
H by W has the property that the degrees of the vertices in H are
the same as the degrees of the corresponding vertices in G.

A graph is connected if for every pair of vertices u and v, there is a
walk from u to v. For example:

G “

a b c

d e f

H “

a b c

d e f

G is connected; H is not.
A connected component of a graph is a maximally connected
subgraph of G (H above has two connected components).

Note
that every connected component (or union of connected
components) is an induced subgraph. Further, if W is the set of
vertices in some connected component, then the induced subgraph
H by W has the property that the degrees of the vertices in H are
the same as the degrees of the corresponding vertices in G.

A graph is connected if for every pair of vertices u and v, there is a
walk from u to v. For example:

G “

a b c

d e f

H “

a b c

d e f

G is connected; H is not.
A connected component of a graph is a maximally connected
subgraph of G (H above has two connected components). Note
that every connected component (or union of connected
components) is an induced subgraph.

Further, if W is the set of
vertices in some connected component, then the induced subgraph
H by W has the property that the degrees of the vertices in H are
the same as the degrees of the corresponding vertices in G.

A graph is connected if for every pair of vertices u and v, there is a
walk from u to v. For example:

G “

a b c

d e f

H “

a b c

d e f

G is connected; H is not.
A connected component of a graph is a maximally connected
subgraph of G (H above has two connected components). Note
that every connected component (or union of connected
components) is an induced subgraph. Further, if W is the set of
vertices in some connected component, then the induced subgraph
H by W has the property that the degrees of the vertices in H are
the same as the degrees of the corresponding vertices in G.

We say two vertices are connected if there is a walk between them.

Connected is an equivalence relation on vertices:

Reflexive: The walk from v to itself is the walk of length 0:
v0 “ v “ vn.

Symmetric: If there is a walk from u to v, then the walk from v
to u is the reverse sequence.

Transitive: If there is a walk from a to b
wa “ a, e1, v1, . . . , en, b, and a walk from b to c,
wb “ b, e11, v

1
1, . . . , e

1
n, c, then

w “ a, e1, v1, . . . , en, b, e
1
1, v

1
1, . . . , e

1
n, c

is a walk from a to c.

The equivalence class is the connected component.

We say two vertices are connected if there is a walk between them.

Connected is an equivalence relation on vertices:

Reflexive:

The walk from v to itself is the walk of length 0:
v0 “ v “ vn.

Symmetric: If there is a walk from u to v, then the walk from v
to u is the reverse sequence.

Transitive: If there is a walk from a to b
wa “ a, e1, v1, . . . , en, b, and a walk from b to c,
wb “ b, e11, v

1
1, . . . , e

1
n, c, then

w “ a, e1, v1, . . . , en, b, e
1
1, v

1
1, . . . , e

1
n, c

is a walk from a to c.

The equivalence class is the connected component.

We say two vertices are connected if there is a walk between them.

Connected is an equivalence relation on vertices:

Reflexive: The walk from v to itself is the walk of length 0:
v0 “ v “ vn.

Symmetric: If there is a walk from u to v, then the walk from v
to u is the reverse sequence.

Transitive: If there is a walk from a to b
wa “ a, e1, v1, . . . , en, b, and a walk from b to c,
wb “ b, e11, v

1
1, . . . , e

1
n, c, then

w “ a, e1, v1, . . . , en, b, e
1
1, v

1
1, . . . , e

1
n, c

is a walk from a to c.

The equivalence class is the connected component.

We say two vertices are connected if there is a walk between them.

Connected is an equivalence relation on vertices:

Reflexive: The walk from v to itself is the walk of length 0:
v0 “ v “ vn.

Symmetric:

If there is a walk from u to v, then the walk from v
to u is the reverse sequence.

Transitive: If there is a walk from a to b
wa “ a, e1, v1, . . . , en, b, and a walk from b to c,
wb “ b, e11, v

1
1, . . . , e

1
n, c, then

w “ a, e1, v1, . . . , en, b, e
1
1, v

1
1, . . . , e

1
n, c

is a walk from a to c.

The equivalence class is the connected component.

We say two vertices are connected if there is a walk between them.

Connected is an equivalence relation on vertices:

Reflexive: The walk from v to itself is the walk of length 0:
v0 “ v “ vn.

Symmetric: If there is a walk from u to v, then the walk from v
to u is the reverse sequence.

Transitive: If there is a walk from a to b
wa “ a, e1, v1, . . . , en, b, and a walk from b to c,
wb “ b, e11, v

1
1, . . . , e

1
n, c, then

w “ a, e1, v1, . . . , en, b, e
1
1, v

1
1, . . . , e

1
n, c

is a walk from a to c.

The equivalence class is the connected component.

We say two vertices are connected if there is a walk between them.

Connected is an equivalence relation on vertices:

Reflexive: The walk from v to itself is the walk of length 0:
v0 “ v “ vn.

Symmetric: If there is a walk from u to v, then the walk from v
to u is the reverse sequence.

Transitive:

If there is a walk from a to b
wa “ a, e1, v1, . . . , en, b, and a walk from b to c,
wb “ b, e11, v

1
1, . . . , e

1
n, c, then

w “ a, e1, v1, . . . , en, b, e
1
1, v

1
1, . . . , e

1
n, c

is a walk from a to c.

The equivalence class is the connected component.

We say two vertices are connected if there is a walk between them.

Connected is an equivalence relation on vertices:

Reflexive: The walk from v to itself is the walk of length 0:
v0 “ v “ vn.

Symmetric: If there is a walk from u to v, then the walk from v
to u is the reverse sequence.

Transitive: If there is a walk from a to b
wa “ a, e1, v1, . . . , en, b, and a walk from b to c,
wb “ b, e11, v

1
1, . . . , e

1
n, c,

then

w “ a, e1, v1, . . . , en, b, e
1
1, v

1
1, . . . , e

1
n, c

is a walk from a to c.

The equivalence class is the connected component.

We say two vertices are connected if there is a walk between them.

Connected is an equivalence relation on vertices:

Reflexive: The walk from v to itself is the walk of length 0:
v0 “ v “ vn.

Symmetric: If there is a walk from u to v, then the walk from v
to u is the reverse sequence.

Transitive: If there is a walk from a to b
wa “ a, e1, v1, . . . , en, b, and a walk from b to c,
wb “ b, e11, v

1
1, . . . , e

1
n, c, then

w “ a, e1, v1, . . . , en, b, e
1
1, v

1
1, . . . , e

1
n, c

is a walk from a to c.

The equivalence class is the connected component.

We say two vertices are connected if there is a walk between them.

Connected is an equivalence relation on vertices:

Reflexive: The walk from v to itself is the walk of length 0:
v0 “ v “ vn.

Symmetric: If there is a walk from u to v, then the walk from v
to u is the reverse sequence.

Transitive: If there is a walk from a to b
wa “ a, e1, v1, . . . , en, b, and a walk from b to c,
wb “ b, e11, v

1
1, . . . , e

1
n, c, then

w “ a, e1, v1, . . . , en, b, e
1
1, v

1
1, . . . , e

1
n, c

is a walk from a to c.

The equivalence class is the connected component.

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|

2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1
adjacent to vertex of degree d2, . . .

3. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, . . .

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|

2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1
adjacent to vertex of degree d2, . . .

3. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, . . .

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|

2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1
adjacent to vertex of degree d2, . . .

3. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, . . .

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|

2. Degree sequence

Also: Minimum degree, maximum degree

, vertex of degree d1
adjacent to vertex of degree d2, . . .

3. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, . . .

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|

2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1
adjacent to vertex of degree d2, . . .

3. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, . . .

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|

2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1
adjacent to vertex of degree d2, . . .

3. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, . . .

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|

2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1
adjacent to vertex of degree d2, . . .

3. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite.

A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, . . .

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|

2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1
adjacent to vertex of degree d2, . . .

3. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, . . .

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|

2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1
adjacent to vertex of degree d2, . . .

3. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, . . .

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|

2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1
adjacent to vertex of degree d2, . . .

3. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths

Also: longest path or cycle length

, maximal paths of certain
lengths, . . .

Graph invariants

Recall, a graph invariant is a statistic about a graph that is
preserved under isomorphisms (relabeling of the vertices). Namely,
if you don’t need the labels to calculate the statistic, then it’s
probably a graph invariant.

1. |V |, |E|

2. Degree sequence

Also: Minimum degree, maximum degree, vertex of degree d1
adjacent to vertex of degree d2, . . .

3. Bipartite or not

If any subgraph is not bipartite, then G is not bipartite. A graph
is bipartite if and only if it has no odd cycles as subgraphs.

4. Connected or not

5. Paths or cycles of particular lengths

Also: longest path or cycle length, maximal paths of certain
lengths, . . .

