
A graph is a set of objects, or vertices, together with a (multi)set
of edges that connect pairs of vertices. (Think driving routes
between cities, or social connections between people.)

Example:

u v

w x

y

e1

e2 e3

e4

Here, the vertices are V “ tu, v, w, x, yu, and the edges are
E “ te1 “ u´v, e2 “ u´w, e3 “ u´w, e4 “ x´y, e5 “ y´yu.
An edge that connects a vertex to itself (like e5) is called a loop.
We say a vertex a is adjacent to a vertex b if there is an edge
connecting a and b. (Notice that for a generic graph, “adjacency”
is a symmetric relation, but is not reflexive nor is it transitive.)
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Classes of graphs:
A graph is simple if there are no loops and every pair of vertices
has at most one edge between them.
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NOT simple!

A graph is a multigraph if there are no loops, but there could be
multiple edges between two vertices.

A graph is a pseudograph if there could be loops or multiple edges.
(This is just what we call a graph.)

So

t pseudographs/graphs u Ľ t multigraphs u Ľ t simple graphs u.

(Note: The Ľ symbol is used here because, for example, every
simple graph is a multigraph, but there are multigraphs that are
not simple.)
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Directed graphs
A directed graph (also called a digraph or a quiver) is a graph,
together with a choice of direction for each edge. (Think flights
from one city to the other, or a flow chart.)

For example,

u v

w x

y

A directed graph is simple if there are no loops and every pair of
vertices has at most one edge in each direction between them.

A directed graph is a directed multigraph if there could be loops or
multiple edges. (This is just what we call a directed graph)

So

t directed (multi)graphs u Ľ t directed simple graphs u.

The book also talks about mixed graphs, where some of the edges
are directed and some aren’t. We usually take care of this by
modeling the non-directed edges with two directed edges, one in
each direction.
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G “

u v

w x

y

e1

e2 e3

e4

e5

Npuq “ tv, wu
Npvq “ tuu
Npwq “ tuu
Npxq “ tyu
Npyq “ tx, yu

Nptu, vuq
“ tu, v, wu

Nptu, yuq
“ tv, w, x, yu

We say a vertex a is adjacent to a vertex b if there is an edge
connecting a and b.

For example, in G,
u is adjacent to w and v; v is adjacent to u;

y is adjacent to x and y.
We say that an edge is incident to a vertex if the edge connects to
the vertex. For example, in G,

e1 is incident to u and v; e5 is incident to y.
If two vertices u and v are adjacent, we we say that they are
neighbors, and that u is in the neighborhood Npvq of v (and
vice-versa). If A Ď V , then

NpAq “
ď

vPA

Npvq.
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The degree degpvq of a vertex v is the number of edge ends
attached to v. We call a graph regular if all the vertices have the
same degree.

Theorem (The handshake theorem)

In a graph G “ pV,Eq,
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vPV

deg v.

Corollary

In any graph, there are an even number of odd vertices.
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Graph isomorphisms
We say two graphs G and G1 are isomorphic if there is a relabeling
of the vertices of G that transforms it into G1. In other words,
there is a bijection

f : V Ñ V 1

such that the induced map on E is a bijection f : E Ñ E1.
For example,

G “ a

b

c

d

and G1 “ x

y

w

v

are isomorphic via the map (doesn’t depend on the drawing)

a ÞÑ x, b ÞÑ y, c ÞÑ x, d ÞÑ v.



Recall: an equivalence relation on a set A is a pairing „ that is
reflexive (a „ a), symmetric (a „ b iff b „ a), and transitive
(a „ b and b „ c implies a „ c).

Given an equivalence relation, an
equivalence class is a maximal set of things that are pairwise
equivalent. Here, if G is the set of all graphs, then

G „ H whenever G is isomorphic to H
is an equivalence relation. For an equivalence class of graphs, we
draw the associated unlabeled graph. For example, the equivalence
class of graphs corresponding to

G “ a

b

c

d

is a

b

c

d

.
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Special graphs
Cycles. A cycle Cn is the equivalence class of simple graphs on n
vertices tv1, v2, . . . , vnu so that vi is adjacent to vi˘1 (v1 is
adjacent to vn).

equivalence class C5

u1

u2

u3 u4

u5

one graph in the class C5

u1

u2

u3 u4

u5

Wheels. A wheel Wn is the cycle Cn together with an additional
vertex that is adjacent to every other vertex.

equivalence class W5

u1

u2

u3 u4

u5

one graph in the class W5

u0

u1

u2

u3 u4

u5
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Special graphs

Complete graphs. The complete graph on n vertices, denoted
Kn, is the equivalence class of simple graphs on n vertices so that
Npvq “ V ´ tvu for all all v P V .

For example,

K1 “ K2 “ K3 “

K4 “ K5 “
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Bipartite graphs. A graph is bipartite if V can be partitioned into
two nonempty subsets V1 and V2 so that no vertex in Vi is
adjacent to any other vertex in Vi for i “ 1 or 2.

In particular, for any m ě n ě 1, the complete bipartite graph
Kn,m is the class of simple graphs corresponding to the graph with
vertices V “ V1 Y V2, where

V1 “ tv1, . . . , vnu V2 “ tu1, ¨ ¨ ¨umu

Npviq “ V2 and Npuiq “ V1

for all i. For example,

K7,3 “

One way to show that a graph is bipartite is to “color” the vertices
two different colors, so that no two vertices of the same color are
adjacent.
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Bipartite graphs. A graph is bipartite if V can be partitioned into
two nonempty subsets V1 and V2 so that no vertex in Vi is
adjacent to any other vertex in Vi for i “ 1 or 2.

One way to show that a graph is bipartite is to “color” the vertices
two different colors, so that no two vertices of the same color are
adjacent.

Hypercubes. Let Qn be the graph with vertex set
V “ t bit strings (1’s and 0’s) of length n u

and edge set
E “ tu´v | u and v differ in exactly one bit u.
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Color vertices with an even number of 0’s red.
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Graph invariants

To prove that two graphs are isomorphic, you need to find an
isomorphism.

To show that they’re not isomorphic, you have to
show that no isomorphism exists, which can be harder! So we look
for properties of the graphs that are preserved by isomorphisms.
These are called (graph) invariants.

Example: The number of vertices in a graph is an invariant.
(If G is isomorphic to H, then there is a bijection between their
vertex sets, so those vertex sets must have the same size.
Conversely, if G and H have a different number of vertices, then
no such bijection exits.)

For example, C5 and C6 are different isomorphism classes.

Similarly, the number of edges in a graph is an invariant.

For example, C5 and K5 are different isomorphism classes.
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Example: The degree sequence of a graph is the list of degrees of
vertices in the graph, given in decreasing order.

For example, the
degree sequence of

G “

a b
c

d

e
f

is 6, 5, 4, 3, 2, 0.

(Again, if the degree sequences of G and H differ, then G fl H.
But if the degree sequences match, the might be isomorphic, but
they might not be.)
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Graph invariants

For example, consider the graphs

G “

v1 v2 v3 v4 v5 v6

v7 v8

H “

u1 u2 u3 u4 u5 u6

u7 u8

Both of these graphs have the degree sequence 3, 3, 2, 2, 1, 1, 1, 1.
But in G, there’s a vertex of degree 1 adjacent to a vertex of
degree 2, where as no vertex of degree 1 is adjacent to a vertex of
degree 2 in H. So G fl H.
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