
Math 365 – Monday 4/1/19
8.5 (inclusion/exclusion) and 9.1 & 9.5 (equivalence relations)

Exercise 41. Use inclusion/exclusion to answer the following questions.

(a) How many elements are in A1 [A2 if there are 12 elements in A1, 18 elements in A2, and

(i) |A1 \A2| = 6?

(ii) A1 \A2 = ;?
(iii) A1 ✓ A2?

(b) A survey of households in the United States reveals that 96% have at least one television set,

42% have a land-line telephone service, and 39% have land-line telephone service and at least

one television set. What percentage of households in the United States have neither telephone

service nor a television set?

[Start by naming your sets, as in “Let A be the set of households that have at least one TV set,” and

so on.]

(c) How many students are enrolled in a course either in

(1) calculus 1, (2) discrete math,
(3) data structures, or (4) intro to computer science

at a school if there are 507, 292, 312, and 344 students in these courses, respectively; 14 in

both calculus and data structures; 213 in both calculus and intro to CS; 211 in both discrete

mathematics and data structures; 43 in both discrete mathematics and intro to CS; and no

student may take calculus and discrete mathematics at the same time, nor intro to CS and

data structures at the same time?

[Again, start by naming your sets, as in “Let A be the set of students enrolled in calculus 1,” and so on.]

(d) Find the number of integers 1  n  100 that are odd and/or the square of an integer.

(e) Find the number of integers 1  n  500 that are not a multiple of 3, 5, or 7.

Exercise 42. Recall that the Stirling numbers (of the second kind) count arrangements of distin-

guishable objects into indistinguishable boxes, namely
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We stated in section 6.5 that
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We can now check this using inclusion/exclusion!

But first, we count the number of surjective functions from X = {1, 2, . . . , n} to Y = {1, . . . , k}
(where k  n). To that end, let U be the set of all functions from X to Y , and for i = 1, . . . , k, let

Ai = {functions f : X ! Y | i /2 f(X)}.



(a) What is |U |, i.e. how many functions are there from X to Y ?

[Don’t put any restrictions on the functions here—this is a simple product rule question.]

(b) For X = {1, 2, 3} and Y = {1, 2, 3}, we have

A1 = {f1, f2, f3, f4, f5, f6, f7, f8}

where

f1 sends

1 7! 2,
2 7! 2,
3 7! 2;

f2 sends

1 7! 3,
2 7! 2,
3 7! 2;

f3 sends

1 7! 2,
2 7! 3,
3 7! 2;

f4 sends

1 7! 2,
2 7! 2,
3 7! 3;

f5 sends

1 7! 3,
2 7! 3,
3 7! 2;

f6 sends

1 7! 3,
2 7! 2,
3 7! 3;

f7 sends

1 7! 2,
2 7! 3,
3 7! 3;

and f8 sends

1 7! 3,
2 7! 3,
3 7! 3.

(i) What is A2? [Describe the set, not its size.]
(ii) What is A1 \A2?

(iii) What is A1 \A2 \A3?

[You should be able to do this without computing A3.]

(c) Explain why, for general n and k, we have the following:

(i) |A1| = (k � 1)
n
;

(ii) |A1 \A2| = (k � 2)
n
;

(iii) |A1 \A2 \ · · · \A`| = (k � `)n (for any `  k);
(iv) |A1 \A2 \ · · · \Ak| = 0.

(d) Explain why for any subset S ✓ {A1, A2, . . . , Ak} of size `, we have
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[For example |A1 \A3 \A7| = |A1 \A2 \A3|.]
(e) Use inclusion/exclusion to give a formula for |A1 [A2 [ · · · [Ak|.
(f) Explain why the set of surjective functions f : X ! Y is

A1 [A2 [ · · · [Ak, i.e. U �A1 [A2 [ · · · [Ak.

(g) Use the last two parts, together with part (a), to give the number of surjective functions from

X to Y . [Your answer should line up Theorem 1 in Section 8.6.]

(h) Use division rule to explain why S(n, k) is 1
k! times your answer to (g). Check that this agrees

with the formula we gave above.



Exercise 43. (Relations)

(a) Which of these relations on {0, 1, 2, 3} are equivalence relations? For those that are not, what

properties do they lack?

(i) {0 ⇠ 0, 1 ⇠ 1, 2 ⇠ 2, 3 ⇠ 3}
(ii) {0 ⇠ 0, 0 ⇠ 2, 2 ⇠ 0, 2 ⇠ 2, 2 ⇠ 3, 3 ⇠ 2, 3 ⇠ 3}
(iii) {0 ⇠ 0, 1 ⇠ 1, 1 ⇠ 2, 2 ⇠ 1, 2 ⇠ 2, 3 ⇠ 3}
(iv) {0 ⇠ 0, 1 ⇠ 1, 1 ⇠ 3, 2 ⇠ 2, 2 ⇠ 3, 3 ⇠ 1, 3 ⇠ 2, 3 ⇠ 3}
(v) {0 ⇠ 0, 0 ⇠ 1, 0 ⇠ 2, 1 ⇠ 0, 1 ⇠ 1, 1 ⇠ 2, 2 ⇠ 0, 2 ⇠ 2, 3 ⇠ 3}

(b) For each of the equivalence relations in part (a), list the equivalence classes.

(c) Which of these relations on the set of all people are equivalence relations? For those that are

not, what properties do they lack?

(i) a ⇠ b if a and b are the same age;

(ii) a ⇠ b if a and b have the same parents;

(iii) a ⇠ b if a and b share a common parent;

(iv) a ⇠ b if a and b have met;

(v) a ⇠ b if a and b speak a common language.

(d) For the following relations on A determine whether they are reflexive, symmetric, and/or tran-

sitive. State whether they are equivalence relations or not, and if they are describe their

equivalence classes.

(a) Let A = Z and define ⇠ by a ⇠ b whenever a� b is odd.

(b) Let A = R and define ⇠ by a ⇠ b whenever ab 6= 0.

(c) Let A = {f : Z ! Z} and define ⇠ by f ⇠ g whenever f(1) = g(1).

(e) Verify that the relation

f(x) ⇠ g(x) if
d

dx
f(x) =

d

dx
g(x)

is an equivalence relation on the set

D = {di↵erentiable functions ' : R ! R},
and describe the set of functions that are equivalent to f(x) = x2.



Inclusion/exclusion

Recall the “subtraction” rule:

For two sets A and B, we have

|A Y B| “ |A| ` |B| ´ |A X B|.

Venn diagram for A Y B:

U

BA

Inclusion/exclusion
For three sets A, B, and C. . .

Venn diagram for A Y B Y C:

U

BA

C

|A Y B Y C| “ |A| ` |B| ` |C| “include”

´ p|A X B| ` |A X C| ` |B X C|q “exclude”

` |A X B X C|. “include”



Example: How many integers are there 1 § n § 100 that are
multiples of 2, 3, and/or 5?
Ans. Let U “ tn P Z | 1 § n § 100u,

A “ tn P U | n is a multiple of 2u,

andB “ tn P U | n is a multiple of 3u, and

C “ tn P U | n is a multiple of 5u;

so we want to know the size of

A Y B Y C “ tn P U | n is a multiple of 2, 3, and/or 5u.

To use inclusion/exclusion, we need to compute the following:

|A| “ t100{2u “ 50
|B| “ t100{3u “ 33
|C| “ t100{5u “ 20

|A X B| “ t100{p2 ˚ 3qu “ 16
|A X C| “ t100{p2 ˚ 5qu “ 10
|B X C| “ t100{p3 ˚ 5qu “ 6

|A X B X C| “ t100{p2 ˚ 3 ˚ 5qu “ 3

So

|A Y B Y C| “ 50 ` 33 ` 20 ´ 16 ´ 10 ´ 6 ` 3 “ 74 .



Inclusion/exclusion
Thm. For sets A1, A2, . . . , An, we have

|A1 Y ¨ ¨ ¨ Y An| “

ÿ

SÑtA1,...,Anu
p´1q

|S|´1

ˇ̌
ˇ̌
ˇ
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ˇ

Process this statement for n “ 3:
Start with sets A1, A2, and A3. . . Try Exercises 41 & 42

S H tA1u tA2u tA3u

|S| 0 1 1 1

p´1q
|S|´1

´ 1 1 1 1
£

AiPS
Ai H A1 A2 A3

S tA1, A2u tA1, A3u tA2, A3u tA1, A2, A3u

|S| 2 2 2 3

p´1q
|S|´1

´ 1 ´ 1 ´ 1 1
£

AiPS
Ai A1 X A2 A1 X A3 A2 X A3 A1 X A2 X A3



Relations

A binary relation on a set A is a subset R Ñ A ˆ A, where
elements pa, bq are written as a „ b.

Example: A “ Z and R “ ta „ b | a † bu.
In words:

Let „ be the relation on Z given by a „ b whenever a † b.

Example: A “ R and R “ ta „ b | a “ bu.
In words:

Let „ be the relation on R given by a „ b whenever a “ b.

Example: A “ Z and

R “ ta „ b | a and b have the same remainder when divided by 3u.

More examples of (binary) relations:

1. For A a number system, let a „ b if a “ b. R, S, T

2. For A a number system, let a „ b if a † b. not R, not S, T

3. For A “ R, let a „ b if ab “ 0. not R, S, not T

4. For A a set of people, let a „ b if a is a (full) sibling of b.
not R, S, T

5. For A a set of people, let a „ b if a and b speak a common
language. R, S, not T

A binary relation on a set A is. . .

(R) reflexive if a „ a for all a P A;

(S) symmetric if a „ b implies b „ a;

(T) transitive if a „ b and b „ c implies a „ c, i.e.

pa „ b ^ b „ cq ñ a „ c

An equivalence relation on a set A is a binary relation that is
reflexive, symmetric, and transitive. (Only #1)



Fix n P Z°0 and define the relation on Z given by

“a „ b whenever
a and b have the same

remainder when divided by n.”

Is „ is an equivalence relation?

Note: Having the same remainder means that
a ´ b is a multiple of n.

For example, let n “ 5:

integer: ´3 ´2 ´1 0 1 2 3 4 5 6 7 8
remainder: 2 3 4 0 1 2 3 4 0 1 2 3

So 0 „ 5, and ´2 „ 3 „ 8, but ´3 ⇢ 3.

Check: we have a „ b whenever a ´ b “ kn for some k P Z.
reflexivity: a ´ a “ 0 “ 0 ¨ n X
symmetry: If a ´ b “ kn, then b ´ a “ ´kn “ p´kqn. X
transitivity: If a ´ b “ kn and b ´ c “ `n, then

a ´ c “ pa ´ bq ` pb ´ cq “ kn ` `n “ pk ` `qn.X
Yes! This is an equivalence relation!

Let A be a set. Consider the relation on PpAq by

S „ T if S Ñ T

Is „ is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.

Is
S „ T if S Ñ T or S Ñ T

an equivalence relation on PpAq?

Check: This is reflexive and symmetric, but not transitive.
So still no, it is not an equivalence relation.

Is
S „ T if |S| “ |T |

an equivalence relation on PpAq?



Let „ be an equivalence relation on a set A, and let a P A. The
set of all elements b P A such that a „ b is called the equivalence
class of a, denoted by ras.

Example: Consider the equivalence relation on A “ ta, b, cu given
by

a „ a, b „ b, c „ c, a „ c, and c „ a.

Then

ras “ ta, cu “ rcs, and

rbs “ tbu

are the two equivalence classes in A (with respect to this relation).

(We say there are two, not three, since “the equivalence classes”
refers to the sets themselves, not to the elements that generate
them.)

Let „ be an equivalence relation on a set A, and let a P A. The
set of all elements b P A such that a „ b is called the equivalence
class of a, denoted by ras.

Example: We showed that
“a „ b if a ´ b “ 5k for some k P Z”

is an equivalence relation on Z. Then
r0s “ t5n | n P Zu “ 5Z r1s “ t5n ` 1 | n P Zu “ 5Z ` 1

r2s “ t5n ` 2 | n P Zu “ 5Z ` 2 r3s “ t5n ` 3 | n P Zu “ 5Z ` 3

r4s “ t5n ` 4 | n P Zu “ 5Z ` 4

r5s “ t5n ` 5 | n P Zu “ t5m | m P Zu “ r0s “ r´5s “ r10s “ ¨ ¨ ¨

r6s “ t5n ` 6 | n P Zu “ t5m ` 1 | m P Zu “ r1s “ r´4s “ r11s “ ¨ ¨ ¨

...



Theorem. The equivalence classes of A partition A into subsets,
meaning

1. the equivalence classes are subsets of A:
ras Ñ A for all a P A;

2. any two equivalence classes are either equal or disjoint:
for all a, b P A, either ras “ rbs or ras X rbs “ H; and

3. the union of all the equivalence classes is all of A:
A “

§

aPA
ras.

We say that A is the disjoint union of equivalency classes, written

A “

ß

aPA
ras, LATEX: \bigsqcup, \sqcup

For example, in our last example, there are exactly 5 equivalence
classes: r0s, r1s, r2s, r3s, and r4s. Any other seemingly di↵erent
class is actually one of these (for example, r5s “ r0s). And

r0s Y r1s Y r2s Y r3s Y r4s “ Z.
So Z “ r0s \ r1s \ r2s \ r3s \ r4s .


