Math 365 - Monday 4/1/19

8.5 (inclusion/exclusion) and 9.1 & 9.5 (equivalence relations)

Exercise 41. Use inclusion/exclusion to answer the following questions.

(a) How many elements are in $A_1 \cup A_2$ if there are 12 elements in A_1 , 18 elements in A_2 , and

- (i) $|A_1 \cap A_2| = 6?$
- (ii) $A_1 \cap A_2 = \emptyset$?
- (iii) $A_1 \subseteq A_2$?
- (b) A survey of households in the United States reveals that 96% have at least one television set, 42% have a land-line telephone service, and 39% have land-line telephone service and at least one television set. What percentage of households in the United States have neither telephone service nor a television set?

[Start by naming your sets, as in "Let A be the set of households that have at least one TV set," and so on.]

(c) How many students are enrolled in a course either in

 $(1) \ calculus \ 1, \qquad (2) \ discrete \ math,$

(3) data structures, or (4) intro to computer science

at a school if there are 507, 292, 312, and 344 students in these courses, respectively; 14 in both calculus and data structures; 213 in both calculus and intro to CS; 211 in both discrete mathematics and data structures; 43 in both discrete mathematics and intro to CS; and no student may take calculus and discrete mathematics at the same time, nor intro to CS and data structures at the same time?

[Again, start by naming your sets, as in "Let A be the set of students enrolled in calculus 1," and so on.]

- (d) Find the number of integers $1 \le n \le 100$ that are odd and/or the square of an integer.
- (e) Find the number of integers $1 \le n \le 500$ that are *not* a multiple of 3, 5, or 7.

Exercise 42. Recall that the *Stirling numbers (of the second kind)* count arrangements of distinguishable objects into indistinguishable boxes, namely

$$S(n,k) = \left| \begin{cases} \text{Ways to place } n \text{ distinguishable objects} \\ \text{into } k \text{ indistinguishable boxes} \\ \text{so that no box is left empty} \end{cases} \right|$$

We stated in section 6.5 that

$$S(n,k) = \frac{1}{k!} \sum_{\ell=0}^{k-1} (-1)^{\ell} \binom{n}{\ell} (k-\ell)^n$$

We can now check this using inclusion/exclusion!

But first, we count the number of surjective functions from $X = \{1, 2, ..., n\}$ to $Y = \{1, ..., k\}$ (where $k \leq n$). To that end, let U be the set of all functions from X to Y, and for i = 1, ..., k, let

$$A_i = \{ \text{functions } f : X \to Y \mid i \notin f(X) \}.$$

- (a) What is |U|, i.e. how many functions are there from X to Y?
- [Don't put any restrictions on the functions here—this is a simple product rule question.] (b) For $X = \{1, 2, 3\}$ and $Y = \{1, 2, 3\}$, we have

$$A_1 = \{f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8\}$$

where

- (i) What is A_2 ?
- (ii) What is $A_1 \cap A_2$?
- (iii) What is $A_1 \cap A_2 \cap A_3$? [You should be able to do this without computing A_3 .]
- (c) Explain why, for general n and k, we have the following:
 - (i) $|A_1| = (k-1)^n$;
 - (ii) $|A_1 \cap A_2| = (k-2)^n$;
 - (iii) $|A_1 \cap A_2 \cap \cdots \cap A_\ell| = (k \ell)^n$ (for any $\ell \le k$);
 - (iv) $|A_1 \cap A_2 \cap \cdots \cap A_k| = 0.$
- (d) Explain why for any subset $S \subseteq \{A_1, A_2, \ldots, A_k\}$ of size ℓ , we have

$$\left|\bigcap_{A_i\in S}A_i\right| = |A_1\cap\cdots\cap A_\ell|.$$

[For example $|A_1 \cap A_3 \cap A_7| = |A_1 \cap A_2 \cap A_3|$.]

- (e) Use inclusion/exclusion to give a formula for $|A_1 \cup A_2 \cup \cdots \cup A_k|$.
- (f) Explain why the set of surjective functions $f: X \to Y$ is

$$\overline{A_1 \cup A_2 \cup \cdots \cup A_k}$$
, i.e. $U - A_1 \cup A_2 \cup \cdots \cup A_k$

- (g) Use the last two parts, together with part (a), to give the number of surjective functions from X to Y. [Your answer should line up Theorem 1 in Section 8.6.]
- (h) Use division rule to explain why S(n,k) is $\frac{1}{k!}$ times your answer to (g). Check that this agrees with the formula we gave above.

[Describe the *set*, not its size.]

Exercise 43. (Relations)

- (a) Which of these relations on $\{0, 1, 2, 3\}$ are equivalence relations? For those that are not, what properties do they lack?
 - (i) $\{0 \sim 0, 1 \sim 1, 2 \sim 2, 3 \sim 3\}$
 - (ii) $\{0 \sim 0, 0 \sim 2, 2 \sim 0, 2 \sim 2, 2 \sim 3, 3 \sim 2, 3 \sim 3\}$
 - (iii) $\{0 \sim 0, 1 \sim 1, 1 \sim 2, 2 \sim 1, 2 \sim 2, 3 \sim 3\}$
 - (iv) $\{0 \sim 0, 1 \sim 1, 1 \sim 3, 2 \sim 2, 2 \sim 3, 3 \sim 1, 3 \sim 2, 3 \sim 3\}$
 - (v) $\{0 \sim 0, 0 \sim 1, 0 \sim 2, 1 \sim 0, 1 \sim 1, 1 \sim 2, 2 \sim 0, 2 \sim 2, 3 \sim 3\}$
- (b) For each of the equivalence relations in part (a), list the equivalence classes.
- (c) Which of these relations on the set of all people are equivalence relations? For those that are not, what properties do they lack?
 - (i) $a \sim b$ if a and b are the same age;
 - (ii) $a \sim b$ if a and b have the same parents;
 - (iii) $a \sim b$ if a and b share a common parent;
 - (iv) $a \sim b$ if a and b have met;
 - (v) $a \sim b$ if a and b speak a common language.
- (d) For the following relations on A determine whether they are reflexive, symmetric, and/or transitive. State whether they are equivalence relations or not, and if they are describe their equivalence classes.
 - (a) Let $A = \mathbb{Z}$ and define \sim by $a \sim b$ whenever a b is odd.
 - (b) Let $A = \mathbb{R}$ and define \sim by $a \sim b$ whenever $ab \neq 0$.
 - (c) Let $A = \{f : \mathbb{Z} \to \mathbb{Z}\}$ and define \sim by $f \sim g$ whenever f(1) = g(1).
- (e) Verify that the relation

$$f(x) \sim g(x)$$
 if $\frac{d}{dx}f(x) = \frac{d}{dx}g(x)$

is an equivalence relation on the set

 $D = \{ \text{differentiable functions } \varphi : \mathbb{R} \to \mathbb{R} \},\$

and describe the set of functions that are equivalent to $f(x) = x^2$.

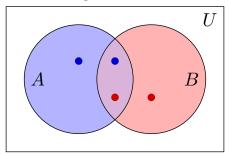
Inclusion/exclusion

Recall the "subtraction" rule:

For two sets \boldsymbol{A} and $\boldsymbol{B},$ we have

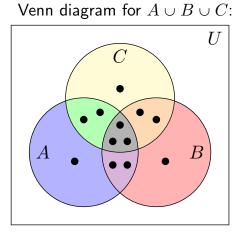
 $|A \cup B| = |A| + |B| - |A \cap B|.$

Venn diagram for $A \cup B$:



Inclusion/exclusion

For three sets A, B, and C...



$$\begin{split} |A \cup B \cup C| &= |A| + |B| + |C| & \text{``include''} \\ &- (|A \cap B| + |A \cap C| + |B \cap C|) & \text{``exclude''} \\ &+ |A \cap B \cap C|. & \text{``include''} \end{split}$$

Example: How many integers are there $1 \le n \le 100$ that are multiples of 2, 3, and/or 5?

Ans. Let $U = \{n \in \mathbb{Z} \mid 1 \leq n \leq 100\}$, $A = \{n \in U \mid n \text{ is a multiple of } 2\}$, $B = \{n \in U \mid n \text{ is a multiple of } 3\}$, and $C = \{n \in U \mid n \text{ is a multiple of } 5\}$;

so we want to know the size of

 $A \cup B \cup C = \{n \in U \mid n \text{ is a multiple of } 2, 3, \text{ and/or } 5\}.$ To use inclusion/exclusion, we need to compute the following:

	$= \lfloor 100/2 \rfloor = 50$ $= \lfloor 100/3 \rfloor = 33$	$ A \cap B = \lfloor 100/(2*3) \rfloor = 16$ $ A \cap C = \lfloor 100/(2*5) \rfloor = 10$			
	= [100/5] = 20	$ B \cap C = \lfloor 100/(3*5) \rfloor = 6$			
$ A \cap B \cap C = \lfloor 100/(2*3*5) \rfloor = 3$ So					
	$ A \cup B \cup C = 50 + 33$	$3 + 20 - 16 - 10 - 6 + 3 = \boxed{74}.$			

${\sf Inclusion}/{\sf exclusion}$

Thm. For sets A_1 , A_2 , ..., A_n , we have

$$|A_1 \cup \dots \cup A_n| = \sum_{S \subseteq \{A_1, \dots, A_n\}} (-1)^{|S|-1} \left| \bigcap_{A_i \in S} A_i \right|$$

Process this statement for n = 3:

Start with sets A_1 , A_2 , and A_3 ...

Try Exercises 41 & 42

S	Ø	$\{A_1\}$	$\{A_2\}$	$\{A_3\}$
S	0	1	1	1
$(-1)^{ S -1}$	-1	1	1	1
$\bigcap_{A_i \in S} A_i$	Ø	A_1	A_2	A_3

S	$\{A_1, A_2\}$	$\{A_1, A_3\}$	$\{A_2, A_3\}$	$\{A_1, A_2, A_3\}$
S	2	2	2	3
$(-1)^{ S -1}$	-1	- 1	- 1	1
$\bigcap_{A_i \in S} A_i$	$A_1 \cap A_2$	$A_1 \cap A_3$	$A_2 \cap A_3$	$A_1 \cap A_2 \cap A_3$

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A = \mathbb{Z}$ and $R = \{a \sim b \mid a < b\}$. In words:

Let \sim be the relation on \mathbb{Z} given by $a \sim b$ whenever a < b. Example: $A = \mathbb{R}$ and $R = \{a \sim b \mid a = b\}$. In words: Let \sim be the relation on \mathbb{R} given by $a \sim b$ whenever a = b.

Example: $A = \mathbb{Z}$ and

 $R = \{a \sim b \mid a \text{ and } b \text{ have the same remainder when divided by 3}\}.$

More examples of (binary) relations:

- 1. For A a number system, let $a \sim b$ if a = b. R, S, T
- 2. For A a number system, let $a \sim b$ if a < b. not R, not S, T
- 3. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0. not R, S, not T
- 4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b.

not R, S, T

5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S, not T

A binary relation on a set A is...

- (R) reflexive if $a \sim a$ for all $a \in A$;
- (S) symmetric if $a \sim b$ implies $b \sim a$;
- (T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e.

$$(a \sim b \land b \sim c) \Rightarrow a \sim c$$

An equivalence relation on a set A is a binary relation that is reflexive, symmetric, and transitive. (Only #1)

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

" $a \sim b$ whenever a and b have the same remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that a-b is a multiple of n.

For example, let n = 5: integer: -3 $\mathbf{2}$ -20 3 57 -11 4 6 8 3 3 remainder: $\mathbf{2}$ 3 0 1 $\mathbf{2}$ 1 24 4 0 So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \neq 3$. Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$. reflexivity: $a - a = 0 = 0 \cdot n \checkmark$ symmetry: If a - b = kn, then b - a = -kn = (-k)n. transitivity: If a - b = kn and $b - c = \ell n$, then $a - c = (a - b) + (b - c) = kn + \ell n = (k + \ell)n.\checkmark$

Yes! This is an equivalence relation!

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

 $S \sim T$ if $S \subseteq T$

Is \sim is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric. So no, it is not an equivalence relation.

ls

$$S \sim T \qquad \text{if} \qquad S \subseteq T \text{ or } S \subseteq T$$

an equivalence relation on $\mathcal{P}(A)$?

Check: This is reflexive and symmetric, but not transitive.

So still no, it is not an equivalence relation.

ls

$$S \sim T$$
 if $|S| = |T|$

an equivalence relation on $\mathcal{P}(A)$?

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by [a].

Example: Consider the equivalence relation on $A = \{a, b, c\}$ given by

 $a \sim a$, $b \sim b$, $c \sim c$, $a \sim c$, and $c \sim a$.

Then

$$[a] = \{a, c\} = [c], \text{ and}$$

 $[b] = \{b\}$

are the two equivalence classes in A (with respect to this relation).

(We say there are two, *not three*, since "the equivalence classes" refers to the sets themselves, not to the elements that generate them.)

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by [a].

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\} = \{5m \mid m \in \mathbb{Z}\} = [0] = [-5] = [10] = \cdots$ $[6] = \{5n + 6 \mid n \in \mathbb{Z}\} = \{5m + 1 \mid m \in \mathbb{Z}\} = [1] = [-4] = [11] = \cdots$ Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A:

 $[a] \subseteq A$ for all $a \in A$;

- any two equivalence classes are either equal or disjoint: for all a, b ∈ A, either [a] = [b] or [a] ∩ [b] = Ø; and
- 3. the union of all the equivalence classes is all of A:

$$A = \bigcup_{a \in A} [a]$$

We say that A is the disjoint union of equivalency classes, written

$$A = \bigsqcup_{a \in A} [a], \qquad \text{AT}_{\mathsf{E}} X: \ \mathsf{bigsqcup}, \ \mathsf{sqcup}$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4]. Any other seemingly different class is actually one of these (for example, [5] = [0]). And $[0] \cup [1] \cup [2] \cup [3] \cup [4] = \mathbb{Z}$.

So
$$\mathbb{Z} = [0] \sqcup [1] \sqcup [2] \sqcup [3] \sqcup [4]$$
.