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Example: How many integers are there 1 ď n ď 100 that are
multiples of 2, 3, and/or 5?

Ans. Let U “ tn P Z | 1 ď n ď 100u,

A “ tn P U | n is a multiple of 2u,

andB “ tn P U | n is a multiple of 3u, and

C “ tn P U | n is a multiple of 5u;

so we want to know the size of

AYB Y C “ tn P U | n is a multiple of 2, 3, and/or 5u.

To use inclusion/exclusion, we need to compute the following:

|A| “

t100{2u “ 50

|B| “

t100{3u “ 33

|C| “

t100{5u “ 20

|AXB| “

t100{p2 ˚ 3qu “ 16

|AX C| “

t100{p2 ˚ 5qu “ 10

|B X C| “

t100{p3 ˚ 5qu “ 6

|AXB X C| “

t100{p2 ˚ 3 ˚ 5qu “ 3

Fact: n being a multiple of 2 and 3 is the same as being a multiple
of 6. Same for 2 and 5 versus 10, 3 and 5 versus 15, and 2, 3,
and 5 versus 30.
So

|AYB Y C| “ 50` 33` 20´ 16´ 10´ 6` 3 “ 74 .
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Inclusion/exclusion
Thm. For sets A1, A2, . . . , An, we have

|A1 Y ¨ ¨ ¨ YAn| “
ÿ

SĎtA1,...,Anu

p´1q|S|´1

ˇ

ˇ

ˇ

ˇ

ˇ

č

AiPS

Ai

ˇ

ˇ

ˇ

ˇ

ˇ

Process this statement for n “ 3:
Start with sets A1, A2, and A3. . .

Try Exercises 41 & 42

S H tA1u tA2u tA3u

|S| 0 1 1 1

p´1q|S|´1 ´ 1 1 1 1
č

AiPS

Ai H A1 A2 A3

S tA1, A2u tA1, A3u tA2, A3u tA1, A2, A3u

|S| 2 2 2 3

p´1q|S|´1 ´ 1 ´ 1 ´ 1 1
č

AiPS

Ai A1 XA2 A1 XA3 A2 XA3 A1 XA2 XA3
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|S| 0 1 1 1

p´1q|S|´1 ´ 1 1 1 1
č

AiPS

Ai H A1 A2 A3

S tA1, A2u tA1, A3u tA2, A3u tA1, A2, A3u

|S| 2 2 2 3

p´1q|S|´1 ´ 1 ´ 1 ´ 1 1
č

AiPS

Ai A1 XA2 A1 XA3 A2 XA3 A1 XA2 XA3



Relations

A binary relation on a set A is a subset R Ď AˆA, where
elements pa, bq are written as a „ b.

Example: A “ Z and R “ ta „ b | a ă bu.
In words:

Let „ be the relation on Z given by a „ b whenever a ă b.

Example: A “ R and R “ ta „ b | a “ bu.
In words:

Let „ be the relation on R given by a „ b whenever a “ b.

Example: A “ Z and

R “ ta „ b | a and b have the same remainder when divided by 3u.
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More examples of (binary) relations:

1. For A a number system, let a „ b if a “ b.

R, S, T

2. For A a number system, let a „ b if a ă b.

not R, not S, T

3. For A “ R, let a „ b if ab “ 0.

not R, S, not T

4. For A a set of people, let a „ b if a is a (full) sibling of b.

not R, S, T

5. For A a set of people, let a „ b if a and b speak a common
language.

R, S, not T

A binary relation on a set A is. . .

(R) reflexive if a „ a for all a P A;

(S) symmetric if a „ b implies b „ a;

(T) transitive if a „ b and b „ c implies a „ c, i.e.

pa „ b^ b „ cq ñ a „ c

An equivalence relation on a set A is a binary relation that is
reflexive, symmetric, and transitive. (Only #1)
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Fix n P Zą0 and define the relation on Z given by

“a „ b whenever
a and b have the same

remainder when divided by n.”

Is „ is an equivalence relation?

Note: Having the same remainder means that
a´ b is a multiple of n.

For example, let n “ 5:

integer: ´3 ´2 ´1 0 1 2 3 4 5 6 7 8
remainder:

2 3 4 0

1 2 3 4

0 1 2 3

So 0 „ 5, and ´2 „ 3 „ 8, but ´3  3.

Check: we have a „ b whenever a´ b “ kn for some k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!
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Let A be a set. Consider the relation on PpAq by

S „ T if S Ď T

Is „ is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.

Is
S „ T if S Ď T or S Ď T

an equivalence relation on PpAq?

Check: This is reflexive and symmetric, but not transitive.
So still no, it is not an equivalence relation.

Is
S „ T if |S| “ |T |

an equivalence relation on PpAq?
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Let „ be an equivalence relation on a set A, and let a P A. The
set of all elements b P A such that a „ b is called the equivalence
class of a, denoted by ras.

Example: Consider the equivalence relation on A “ ta, b, cu given
by

a „ a, b „ b, c „ c, a „ c, and c „ a.

Then

ras “ ta, cu “ rcs, and

rbs “ tbu

are the two equivalence classes in A (with respect to this relation).

(We say there are two, not three, since “the equivalence classes”
refers to the sets themselves, not to the elements that generate
them.)
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Let „ be an equivalence relation on a set A, and let a P A. The
set of all elements b P A such that a „ b is called the equivalence
class of a, denoted by ras.

Example: We showed that
“a „ b if a´ b “ 5k for some k P Z”

is an equivalence relation on Z.

Then

r0s “ t5n | n P Zu “ 5Z r1s “ t5n` 1 | n P Zu “ 5Z` 1

r2s “ t5n` 2 | n P Zu “ 5Z` 2 r3s “ t5n` 3 | n P Zu “ 5Z` 3

r4s “ t5n` 4 | n P Zu “ 5Z` 4

r5s “ t5n` 5 | n P Zu “ t5m | m P Zu “ r0s “ r´5s “ r10s “ ¨ ¨ ¨
r6s “ t5n` 6 | n P Zu “ t5m` 1 | m P Zu “ r1s “ r´4s “ r11s “ ¨ ¨ ¨

...
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Theorem. The equivalence classes of A partition A into subsets

,
meaning

1. the equivalence classes are subsets of A:
ras Ď A for all a P A;

2. any two equivalence classes are either equal or disjoint:
for all a, b P A, either ras “ rbs or ras X rbs “ H; and

3. the union of all the equivalence classes is all of A:
A “

ď

aPA

ras.

We say that A is the disjoint union of equivalency classes, written

A “
ğ

aPA

ras, LATEX: \bigsqcup, \sqcup

For example, in our last example, there are exactly 5 equivalence
classes: r0s, r1s, r2s, r3s, and r4s. Any other seemingly different
class is actually one of these (for example, r5s “ r0s). And

r0s Y r1s Y r2s Y r3s Y r4s “ Z.

So Z “ r0s \ r1s \ r2s \ r3s \ r4s .
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