Recall the "subtraction" rule:

For two sets A and B, we have

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Recall the "subtraction" rule:

For two sets A and B, we have

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Venn diagram for $A \cup B$:

Recall the "subtraction" rule:

For two sets A and B, we have

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Venn diagram for $A \cup B$:

Recall the "subtraction" rule:

For two sets A and B, we have

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Venn diagram for $A \cup B$:

For three sets A, B, and C...

Venn diagram for $A \cup B \cup C$:

For three sets A, B, and C...

Venn diagram for $A \cup B \cup C$:

$$|A \cup B \cup C| =$$

For three sets A, B, and C...

Venn diagram for $A \cup B \cup C$:

$$|A \cup B \cup C| = |A|$$

For three sets A, B, and C...

Venn diagram for $A \cup B \cup C$:

٠

 $|A\cup B\cup C|=|A|+|B|$

For three sets A, B, and C...

Venn diagram for $A \cup B \cup C$:

$$|A \cup B \cup C| = |A| + |B| + |C|$$

For three sets A, B, and C...

Venn diagram for $A \cup B \cup C$:

$$|A \cup B \cup C| = |A| + |B| + |C|$$
$$- (|A \cap B|)$$

For three sets A, B, and C...

Venn diagram for $A \cup B \cup C$:

$$|A \cup B \cup C| = |A| + |B| + |C|$$
$$- (|A \cap B| + |A \cap C|)$$

For three sets A, B, and C...

Venn diagram for $A \cup B \cup C$:

.

$$|A \cup B \cup C| = |A| + |B| + |C| - (|A \cap B| + |A \cap C| + |B \cap C|)$$

For three sets A, B, and C...

Venn diagram for $A \cup B \cup C$:

$$|A \cup B \cup C| = |A| + |B| + |C|$$
$$- (|A \cap B| + |A \cap C| + |B \cap C|)$$
$$+ |A \cap B \cap C|.$$

For three sets A, B, and C...

Venn diagram for $A \cup B \cup C$:

$$\begin{split} |A \cup B \cup C| &= |A| + |B| + |C| & \text{``include''} \\ &- (|A \cap B| + |A \cap C| + |B \cap C|) & \text{``exclude''} \\ &+ |A \cap B \cap C|. & \text{``include''} \end{split}$$

Example: How many integers are there $1 \le n \le 100$ that are multiples of 2, 3, and/or 5?

so we want to know the size of

 $A \cup B \cup C = \{n \in U \mid n \text{ is a multiple of } 2, 3, \text{ and/or } 5\}.$

so we want to know the size of

 $A \cup B \cup C = \{n \in U \mid n \text{ is a multiple of } 2, 3, \text{ and/or } 5\}.$ To use inclusion/exclusion, we need to compute the following:

 $\begin{aligned} |A| &= & |A \cap B| = \\ |B| &= & |A \cap C| = \\ |C| &= & |B \cap C| = \end{aligned}$

so we want to know the size of

 $A \cup B \cup C = \{n \in U \mid n \text{ is a multiple of } 2, 3, \text{ and/or } 5\}.$ To use inclusion/exclusion, we need to compute the following:

$$\begin{aligned} |A| &= \lfloor 100/2 \rfloor = 50 & |A \cap B| = \\ |B| &= & |A \cap C| = \\ |C| &= & |B \cap C| = \end{aligned}$$

so we want to know the size of

 $A \cup B \cup C = \{n \in U \mid n \text{ is a multiple of } 2, 3, \text{ and/or } 5\}.$ To use inclusion/exclusion, we need to compute the following:

$ A = \lfloor 100/2 \rfloor = 50$	$ A \cap B =$
$ B = \lfloor 100/3 \rfloor = 33$	$ A \cap C =$
C =	$ B \cap C =$

so we want to know the size of

 $A \cup B \cup C = \{n \in U \mid n \text{ is a multiple of } 2, 3, \text{ and/or } 5\}.$ To use inclusion/exclusion, we need to compute the following:

$ A = \lfloor 100/2 \rfloor = 50$	$ A \cap B =$
$ B = \lfloor 100/3 \rfloor = 33$	$ A \cap C =$
$ C = \lfloor 100/5 \rfloor = 20$	$ B \cap C =$

so we want to know the size of

 $A \cup B \cup C = \{n \in U \mid n \text{ is a multiple of } 2, 3, \text{ and/or } 5\}.$ To use inclusion/exclusion, we need to compute the following:

$ A = \lfloor 100/2 \rfloor = 50$	$ A \cap B =$
$ B = \lfloor 100/3 \rfloor = 33$	$ A \cap C =$
$ C = \lfloor 100/5 \rfloor = 20$	$ B \cap C =$

 $|A \cap B \cap C| =$

Fact: n being a multiple of 2 and 3 is the same as being a multiple of 6.

so we want to know the size of

 $A \cup B \cup C = \{n \in U \mid n \text{ is a multiple of } 2, 3, \text{ and/or } 5\}.$ To use inclusion/exclusion, we need to compute the following:

$$\begin{aligned} |A| &= \lfloor 100/2 \rfloor = 50 & |A \cap B| = \lfloor 100/(2*3) \rfloor = 16 \\ |B| &= \lfloor 100/3 \rfloor = 33 & |A \cap C| = \\ |C| &= \lfloor 100/5 \rfloor = 20 & |B \cap C| = \end{aligned}$$

 $|A \cap B \cap C| =$

Fact: n being a multiple of 2 and 3 is the same as being a multiple of 6.

so we want to know the size of

 $A \cup B \cup C = \{n \in U \mid n \text{ is a multiple of } 2, 3, \text{ and/or } 5\}.$ To use inclusion/exclusion, we need to compute the following:

$$\begin{aligned} |A| &= \lfloor 100/2 \rfloor = 50 & |A \cap B| &= \lfloor 100/(2*3) \rfloor = 16 \\ |B| &= \lfloor 100/3 \rfloor = 33 & |A \cap C| &= \lfloor 100/(2*5) \rfloor = 10 \\ |C| &= \lfloor 100/5 \rfloor = 20 & |B \cap C| = \end{aligned}$$

 $|A \cap B \cap C| =$

Fact: n being a multiple of 2 and 3 is the same as being a multiple of 6. Same for 2 and 5 versus 10

 $C = \{ n \in U \mid n \text{ is a multiple of } 5 \};$

so we want to know the size of

 $A \cup B \cup C = \{n \in U \mid n \text{ is a multiple of } 2, 3, \text{ and/or } 5\}.$ To use inclusion/exclusion, we need to compute the following:

$$\begin{aligned} |A| &= \lfloor 100/2 \rfloor = 50 & |A \cap B| &= \lfloor 100/(2*3) \rfloor = 16 \\ |B| &= \lfloor 100/3 \rfloor = 33 & |A \cap C| &= \lfloor 100/(2*5) \rfloor = 10 \\ |C| &= \lfloor 100/5 \rfloor = 20 & |B \cap C| &= \lfloor 100/(3*5) \rfloor = 6 \end{aligned}$$

 $|A \cap B \cap C| =$

Fact: n being a multiple of 2 and 3 is the same as being a multiple of 6. Same for 2 and 5 versus 10, 3 and 5 versus 15

$$C = \{ n \in U \mid n \text{ is a multiple of } 5 \};$$

so we want to know the size of

 $A \cup B \cup C = \{n \in U \mid n \text{ is a multiple of } 2, 3, \text{ and/or } 5\}.$ To use inclusion/exclusion, we need to compute the following:

$$\begin{aligned} |A| &= \lfloor 100/2 \rfloor = 50 & |A \cap B| &= \lfloor 100/(2*3) \rfloor = 16 \\ |B| &= \lfloor 100/3 \rfloor = 33 & |A \cap C| &= \lfloor 100/(2*5) \rfloor = 10 \\ |C| &= \lfloor 100/5 \rfloor = 20 & |B \cap C| &= \lfloor 100/(3*5) \rfloor = 6 \end{aligned}$$

$$|A \cap B \cap C| = \lfloor 100/(2*3*5) \rfloor = 3$$

Fact: n being a multiple of 2 and 3 is the same as being a multiple of 6. Same for 2 and 5 versus 10, 3 and 5 versus 15, and 2, 3, and 5 versus 30.

so we want to know the size of

 $A \cup B \cup C = \{n \in U \mid n \text{ is a multiple of } 2, 3, \text{ and/or } 5\}.$ To use inclusion/exclusion, we need to compute the following:

$$\begin{aligned} |A| &= \lfloor 100/2 \rfloor = 50 & |A \cap B| &= \lfloor 100/(2*3) \rfloor = 16 \\ |B| &= \lfloor 100/3 \rfloor = 33 & |A \cap C| &= \lfloor 100/(2*5) \rfloor = 10 \\ |C| &= \lfloor 100/5 \rfloor = 20 & |B \cap C| &= \lfloor 100/(3*5) \rfloor = 6 \end{aligned}$$

$$|A \cap B \cap C| = \lfloor 100/(2*3*5) \rfloor = 3$$

So

$$|A \cup B \cup C| = 50 + 33 + 20 - 16 - 10 - 6 + 3 = 74.$$

Thm. For sets A_1 , A_2 , ..., A_n , we have

$$|A_1 \cup \dots \cup A_n| = \sum_{S \subseteq \{A_1, \dots, A_n\}} (-1)^{|S|-1} \left| \bigcap_{A_i \in S} A_i \right|$$

Т

Thm. For sets A_1 , A_2 , ..., A_n , we have

$$|A_1 \cup \dots \cup A_n| = \sum_{S \subseteq \{A_1, \dots, A_n\}} (-1)^{|S|-1} \left| \bigcap_{A_i \in S} A_i \right|$$

Thm. For sets A_1 , A_2 , ..., A_n , we have

$$|A_1 \cup \dots \cup A_n| = \sum_{S \subseteq \{A_1, \dots, A_n\}} (-1)^{|S|-1} \left| \bigcap_{A_i \in S} A_i \right|$$

S	Ø	$\{A_1\}$	$\{A_2\}$	$\{A_3\}$

S	$\{A_1, A_2\}$	$\{A_1, A_3\}$	$\{A_2, A_3\}$	$\{A_1, A_2, A_3\}$

Thm. For sets A_1 , A_2 , ..., A_n , we have

$$|A_1 \cup \dots \cup A_n| = \sum_{S \subseteq \{A_1, \dots, A_n\}} (-1)^{|S|-1} \left| \bigcap_{A_i \in S} A_i \right|$$

Т

S	Ø	$\{A_1\}$	$\{A_2\}$	$\{A_3\}$
S	0	1	1	1

S	$\{A_1, A_2\}$	$\{A_1, A_3\}$	$\{A_2, A_3\}$	$\{A_1, A_2, A_3\}$
S	2	2	2	3

Thm. For sets A_1 , A_2 , ..., A_n , we have

$$|A_1 \cup \cdots \cup A_n| = \sum_{S \subseteq \{A_1, \dots, A_n\}} (-1)^{|S|-1} \left| \bigcap_{A_i \in S} A_i \right|$$

Т

S	Ø	$\{A_1\}$	$\{A_2\}$	$\{A_3\}$
S	0	1	1	1
$(-1)^{ S -1}$	- 1	1	1	1

S	$\{A_1, A_2\}$	$\{A_1, A_3\}$	$\{A_2, A_3\}$	$\{A_1, A_2, A_3\}$
S	2	2	2	3
$(-1)^{ S -1}$	- 1	- 1	- 1	1

Thm. For sets A_1 , A_2 , ..., A_n , we have

$$|A_1 \cup \dots \cup A_n| = \sum_{S \subseteq \{A_1, \dots, A_n\}} (-1)^{|S|-1} \left| \bigcap_{A_i \in S} A_i \right|$$

Т

S	Ø	$\{A_1\}$	$\{A_2\}$	$\{A_3\}$
S	0	1	1	1
$(-1)^{ S -1}$	- 1	1	1	1
$\bigcap_{A_i \in S} A_i$	Ø	A_1	A_2	A_3

S	$\{A_1, A_2\}$	$\{A_1, A_3\}$	$\{A_2, A_3\}$	$\{A_1, A_2, A_3\}$
S	2	2	2	3
$(-1)^{ S -1}$	- 1	- 1	- 1	1
$\bigcap_{A_i \in S} A_i$	$A_1 \cap A_2$	$A_1 \cap A_3$	$A_2 \cap A_3$	$A_1 \cap A_2 \cap A_3$

Thm. For sets A_1 , A_2 , ..., A_n , we have

$$|A_1 \cup \dots \cup A_n| = \sum_{S \subseteq \{A_1, \dots, A_n\}} (-1)^{|S|-1} \left| \bigcap_{A_i \in S} A_i \right|$$

Process this statement for n = 3: Start with sets A_1 , A_2 , and A_3 ...

Try Exercises 41 & 42

ı.

S	Ø	$\{A_1\}$	$\{A_2\}$	$\{A_3\}$
S	0	1	1	1
$(-1)^{ S -1}$	- 1	1	1	1
$\bigcap_{A_i \in S} A_i$	Ø	A_1	A_2	A_3

S	$\{A_1, A_2\}$	$\{A_1, A_3\}$	$\{A_2, A_3\}$	$\{A_1, A_2, A_3\}$
S	2	2	2	3
$(-1)^{ S -1}$	- 1	- 1	- 1	1
$\bigcap_{A_i \in S} A_i$	$A_1 \cap A_2$	$A_1 \cap A_3$	$A_2 \cap A_3$	$A_1 \cap A_2 \cap A_3$

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A = \mathbb{Z}$ and $R = \{a \sim b \mid a < b\}$.
A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A = \mathbb{Z}$ and $R = \{a \sim b \mid a < b\}$. In words:

Let \sim be the relation on \mathbb{Z} given by $a \sim b$ whenever a < b.

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A = \mathbb{Z}$ and $R = \{a \sim b \mid a < b\}$. In words:

Let \sim be the relation on \mathbb{Z} given by $a \sim b$ whenever a < b.

Example: $A = \mathbb{R}$ and $R = \{a \sim b \mid a = b\}$.

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A = \mathbb{Z}$ and $R = \{a \sim b \mid a < b\}$. In words:

Let \sim be the relation on \mathbb{Z} given by $a \sim b$ whenever a < b.

Example: $A = \mathbb{R}$ and $R = \{a \sim b \mid a = b\}$. In words:

Let \sim be the relation on \mathbb{R} given by $a \sim b$ whenever a = b.

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A = \mathbb{Z}$ and $R = \{a \sim b \mid a < b\}$. In words:

Let \sim be the relation on \mathbb{Z} given by $a \sim b$ whenever a < b.

Example: $A = \mathbb{R}$ and $R = \{a \sim b \mid a = b\}$. In words:

Let \sim be the relation on \mathbb{R} given by $a \sim b$ whenever a = b.

Example: $A = \mathbb{Z}$ and

 $R = \{a \sim b \mid a \text{ and } b \text{ have the same remainder when divided by 3}\}.$

1. For A a number system, let $a \sim b$ if a = b.

- 1. For A a number system, let $a \sim b$ if a = b.
- 2. For A a number system, let $a \sim b$ if a < b.

- 1. For A a number system, let $a \sim b$ if a = b.
- 2. For A a number system, let $a \sim b$ if a < b.
- **3**. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0.

- 1. For A a number system, let $a \sim b$ if a = b.
- 2. For A a number system, let $a \sim b$ if a < b.
- **3**. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0.
- 4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b.

- 1. For A a number system, let $a \sim b$ if a = b.
- 2. For A a number system, let $a \sim b$ if a < b.
- **3**. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0.
- 4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b.
- 5. For A a set of people, let $a \sim b$ if a and b speak a common language.

- 1. For A a number system, let $a \sim b$ if a = b.
- 2. For A a number system, let $a \sim b$ if a < b.
- **3**. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0.
- 4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b.
- 5. For A a set of people, let $a \sim b$ if a and b speak a common language.

A binary relation on a set A is... (R) reflexive if $a \sim a$ for all $a \in A$;

- 1. For A a number system, let $a \sim b$ if a = b. R
- 2. For A a number system, let $a \sim b$ if a < b. not R
- 3. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0. not R
- 4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R
- 5. For A a set of people, let $a \sim b$ if a and b speak a common language. R

A binary relation on a set A is... (R) reflexive if $a \sim a$ for all $a \in A$;

- 1. For A a number system, let $a \sim b$ if a = b. R
- 2. For A a number system, let $a \sim b$ if a < b. not R
- 3. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0. not R
- 4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R
- 5. For A a set of people, let $a \sim b$ if a and b speak a common language. R

A binary relation on a set A is... (R) reflexive if $a \sim a$ for all $a \in A$; (S) symmetric if $a \sim b$ implies $b \sim a$;

- 1. For A a number system, let $a \sim b$ if a = b. R, S
- 2. For A a number system, let $a \sim b$ if a < b. not R, not S
- 3. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0. not R, S
- 4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S
- 5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S

A binary relation on a set A is... (R) reflexive if $a \sim a$ for all $a \in A$; (S) symmetric if $a \sim b$ implies $b \sim a$;

- 1. For A a number system, let $a \sim b$ if a = b. R, S
- 2. For A a number system, let $a \sim b$ if a < b. not R, not S
- 3. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0. not R, S
- 4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S
- 5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S
- A binary relation on a set A is... (R) reflexive if $a \sim a$ for all $a \in A$; (S) symmetric if $a \sim b$ implies $b \sim a$; (T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e. $(a \sim b \land b \sim c) \Rightarrow a \sim c$

- 1. For A a number system, let $a \sim b$ if a = b. R, S, T
- 2. For A a number system, let $a \sim b$ if a < b. not R, not S, T
- 3. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0. not R, S, not T
- 4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S, T
- 5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S, not T
- A binary relation on a set A is... (R) reflexive if $a \sim a$ for all $a \in A$; (S) symmetric if $a \sim b$ implies $b \sim a$; (T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e. $(a \sim b \land b \sim c) \Rightarrow a \sim c$

- 1. For A a number system, let $a \sim b$ if a = b. R, S, T
- 2. For A a number system, let $a \sim b$ if a < b. not R, not S, T
- 3. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0. not R, S, not T
- 4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S, T
- 5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S, not T
- A binary relation on a set A is... (R) reflexive if $a \sim a$ for all $a \in A$; (S) symmetric if $a \sim b$ implies $b \sim a$; (T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e. $(a \sim b \land b \sim c) \Rightarrow a \sim c$

An equivalence relation on a set A is a binary relation that is reflexive, symmetric, and transitive.

- 1. For A a number system, let $a \sim b$ if a = b. R, S, T
- 2. For A a number system, let $a \sim b$ if a < b. not R, not S, T
- 3. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0. not R, S, not T
- 4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S, T
- 5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S, not T
- A binary relation on a set A is... (R) reflexive if $a \sim a$ for all $a \in A$; (S) symmetric if $a \sim b$ implies $b \sim a$; (T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e. $(a \sim b \land b \sim c) \Rightarrow a \sim c$

An equivalence relation on a set A is a binary relation that is reflexive, symmetric, and transitive. (Only #1)

 $\label{eq:states} \begin{array}{l} \mbox{Fix } n \in \mathbb{Z}_{>0} \mbox{ and define the relation on } \mathbb{Z} \mbox{ given by} \\ ``a \sim b \mbox{ whenever } & a \mbox{ and } b \mbox{ have the same} \\ \mbox{ remainder when divided by } n." \end{array}$

Is \sim is an equivalence relation?

"
$$a \sim b$$
 whenever a and b have the same remainder when divided by n ."

Is \sim is an equivalence relation?

Note: Having the same remainder means that a - b is a multiple of n.

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:					1	2	3	4				

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:					1	2	3	4	0			

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:				0	1	2	3	4	0			

"
$$a \sim b$$
 whenever a and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:				0	1	2	3	4	0	1		

"
$$a \sim b$$
 whenever a and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:				0	1	2	3	4	0	1	2	

"
$$a \sim b$$
 whenever a and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:				0	1	2	3	4	0	1	2	3

"
$$a \sim b$$
 whenever a and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2			0	1	2	3	4	0	1	2	3

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3		0	1	2	3	4	0	1	2	3

whenever
$$a$$
 and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

"
$$a \sim b$$
 whenever $a \text{ and } b$ have the same remainder when divided by n ."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0\sim 5$

"
$$a \sim b$$
 whenever $a \text{ and } b$ have the same remainder when divided by n ."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0\sim5,$ and $-2\sim3$

"
$$a \sim b$$
 whenever $a \text{ and } b$ have the same remainder when divided by n ."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0\sim 5,$ and $-2\sim 3\sim 8$

"
$$a \sim b$$
 whenever $a \text{ and } b$ have the same remainder when divided by n ."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

whenever
$$a$$
 and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

" $a \sim b$

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$.

whenever
$$a$$
 and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

" $a \sim b$

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$. reflexivity:

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

" $a \sim b$

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$.

reflexivity: $a - a = 0 = 0 \cdot n \checkmark$
whenever
$$a$$
 and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

" $a \sim b$

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$.

reflexivity: $a - a = 0 = 0 \cdot n \checkmark$

symmetry:

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

" $a \sim b$

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$.

reflexivity: $a - a = 0 = 0 \cdot n \checkmark$ symmetry: If a - b = kn

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

" $a \sim b$

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$.

reflexivity:
$$a - a = 0 = 0 \cdot n \checkmark$$

symmetry: If $a - b = kn$, then $b - a = -kn = (-k)n$. \checkmark

whenever
$$a$$
 and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

" $a \sim b$

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$.

reflexivity:
$$a - a = 0 = 0 \cdot n \checkmark$$

symmetry: If $a - b = kn$, then $b - a = -kn = (-k)n$. \checkmark
transitivity:

"
$$a \sim b$$
 whenever a and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$.

reflexivity: $a - a = 0 = 0 \cdot n \checkmark$ symmetry: If a - b = kn, then b - a = -kn = (-k)n. \checkmark transitivity: If a - b = kn and $b - c = \ell n$

whenever
$$a$$
 and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

" $a \sim b$

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$.

reflexivity: $a - a = 0 = 0 \cdot n \checkmark$ symmetry: If a - b = kn, then b - a = -kn = (-k)n. \checkmark transitivity: If a - b = kn and $b - c = \ell n$, then

$$a-c$$

"
$$a \sim b$$
 whenever a and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$.

reflexivity: $a - a = 0 = 0 \cdot n \checkmark$ symmetry: If a - b = kn, then b - a = -kn = (-k)n. \checkmark transitivity: If a - b = kn and $b - c = \ell n$, then a - c = (a - b) + (b - c)

"
$$a \sim b$$
 whenever a and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$.

reflexivity: $a - a = 0 = 0 \cdot n \checkmark$ symmetry: If a - b = kn, then b - a = -kn = (-k)n. \checkmark transitivity: If a - b = kn and $b - c = \ell n$, then $a - c = (a - b) + (b - c) = kn + \ell n$

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

" $a \sim b$

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$.

reflexivity: $a - a = 0 = 0 \cdot n \checkmark$ symmetry: If a - b = kn, then b - a = -kn = (-k)n. \checkmark transitivity: If a - b = kn and $b - c = \ell n$, then $a - c = (a - b) + (b - c) = kn + \ell n = (k + \ell)n$. \checkmark

"
$$a \sim b$$
 whenever a and b have the same

remainder when divided by n."

Is \sim is an equivalence relation?

Note: Having the same remainder means that

a-b is a multiple of n.

For example, let n = 5:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \not\sim 3$.

Check: we have $a \sim b$ whenever a - b = kn for some $k \in \mathbb{Z}$.

reflexivity: $a - a = 0 = 0 \cdot n \checkmark$ symmetry: If a - b = kn, then b - a = -kn = (-k)n. \checkmark transitivity: If a - b = kn and $b - c = \ell n$, then $a - c = (a - b) + (b - c) = kn + \ell n = (k + \ell)n$. \checkmark

Yes! This is an equivalence relation!

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by $S\sim T \qquad \text{if} \qquad S\subseteq T$

Is \sim is an equivalence relation?

$$S \sim T$$
 if $S \subseteq T$

Is \sim is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric. So no, it is not an equivalence relation.

$$S \sim T$$
 if $S \subseteq T$

Is \sim is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric. So no, it is not an equivalence relation.

ls

$$S \sim T \qquad \text{ if } \qquad S \subseteq T \text{ or } S \subseteq T$$

an equivalence relation on $\mathcal{P}(A)$?

$$S \sim T$$
 if $S \subseteq T$

Is \sim is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric. So no, it is not an equivalence relation.

ls

$$S \sim T \qquad \text{ if } \qquad S \subseteq T \text{ or } S \subseteq T$$

an equivalence relation on $\mathcal{P}(A)$?

Check: This is reflexive and symmetric, but not transitive. So still no, it is not an equivalence relation.

$$S \sim T$$
 if $S \subseteq T$

Is \sim is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric. So no, it is not an equivalence relation.

ls

$$S \sim T \qquad \text{ if } \qquad S \subseteq T \text{ or } S \subseteq T$$

an equivalence relation on $\mathcal{P}(A)$?

Check: This is reflexive and symmetric, but not transitive. So still no, it is not an equivalence relation.

ls

$$S \sim T$$
 if $|S| = |T|$

an equivalence relation on $\mathcal{P}(A)$?

Example: Consider the equivalence relation on $A = \{a, b, c\}$ given by

 $a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text{and} \quad c \sim a.$

Example: Consider the equivalence relation on $A = \{a, b, c\}$ given by

 $a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text{and} \quad c \sim a.$

Then

[a]

Example: Consider the equivalence relation on $A = \{a, b, c\}$ given by

 $a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text{and} \quad c \sim a.$

$$[a] = \{a, c\}$$

Example: Consider the equivalence relation on $A = \{a, b, c\}$ given by

 $a \sim a$, $b \sim b$, $c \sim c$, $a \sim c$, and $c \sim a$.

$$[a] = \{a, c\} = [c]$$

Example: Consider the equivalence relation on $A = \{a, b, c\}$ given by

 $a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text{and} \quad c \sim a.$

$$[a] = \{a, c\} = [c],$$
 and
 $[b]$

Example: Consider the equivalence relation on $A = \{a, b, c\}$ given by

 $a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text{and} \quad c \sim a.$

$$[a] = \{a, c\} = [c],$$
 and
 $[b] = \{b\}$

Example: Consider the equivalence relation on $A = \{a, b, c\}$ given by

$$a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text{and} \quad c \sim a.$$

Then

$$[a] = \{a, c\} = [c],$$
 and
 $[b] = \{b\}$

are the two equivalence classes in A (with respect to this relation).

(We say there are two, *not three*, since "the equivalence classes" refers to the sets themselves, not to the elements that generate them.)

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} .

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then [0]

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then

 $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ [1]

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ [2]

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\}$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\} = \{5m \mid m \in \mathbb{Z}\}$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\} = \{5m \mid m \in \mathbb{Z}\} = [0]$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\} = \{5m \mid m \in \mathbb{Z}\} = [0] = [-5]$
Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\} = \{5m \mid m \in \mathbb{Z}\} = [0] = [-5] = [10] = \cdots$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\} = \{5m \mid m \in \mathbb{Z}\} = [0] = [-5] = [10] = \cdots$ $[6] = \{5n + 6 \mid n \in \mathbb{Z}\}$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\} = \{5m \mid m \in \mathbb{Z}\} = [0] = [-5] = [10] = \cdots$ $[6] = \{5n + 6 \mid n \in \mathbb{Z}\} = \{5m + 1 \mid m \in \mathbb{Z}\}$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\} = \{5m \mid m \in \mathbb{Z}\} = [0] = [-5] = [10] = \cdots$ $[6] = \{5n + 6 \mid n \in \mathbb{Z}\} = \{5m + 1 \mid m \in \mathbb{Z}\} = [1]$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\} = \{5m \mid m \in \mathbb{Z}\} = [0] = [-5] = [10] = \cdots$ $[6] = \{5n + 6 \mid n \in \mathbb{Z}\} = \{5m + 1 \mid m \in \mathbb{Z}\} = [1] = [-4]$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\} = \{5m \mid m \in \mathbb{Z}\} = [0] = [-5] = [10] = \cdots$ $[6] = \{5n + 6 \mid n \in \mathbb{Z}\} = \{5m + 1 \mid m \in \mathbb{Z}\} = [1] = [-4] = [11] = \cdots$

Example: We showed that " $a \sim b$ if a - b = 5k for some $k \in \mathbb{Z}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\} = \{5m \mid m \in \mathbb{Z}\} = [0] = [-5] = [10] = \cdots$ $[6] = \{5n + 6 \mid n \in \mathbb{Z}\} = \{5m + 1 \mid m \in \mathbb{Z}\} = [1] = [-4] = [11] = \cdots$

1. the equivalence classes are subsets of *A*:

 $[a] \subseteq A$ for all $a \in A$;

1. the equivalence classes are subsets of *A*:

 $[a] \subseteq A$ for all $a \in A$;

 any two equivalence classes are either equal or disjoint: for all a, b ∈ A, either [a] = [b] or [a] ∩ [b] = Ø;

1. the equivalence classes are subsets of *A*:

 $[a] \subseteq A$ for all $a \in A$;

- 2. any two equivalence classes are either equal or disjoint: for all $a, b \in A$, either [a] = [b] or $[a] \cap [b] = \emptyset$; and
- 3. the union of all the equivalence classes is all of A:

$$A = \bigcup_{a \in A} [a].$$

1. the equivalence classes are subsets of *A*:

 $[a] \subseteq A$ for all $a \in A$;

- 2. any two equivalence classes are either equal or disjoint: for all $a, b \in A$, either [a] = [b] or $[a] \cap [b] = \emptyset$; and
- 3. the union of all the equivalence classes is all of A:

$$A = \bigcup_{a \in A} [a].$$

We say that A is the disjoint union of equivalency classes, written

$$A = \bigsqcup_{a \in A} [a],$$
 LATEX: \bigsqcup, \sqcup

1. the equivalence classes are subsets of A:

 $[a] \subseteq A$ for all $a \in A$;

- 2. any two equivalence classes are either equal or disjoint: for all $a, b \in A$, either [a] = [b] or $[a] \cap [b] = \emptyset$; and
- 3. the union of all the equivalence classes is all of A:

$$A = \bigcup_{a \in A} [a].$$

We say that A is the disjoint union of equivalency classes, written

$$A = \bigsqcup_{a \in A} [a], \qquad \texttt{ETEX: } \mathsf{bigsqcup, } \mathsf{sqcup}$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4].

1. the equivalence classes are subsets of A:

 $[a] \subseteq A$ for all $a \in A$;

- 2. any two equivalence classes are either equal or disjoint: for all $a, b \in A$, either [a] = [b] or $[a] \cap [b] = \emptyset$; and
- 3. the union of all the equivalence classes is all of A:

$$A = \bigcup_{a \in A} [a].$$

We say that A is the disjoint union of equivalency classes, written

$$A = \bigsqcup_{a \in A} [a], \qquad \texttt{ATEX: } \mathsf{bigsqcup, } \mathsf{sqcup}$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4]. Any other seemingly different class is actually one of these (for example, [5] = [0]).

1. the equivalence classes are subsets of A:

 $[a] \subseteq A$ for all $a \in A$;

- 2. any two equivalence classes are either equal or disjoint: for all $a, b \in A$, either [a] = [b] or $[a] \cap [b] = \emptyset$; and
- 3. the union of all the equivalence classes is all of A:

$$A = \bigcup_{a \in A} [a].$$

We say that A is the disjoint union of equivalency classes, written

$$A = \bigsqcup_{a \in A} [a], \qquad \texttt{ATEX: } \mathsf{bigsqcup, } \mathsf{sqcup}$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4]. Any other seemingly different class is actually one of these (for example, [5] = [0]). And $[0] \cup [1] \cup [2] \cup [3] \cup [4] = \mathbb{Z}$.

1. the equivalence classes are subsets of *A*:

 $[a] \subseteq A$ for all $a \in A$;

- 2. any two equivalence classes are either equal or disjoint: for all $a, b \in A$, either [a] = [b] or $[a] \cap [b] = \emptyset$; and
- 3. the union of all the equivalence classes is all of A:

$$A = \bigcup_{a \in A} [a].$$

We say that A is the disjoint union of equivalency classes, written

$$A = \bigsqcup_{a \in A} [a],$$
 LATEX: \bigsqcup, \sqcup

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4]. Any other seemingly different class is actually one of these (for example, [5] = [0]). And $[0] \cup [1] \cup [2] \cup [3] \cup [4] = \mathbb{Z}$.

So
$$\mathbb{Z} = [0] \sqcup [1] \sqcup [2] \sqcup [3] \sqcup [4]$$
.