Inclusion/exclusion

Recall the "subtraction" rule:
For two sets A and B, we have

$$
|A \cup B|=|A|+|B|-|A \cap B| .
$$

Inclusion/exclusion

Recall the "subtraction" rule:
For two sets A and B, we have

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Venn diagram for $A \cup B$:

Inclusion/exclusion

Recall the "subtraction" rule:
For two sets A and B, we have

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Venn diagram for $A \cup B$:

Inclusion/exclusion

Recall the "subtraction" rule:
For two sets A and B, we have

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Venn diagram for $A \cup B$:

Inclusion/exclusion

For three sets A, B, and $C \ldots$
Venn diagram for $A \cup B \cup C$:

Inclusion/exclusion

For three sets A, B, and $C \ldots$
Venn diagram for $A \cup B \cup C$:

$$
|A \cup B \cup C|=
$$

Inclusion/exclusion

For three sets A, B, and $C \ldots$
Venn diagram for $A \cup B \cup C$:

$$
|A \cup B \cup C|=|A|
$$

Inclusion/exclusion

For three sets A, B, and $C \ldots$
Venn diagram for $A \cup B \cup C$:

$$
|A \cup B \cup C|=|A|+|B|
$$

Inclusion/exclusion

For three sets A, B, and $C \ldots$
Venn diagram for $A \cup B \cup C$:

$$
|A \cup B \cup C|=|A|+|B|+|C|
$$

Inclusion/exclusion

For three sets A, B, and $C \ldots$
Venn diagram for $A \cup B \cup C$:

$$
\begin{aligned}
|A \cup B \cup C|= & |A|+|B|+|C| \\
& -(|A \cap B|
\end{aligned}
$$

Inclusion/exclusion

For three sets A, B, and $C \ldots$
Venn diagram for $A \cup B \cup C$:

$$
\begin{align*}
|A \cup B \cup C|= & |A|+|B|+|C| \\
& -(|A \cap B|+|A \cap C|
\end{align*}
$$

Inclusion/exclusion

For three sets A, B, and $C \ldots$
Venn diagram for $A \cup B \cup C$:

$$
\begin{aligned}
|A \cup B \cup C|= & |A|+|B|+|C| \\
& -(|A \cap B|+|A \cap C|+|B \cap C|)
\end{aligned}
$$

Inclusion/exclusion

For three sets A, B, and $C \ldots$
Venn diagram for $A \cup B \cup C$:

$$
\begin{aligned}
|A \cup B \cup C|= & |A|+|B|+|C| \\
& -(|A \cap B|+|A \cap C|+|B \cap C|) \\
& +|A \cap B \cap C| .
\end{aligned}
$$

Inclusion/exclusion

For three sets A, B, and $C \ldots$
Venn diagram for $A \cup B \cup C$:

$$
\begin{aligned}
|A \cup B \cup C|= & |A|+|B|+|C| & & \text { "include" } \\
& -(|A \cap B|+|A \cap C|+|B \cap C|) & & \text { "exclude" } \\
& +|A \cap B \cap C| . & & \text { "include" }
\end{aligned}
$$

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?
Ans. Let $U=\{n \in \mathbb{Z} \mid 1 \leqslant n \leqslant 100\}$,

$$
\begin{aligned}
& A=\{n \in U \mid n \text { is a multiple of } 2\}, \\
& B=\{n \in U \mid n \text { is a multiple of } 3\}, \quad \text { and } \\
& C=\{n \in U \mid n \text { is a multiple of } 5\}
\end{aligned}
$$

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?
Ans. Let $U=\{n \in \mathbb{Z} \mid 1 \leqslant n \leqslant 100\}$,

$$
\begin{aligned}
& A=\{n \in U \mid n \text { is a multiple of } 2\}, \\
& B=\{n \in U \mid n \text { is a multiple of } 3\}, \quad \text { and } \\
& C=\{n \in U \mid n \text { is a multiple of } 5\} ;
\end{aligned}
$$

so we want to know the size of

$$
A \cup B \cup C=\{n \in U \mid n \text { is a multiple of } 2,3, \text { and/or } 5\} .
$$

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?
Ans. Let $U=\{n \in \mathbb{Z} \mid 1 \leqslant n \leqslant 100\}$,

$$
\begin{aligned}
& A=\{n \in U \mid n \text { is a multiple of } 2\}, \\
& B=\{n \in U \mid n \text { is a multiple of } 3\}, \quad \text { and } \\
& C=\{n \in U \mid n \text { is a multiple of } 5\} ;
\end{aligned}
$$

so we want to know the size of

$$
A \cup B \cup C=\{n \in U \mid n \text { is a multiple of } 2,3, \text { and/or } 5\} .
$$

To use inclusion/exclusion, we need to compute the following:
$|A|=$
$|B|=$
$|C|=$

$$
\begin{aligned}
& |A \cap B|= \\
& |A \cap C|= \\
& |B \cap C|=
\end{aligned}
$$

$$
|A \cap B \cap C|=
$$

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?
Ans. Let $U=\{n \in \mathbb{Z} \mid 1 \leqslant n \leqslant 100\}$,

$$
\begin{aligned}
& A=\{n \in U \mid n \text { is a multiple of } 2\}, \\
& B=\{n \in U \mid n \text { is a multiple of } 3\}, \quad \text { and } \\
& C=\{n \in U \mid n \text { is a multiple of } 5\} ;
\end{aligned}
$$

so we want to know the size of

$$
A \cup B \cup C=\{n \in U \mid n \text { is a multiple of } 2,3, \text { and/or } 5\} .
$$

To use inclusion/exclusion, we need to compute the following:
$\begin{array}{ll}|A|=\lfloor 100 / 2\rfloor=50 & |A \cap B|= \\ |B|= & |A \cap C|= \\ |C|= & |B \cap C|=\end{array}$

$$
|A \cap B \cap C|=
$$

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?
Ans. Let $U=\{n \in \mathbb{Z} \mid 1 \leqslant n \leqslant 100\}$,

$$
\begin{aligned}
& A=\{n \in U \mid n \text { is a multiple of } 2\}, \\
& B=\{n \in U \mid n \text { is a multiple of } 3\}, \quad \text { and } \\
& C=\{n \in U \mid n \text { is a multiple of } 5\} ;
\end{aligned}
$$

so we want to know the size of

$$
A \cup B \cup C=\{n \in U \mid n \text { is a multiple of } 2,3, \text { and/or } 5\} .
$$

To use inclusion/exclusion, we need to compute the following:
$\begin{array}{ll}|A|=\lfloor 100 / 2\rfloor=50 & |A \cap B|= \\ |B|=\lfloor 100 / 3\rfloor=33 & |A \cap C|= \\ |C|= & |B \cap C|=\end{array}$

$$
|A \cap B \cap C|=
$$

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?
Ans. Let $U=\{n \in \mathbb{Z} \mid 1 \leqslant n \leqslant 100\}$,

$$
\begin{aligned}
& A=\{n \in U \mid n \text { is a multiple of } 2\}, \\
& B=\{n \in U \mid n \text { is a multiple of } 3\}, \quad \text { and } \\
& C=\{n \in U \mid n \text { is a multiple of } 5\} ;
\end{aligned}
$$

so we want to know the size of

$$
A \cup B \cup C=\{n \in U \mid n \text { is a multiple of } 2,3, \text { and/or } 5\} .
$$

To use inclusion/exclusion, we need to compute the following:
$\begin{array}{ll}|A|=\lfloor 100 / 2\rfloor=50 & |A \cap B|= \\ |B|=\lfloor 100 / 3\rfloor=33 & |A \cap C|= \\ |C|=\lfloor 100 / 5\rfloor=20 & |B \cap C|=\end{array}$

$$
|A \cap B \cap C|=
$$

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?
Ans. Let $U=\{n \in \mathbb{Z} \mid 1 \leqslant n \leqslant 100\}$,

$$
\begin{aligned}
& A=\{n \in U \mid n \text { is a multiple of } 2\}, \\
& B=\{n \in U \mid n \text { is a multiple of } 3\}, \quad \text { and } \\
& C=\{n \in U \mid n \text { is a multiple of } 5\} ;
\end{aligned}
$$

so we want to know the size of

$$
A \cup B \cup C=\{n \in U \mid n \text { is a multiple of } 2,3, \text { and/or } 5\} .
$$

To use inclusion/exclusion, we need to compute the following:

$$
\begin{aligned}
& |A|=\lfloor 100 / 2\rfloor=50 \\
& |B|=\lfloor 100 / 3\rfloor=33 \\
& |C|=\lfloor 100 / 5\rfloor=20
\end{aligned}
$$

$$
\begin{aligned}
& |A \cap B|= \\
& |A \cap C|= \\
& |B \cap C|=
\end{aligned}
$$

$$
|A \cap B \cap C|=
$$

Fact: n being a multiple of 2 and 3 is the same as being a multiple of 6 .

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?
Ans. Let $U=\{n \in \mathbb{Z} \mid 1 \leqslant n \leqslant 100\}$,

$$
\begin{aligned}
& A=\{n \in U \mid n \text { is a multiple of } 2\}, \\
& B=\{n \in U \mid n \text { is a multiple of } 3\}, \quad \text { and } \\
& C=\{n \in U \mid n \text { is a multiple of } 5\} ;
\end{aligned}
$$

so we want to know the size of

$$
A \cup B \cup C=\{n \in U \mid n \text { is a multiple of } 2,3, \text { and/or } 5\} .
$$

To use inclusion/exclusion, we need to compute the following:

$$
\left.\begin{array}{ll}
|A|=\lfloor 100 / 2\rfloor=50 & \\
|B|=\lfloor 100 / 3\rfloor=33 & \\
|A \cap C|=\lfloor 100 /(2 * 3)\rfloor=16 \\
|C|=\lfloor 100 / 5\rfloor=20 &
\end{array} B \cap C \right\rvert\,=
$$

$$
|A \cap B \cap C|=
$$

Fact: n being a multiple of 2 and 3 is the same as being a multiple of 6 .

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?
Ans. Let $U=\{n \in \mathbb{Z} \mid 1 \leqslant n \leqslant 100\}$,

$$
\begin{aligned}
& A=\{n \in U \mid n \text { is a multiple of } 2\}, \\
& B=\{n \in U \mid n \text { is a multiple of } 3\}, \quad \text { and } \\
& C=\{n \in U \mid n \text { is a multiple of } 5\} ;
\end{aligned}
$$

so we want to know the size of

$$
A \cup B \cup C=\{n \in U \mid n \text { is a multiple of } 2,3, \text { and/or } 5\} .
$$

To use inclusion/exclusion, we need to compute the following:

$$
\left.\begin{array}{ll}
|A|=\lfloor 100 / 2\rfloor=50 & \\
|A \cap B|=\lfloor 100 /(2 * 3)\rfloor=16 \\
|B|=\lfloor 100 / 3\rfloor=33 & \\
|A \cap C|=\lfloor 100 /(2 * 5)\rfloor=10 \\
|C| 00 / 5\rfloor=20 &
\end{array} B \cap C \right\rvert\,=\$
$$

$$
|A \cap B \cap C|=
$$

Fact: n being a multiple of 2 and 3 is the same as being a multiple of 6 . Same for 2 and 5 versus 10

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?
Ans. Let $U=\{n \in \mathbb{Z} \mid 1 \leqslant n \leqslant 100\}$,

$$
\begin{aligned}
& A=\{n \in U \mid n \text { is a multiple of } 2\}, \\
& B=\{n \in U \mid n \text { is a multiple of } 3\}, \quad \text { and } \\
& C=\{n \in U \mid n \text { is a multiple of } 5\} ;
\end{aligned}
$$

so we want to know the size of

$$
A \cup B \cup C=\{n \in U \mid n \text { is a multiple of } 2,3, \text { and/or } 5\} .
$$

To use inclusion/exclusion, we need to compute the following:

$$
\left.\begin{array}{ll}
|A|=\lfloor 100 / 2\rfloor=50 & \\
|A \cap B|=\lfloor 100 /(2 * 3)\rfloor=16 \\
|B|=\lfloor 100 / 3\rfloor=33 & \\
|A \cap C|=\lfloor 100 /(2 * 5)\rfloor=10 \\
|C|=\lfloor 100 / 5\rfloor=20 &
\end{array} B \cap C \right\rvert\,=\lfloor 100 /(3 * 5)\rfloor=6
$$

$$
|A \cap B \cap C|=
$$

Fact: n being a multiple of 2 and 3 is the same as being a multiple of 6 . Same for 2 and 5 versus 10,3 and 5 versus 15

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?
Ans. Let $U=\{n \in \mathbb{Z} \mid 1 \leqslant n \leqslant 100\}$,

$$
\begin{aligned}
& A=\{n \in U \mid n \text { is a multiple of } 2\}, \\
& B=\{n \in U \mid n \text { is a multiple of } 3\}, \quad \text { and } \\
& C=\{n \in U \mid n \text { is a multiple of } 5\} ;
\end{aligned}
$$

so we want to know the size of

$$
A \cup B \cup C=\{n \in U \mid n \text { is a multiple of } 2,3, \text { and/or } 5\} .
$$

To use inclusion/exclusion, we need to compute the following:

$$
\left.\left.\begin{array}{ll}
|A|=\lfloor 100 / 2\rfloor=50 & |A \cap B|=\lfloor 100 /(2 * 3)\rfloor=16 \\
|B|=\lfloor 100 / 3\rfloor=33 & \\
|C|=\lfloor 100 / 5\rfloor=20 &
\end{array} B \cap C \right\rvert\,=\lfloor 100 /(2 * 5)\rfloor=10\right\}=\lfloor 100 /(3 * 5)\rfloor=6
$$

$$
|A \cap B \cap C|=\lfloor 100 /(2 * 3 * 5)\rfloor=3
$$

Fact: n being a multiple of 2 and 3 is the same as being a multiple of 6 . Same for 2 and 5 versus 10,3 and 5 versus 15 , and 2,3 , and 5 versus 30 .

Example: How many integers are there $1 \leqslant n \leqslant 100$ that are multiples of 2,3 , and/or 5 ?
Ans. Let $U=\{n \in \mathbb{Z} \mid 1 \leqslant n \leqslant 100\}$,

$$
\begin{aligned}
& A=\{n \in U \mid n \text { is a multiple of } 2\}, \\
& B=\{n \in U \mid n \text { is a multiple of } 3\}, \quad \text { and } \\
& C=\{n \in U \mid n \text { is a multiple of } 5\} ;
\end{aligned}
$$

so we want to know the size of

$$
A \cup B \cup C=\{n \in U \mid n \text { is a multiple of } 2,3, \text { and/or } 5\} .
$$

To use inclusion/exclusion, we need to compute the following:

$$
\left.\begin{array}{ll}
|A|=\lfloor 100 / 2\rfloor=50 & |A \cap B|=\lfloor 100 /(2 * 3)\rfloor=16 \\
|B|=\lfloor 100 / 3\rfloor=33 & |A \cap C|=\lfloor 100 /(2 * 5)\rfloor=10 \\
|C|=\lfloor 100 / 5\rfloor=20 &
\end{array} B \cap C \right\rvert\,=\lfloor 100 /(3 * 5)\rfloor=6
$$

$$
|A \cap B \cap C|=\lfloor 100 /(2 * 3 * 5)\rfloor=3
$$

So

$$
|A \cup B \cup C|=50+33+20-16-10-6+3=74 .
$$

Inclusion/exclusion

Thm. For sets $A_{1}, A_{2}, \ldots, A_{n}$, we have

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{S \subseteq\left\{A_{1}, \ldots, A_{n}\right\}}(-1)^{|S|-1}\left|\bigcap_{A_{i} \in S} A_{i}\right|
$$

Inclusion/exclusion

Thm. For sets $A_{1}, A_{2}, \ldots, A_{n}$, we have

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{S \subseteq\left\{A_{1}, \ldots, A_{n}\right\}}(-1)^{|S|-1}\left|\bigcap_{A_{i} \in S} A_{i}\right|
$$

Process this statement for $n=3$:
Start with sets A_{1}, A_{2}, and $A_{3} \ldots$

Inclusion/exclusion

Thm. For sets $A_{1}, A_{2}, \ldots, A_{n}$, we have

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{S \subseteq\left\{A_{1}, \ldots, A_{n}\right\}}(-1)^{|S|-1}\left|\bigcap_{A_{i} \in S} A_{i}\right|
$$

Process this statement for $n=3$:
Start with sets A_{1}, A_{2}, and $A_{3} \ldots$

S	\varnothing	$\left\{A_{1}\right\}$	$\left\{A_{2}\right\}$	$\left\{A_{3}\right\}$

S	$\left\{A_{1}, A_{2}\right\}$	$\left\{A_{1}, A_{3}\right\}$	$\left\{A_{2}, A_{3}\right\}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$

Inclusion/exclusion

Thm. For sets $A_{1}, A_{2}, \ldots, A_{n}$, we have

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{S \subseteq\left\{A_{1}, \ldots, A_{n}\right\}}(-1)^{|S|-1}\left|\bigcap_{A_{i} \in S} A_{i}\right|
$$

Process this statement for $n=3$:
Start with sets A_{1}, A_{2}, and $A_{3} \ldots$

S	\varnothing	$\left\{A_{1}\right\}$	$\left\{A_{2}\right\}$	$\left\{A_{3}\right\}$
$\|S\|$	0	1	1	1

S	$\left\{A_{1}, A_{2}\right\}$	$\left\{A_{1}, A_{3}\right\}$	$\left\{A_{2}, A_{3}\right\}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$
$\|S\|$	2	2	2	3

Inclusion/exclusion

Thm. For sets $A_{1}, A_{2}, \ldots, A_{n}$, we have

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{S \subseteq\left\{A_{1}, \ldots, A_{n}\right\}}(-1)^{|S|-1}\left|\bigcap_{A_{i} \in S} A_{i}\right|
$$

Process this statement for $n=3$:
Start with sets A_{1}, A_{2}, and $A_{3} \ldots$

S	\varnothing	$\left\{A_{1}\right\}$	$\left\{A_{2}\right\}$	$\left\{A_{3}\right\}$
$\|S\|$	0	1	1	1
$(-1)^{\|S\|-1}$	-1	1	1	1

S	$\left\{A_{1}, A_{2}\right\}$	$\left\{A_{1}, A_{3}\right\}$	$\left\{A_{2}, A_{3}\right\}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$
$\|S\|$	2	2	2	3
$(-1)^{\|S\|-1}$	-1	-1	-1	1

Inclusion/exclusion

Thm. For sets $A_{1}, A_{2}, \ldots, A_{n}$, we have

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{S \subseteq\left\{A_{1}, \ldots, A_{n}\right\}}(-1)^{|S|-1}\left|\bigcap_{A_{i} \in S} A_{i}\right|
$$

Process this statement for $n=3$:
Start with sets A_{1}, A_{2}, and $A_{3} \ldots$

S	\varnothing	$\left\{A_{1}\right\}$	$\left\{A_{2}\right\}$	$\left\{A_{3}\right\}$
$\|S\|$	0	1	1	1
$(-1)^{\|S\|-1}$	-1	1	1	1
$\bigcap_{A_{i} \in S} A_{i}$	\varnothing	A_{1}	A_{2}	A_{3}

S	$\left\{A_{1}, A_{2}\right\}$	$\left\{A_{1}, A_{3}\right\}$	$\left\{A_{2}, A_{3}\right\}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$
$\|S\|$	2	2	2	3
$(-1)^{\|S\|-1}$	-1	-1	-1	1
$\bigcap_{A_{i} \in S} A_{i}$	$A_{1} \cap A_{2}$	$A_{1} \cap A_{3}$	$A_{2} \cap A_{3}$	$A_{1} \cap A_{2} \cap A_{3}$

Inclusion/exclusion

Thm. For sets $A_{1}, A_{2}, \ldots, A_{n}$, we have

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{S \subseteq\left\{A_{1}, \ldots, A_{n}\right\}}(-1)^{|S|-1}\left|\bigcap_{A_{i} \in S} A_{i}\right|
$$

Process this statement for $n=3$:
Start with sets A_{1}, A_{2}, and $A_{3} \ldots$
Try Exercises 41 \& 42

S	\varnothing	$\left\{A_{1}\right\}$	$\left\{A_{2}\right\}$	$\left\{A_{3}\right\}$
$\|S\|$	0	1	1	1
$(-1)^{\|S\|-1}$	-1	1	1	1
$\bigcap_{A_{i} \in S} A_{i}$	\varnothing	A_{1}	A_{2}	A_{3}

S	$\left\{A_{1}, A_{2}\right\}$	$\left\{A_{1}, A_{3}\right\}$	$\left\{A_{2}, A_{3}\right\}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$
$\|S\|$	2	2	2	3
$(-1)^{\|S\|-1}$	-1	-1	-1	1
$\bigcap_{A_{i} \in S} A_{i}$	$A_{1} \cap A_{2}$	$A_{1} \cap A_{3}$	$A_{2} \cap A_{3}$	$A_{1} \cap A_{2} \cap A_{3}$

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a<b\}$.

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a<b\}$.
In words:
Let \sim be the relation on \mathbb{Z} given by $a \sim b$ whenever $a<b$.

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a<b\}$.
In words:
Let \sim be the relation on \mathbb{Z} given by $a \sim b$ whenever $a<b$.
Example: $A=\mathbb{R}$ and $R=\{a \sim b \mid a=b\}$.

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a<b\}$.
In words:
Let \sim be the relation on \mathbb{Z} given by $a \sim b$ whenever $a<b$.
Example: $A=\mathbb{R}$ and $R=\{a \sim b \mid a=b\}$.
In words:
Let \sim be the relation on \mathbb{R} given by $a \sim b$ whenever $a=b$.

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a<b\}$.
In words:
Let \sim be the relation on \mathbb{Z} given by $a \sim b$ whenever $a<b$.
Example: $A=\mathbb{R}$ and $R=\{a \sim b \mid a=b\}$.
In words:
Let \sim be the relation on \mathbb{R} given by $a \sim b$ whenever $a=b$.
Example: $A=\mathbb{Z}$ and
$R=\{a \sim b \mid a$ and b have the same remainder when divided by 3$\}$.

More examples of (binary) relations:

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$.
2. For A a number system, let $a \sim b$ if $a<b$.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$.
2. For A a number system, let $a \sim b$ if $a<b$.
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$.
2. For A a number system, let $a \sim b$ if $a<b$.
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$.
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$.
2. For A a number system, let $a \sim b$ if $a<b$.
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$.
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b.
5. For A a set of people, let $a \sim b$ if a and b speak a common language.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$.
2. For A a number system, let $a \sim b$ if $a<b$.
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$.
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b.
5. For A a set of people, let $a \sim b$ if a and b speak a common language.

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R
2. For A a number system, let $a \sim b$ if $a<b$. not R
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R
2. For A a number system, let $a \sim b$ if $a<b$. not R
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R, S
2. For A a number system, let $a \sim b$ if $a<b$. not R , not S
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R, S
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R, S
2. For A a number system, let $a \sim b$ if $a<b$. not R , not S
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R, S
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;
(T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e.

$$
(a \sim b \wedge b \sim c) \Rightarrow a \sim c
$$

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R, S, T
2. For A a number system, let $a \sim b$ if $a<b$. not R , not S, T
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R, S, not T
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S, T
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S, not T

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;
(T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e.

$$
(a \sim b \wedge b \sim c) \Rightarrow a \sim c
$$

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R, S, T
2. For A a number system, let $a \sim b$ if $a<b$. not R , not S, T
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R, S, not T
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S, T
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S, not T

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;
(T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e.

$$
(a \sim b \wedge b \sim c) \Rightarrow a \sim c
$$

An equivalence relation on a set A is a binary relation that is reflexive, symmetric, and transitive.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R, S, T
2. For A a number system, let $a \sim b$ if $a<b$. not R , not S, T
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R, S, not T
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S, T
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S, not T

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;
(T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e.

$$
(a \sim b \wedge b \sim c) \Rightarrow a \sim c
$$

An equivalence relation on a set A is a binary relation that is reflexive, symmetric, and transitive. (Only \#1)

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:												
remainder:	-3	-2	-1	0	1	2	3	4	5	6	7	8
					1	2	3	4				

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:												
remainder:	-3	-2	-1	0	1	2	3	4	5	6	7	8
				1	2	3	4	0				

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . " ~
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:												
remainder:	-3	-2	-1	0	1	2	3	4	5	6	7	8
				0	1	2	3	4	0			

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . " ~
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:												
remainder:	-3	-2	-1	0	1	2	3	4	5	6	7	8
				0	1	2	3	4	0	1		

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . " ~
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:												
remainder:	-3	-2	-1	0	1	2	3	4	5	6	7	8
				0	1	2	3	4	0	1	2	

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . " ~
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

| integer: |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| remainder: | | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 4 | 5 | 6 | 7 | 8 | |

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . " ~
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2			0	1	2	3	4	0	1	2	3

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . " ~
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3		0	1	2	3	4	0	1	2	3

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . " ~
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . " ~
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:												
remainder:	-3	-2	-1	0	1	2	3	4	5	6	7	8
	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity:

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry:

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{aligned}
& a \text { and } b \text { have the same } \\
& \text { remainder when divided by } n . "
\end{aligned}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{aligned}
& a \text { and } b \text { have the same } \\
& \text { remainder when divided by } n . "
\end{aligned}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark transitivity:

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$, then

$$
a-c
$$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$

Is \sim is an equivalence relation?
Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$, then

$$
a-c=(a-b)+(b-c)
$$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$ Is \sim is an equivalence relation?

Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$, then

$$
a-c=(a-b)+(b-c)=k n+\ell n
$$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$ Is \sim is an equivalence relation?

Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$, then

$$
a-c=(a-b)+(b-c)=k n+\ell n=(k+\ell) n . \checkmark
$$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
\text { " } a \sim b \quad \text { whenever } \quad \begin{gathered}
a \text { and } b \text { have the same } \\
\text { remainder when divided by } n . "
\end{gathered}
$$ Is \sim is an equivalence relation?

Note: Having the same remainder means that

$$
a-b \text { is a multiple of } n \text {. }
$$

For example, let $n=5$:

integer:	-3	-2	-1	0	1	2	3	4	5	6	7	8
remainder:	2	3	4	0	1	2	3	4	0	1	2	3

So $0 \sim 5$, and $-2 \sim 3 \sim 8$, but $-3 \nsim 3$.
Check: we have $a \sim b$ whenever $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$, then

$$
a-c=(a-b)+(b-c)=k n+\ell n=(k+\ell) n . \checkmark
$$

Yes! This is an equivalence relation!

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$
S \sim T \quad \text { if } \quad S \subseteq T
$$

Is \sim is an equivalence relation?

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$
S \sim T \quad \text { if } \quad S \subseteq T
$$

Is \sim is an equivalence relation?
Check: This is reflexive and transitive, but not symmetric. So no, it is not an equivalence relation.

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$
S \sim T \quad \text { if } \quad S \subseteq T
$$

Is \sim is an equivalence relation?
Check: This is reflexive and transitive, but not symmetric. So no, it is not an equivalence relation.

Is

$$
S \sim T \quad \text { if } \quad S \subseteq T \text { or } S \subseteq T
$$

an equivalence relation on $\mathcal{P}(A)$?

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$
S \sim T \quad \text { if } \quad S \subseteq T
$$

Is \sim is an equivalence relation?
Check: This is reflexive and transitive, but not symmetric. So no, it is not an equivalence relation.

Is

$$
S \sim T \quad \text { if } \quad S \subseteq T \text { or } S \subseteq T
$$

an equivalence relation on $\mathcal{P}(A)$?
Check: This is reflexive and symmetric, but not transitive. So still no, it is not an equivalence relation.

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$
S \sim T \quad \text { if } \quad S \subseteq T
$$

Is \sim is an equivalence relation?
Check: This is reflexive and transitive, but not symmetric. So no, it is not an equivalence relation.

Is

$$
S \sim T \quad \text { if } \quad S \subseteq T \text { or } S \subseteq T
$$

an equivalence relation on $\mathcal{P}(A)$?
Check: This is reflexive and symmetric, but not transitive.
So still no, it is not an equivalence relation.
Is

$$
S \sim T \quad \text { if } \quad|S|=|T|
$$

an equivalence relation on $\mathcal{P}(A)$?

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Then

$$
[a]
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Then

$$
[a]=\{a, c\}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Then

$$
[a]=\{a, c\}=[c]
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Then

$$
\begin{gathered}
{[a]=\{a, c\}=[c], \quad \text { and }} \\
{[b]}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Then

$$
\begin{gathered}
{[a]=\{a, c\}=[c], \quad \text { and }} \\
\quad[b]=\{b\}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Then

$$
\begin{gathered}
{[a]=\{a, c\}=[c], \quad \text { and }} \\
{[b]=\{b\}}
\end{gathered}
$$

are the two equivalence classes in A (with respect to this relation).
(We say there are two, not three, since "the equivalence classes" refers to the sets themselves, not to the elements that generate them.)

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}.

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{equation*}
[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \tag{1}
\end{equation*}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1
$$

[2]

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{aligned}
{[0]=\{5 n \mid n \in \mathbb{Z}\} } & =5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1 \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\} } & =5 \mathbb{Z}+2
\end{aligned}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{aligned}
{[0]=\{5 n \mid n \in \mathbb{Z}\} } & =5 \mathbb{Z} & {[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1 } \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\} } & =5 \mathbb{Z}+2 & {[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3 }
\end{aligned}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{aligned}
& {[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
& {[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
& \qquad[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4 \\
& {[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
& {[6]=\{5 n+6 \mid n \in \mathbb{Z}\}}
\end{aligned}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]=[-4]}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]=[-4]=[11]=\cdots}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: We showed that

$$
\text { " } a \sim b \quad \text { if } a-b=5 k \text { for some } k \in \mathbb{Z} \text { " }
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]=[-4]=[11]=\cdots}
\end{gathered}
$$

Theorem. The equivalence classes of A partition A into subsets

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :
$[a] \subseteq A$ for all $a \in A ;$

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :
$[a] \subseteq A$ for all $a \in A ;$
2. any two equivalence classes are either equal or disjoint: for all $a, b \in A$, either $[a]=[b]$ or $[a] \cap[b]=\varnothing$;

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A ;
$$

2. any two equivalence classes are either equal or disjoint: for all $a, b \in A$, either $[a]=[b]$ or $[a] \cap[b]=\varnothing$; and
3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A ;
$$

2. any two equivalence classes are either equal or disjoint:
for all $a, b \in A$, either $[a]=[b]$ or $[a] \cap[b]=\varnothing$; and
3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

We say that A is the disjoint union of equivalency classes, written

$$
A=\bigsqcup_{a \in A}[a], \quad \text { AT } \mathrm{E}_{\mathrm{E}} \mathrm{X}: \backslash \text { bigsqcup, } \backslash \text { sqcup }
$$

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A ;
$$

2. any two equivalence classes are either equal or disjoint:

$$
\text { for all } a, b \in A \text {, either }[a]=[b] \text { or }[a] \cap[b]=\varnothing \text {; and }
$$

3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

We say that A is the disjoint union of equivalency classes, written

$$
A=\bigsqcup_{a \in A}[a], \quad\left\lfloor\Delta T_{\mathrm{E}} \mathrm{X}: \backslash \text { bigsqcup, } \backslash\right. \text { sqcup }
$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4].

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A ;
$$

2. any two equivalence classes are either equal or disjoint:

$$
\text { for all } a, b \in A \text {, either }[a]=[b] \text { or }[a] \cap[b]=\varnothing \text {; and }
$$

3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

We say that A is the disjoint union of equivalency classes, written

$$
A=\bigsqcup_{a \in A}[a], \quad \text { AT } \mathrm{E}_{\mathrm{E}} \mathrm{X}: \backslash \text { bigsqcup, } \backslash \text { sqcup }
$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4]. Any other seemingly different class is actually one of these (for example, [5] = [0]).

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A ;
$$

2. any two equivalence classes are either equal or disjoint:

$$
\text { for all } a, b \in A \text {, either }[a]=[b] \text { or }[a] \cap[b]=\varnothing \text {; and }
$$

3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

We say that A is the disjoint union of equivalency classes, written

$$
A=\bigsqcup_{a \in A}[a], \quad \text { AT } \mathrm{E}_{\mathrm{E}} \mathrm{X}: \backslash \text { bigsqcup, } \backslash \text { sqcup }
$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4]. Any other seemingly different class is actually one of these (for example, [5] = [0]). And

$$
[0] \cup[1] \cup[2] \cup[3] \cup[4]=\mathbb{Z} .
$$

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A
$$

2. any two equivalence classes are either equal or disjoint:

$$
\text { for all } a, b \in A \text {, either }[a]=[b] \text { or }[a] \cap[b]=\varnothing \text {; and }
$$

3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

We say that A is the disjoint union of equivalency classes, written

$$
A=\bigsqcup_{a \in A}[a], \quad \text { AT } \mathrm{E}_{\mathrm{E}} \mathrm{X}: \backslash \text { bigsqcup, } \backslash \text { sqcup }
$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4]. Any other seemingly different class is actually one of these (for example, [5] = [0]). And

$$
[0] \cup[1] \cup[2] \cup[3] \cup[4]=\mathbb{Z}
$$

So $\mathbb{Z}=[0] \sqcup[1] \sqcup[2] \sqcup[3] \sqcup[4]$.

