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multiples of 2, 3, and/or 57
Ans. Let U ={neZ |1 <n <100},

A ={neU | nisa multiple of 2},
B ={neU | nisamultiple of 3}, and
C ={neU |nisamultiple of 5};
so we want to know the size of
AUuBuUC ={neU|nisa multiple of 2, 3, and/or 5}.
To use inclusion/exclusion, we need to compute the following:

|A| = |100/2] = 50 |A A B| = [100/(2 + 3)] = 16
|B| = [100/3] = 33 |A A C| = [100/(2%5)] = 10
O] = [100/5] = 20 1B~ C| =|100/(35)] =6

|JAnBnC|=]100/(2%3%5)] =3
Fact: n being a multiple of 2 and 3 is the same as being a multiple
of 6. Same for 2 and 5 versus 10, 3 and 5 versus 15, and 2, 3,
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Example: How many integers are there 1 < n < 100 that are
multiples of 2, 3, and/or 57
Ans. Let U ={neZ |1 <n <100},

A ={neU | nisa multiple of 2},
B ={neU | nisamultiple of 3}, and
C ={neU | nisa multiple of 5};
so we want to know the size of
AuBuC={neU|nisamultiple of 2, 3, and/or 5}.

To use inclusion/exclusion, we need to compute the following:

1A = [100/2] = 50 |A~ B| = [100/(2 % 3)| = 16
|B| = [100/3] = 33 |A A C| = [100/(2%5)] = 10
|C| = 100/5] = 20 B C|=[100/(3%5)] =6

|AnBnC|=100/(2+3+5)] =3
So
JAUBUC| =50 +33+20—16—10 — 6 + 3 =[74]
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A binary relation on a set A is a subset R € A x A, where
elements (a, b) are written as a ~ b.

Example: A=Zand R={a ~b|a <b}.
In words:
Let ~ be the relation on Z given by a ~ b whenever a < b.

Example: A=Rand R={a~b|a=b}.
In words:
Let ~ be the relation on R given by a ~ b whenever a = b.

Example: A =Z and
R ={a ~ b | a and b have the same remainder when divided by 3}.
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1. For A a number system, leta ~bifa=5b. R, S, T

2. For A a number system, let a ~ b if a <b. not R, not S, T
3. ForA=R,leta~bifab=0. not R, S, not T
4

. For A a set of people, let a ~ b if a is a (full) sibling of b.
notR, S, T

5. For A a set of people, let a ~ b if a and b speak a common
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(R) reflexive if a ~ a for all a € A;

(S) symmetric if a ~ b implies b ~ q;

(T) transitive if a ~ b and b ~ ¢ implies a ~ ¢, i.e.
(a~barb~c)=a~c

An equivalence relation on a set A is a binary relation that is

reflexive, symmetric, and transitive. (Only #1)
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Fix n € Z~¢ and define the relation on Z given by

a and b have the same
remainder when divided by n."

[13

a ~b whenever

Is ~ is an equivalence relation?

Note: Having the same remainder means that
a — b is a multiple of n.

For example, let n = 5:

integer: | =3 | -2 | -1 | 0|1 |2|3]|4|5]|6

remainder: 2 3 4 0 1 2 3 4 0 1

So0~5, and =2 ~3 ~ 8, but —3 » 3.

Check: we have a ~ b whenever a — b = kn for some k € Z.
reflexivity: a—a=0=0-n v
symmetry: If a —b = kn, then b—a = —kn = (—k)n. v
transitivity: If @ —b = kn and b — ¢ = #n, then
a—c=(a—b)+(b—c)=kn+ln=(k+{nv

Yes! This is an equivalence relation!
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Let A be a set. Consider the relation on P(A) by
S~T if ScT

Is ~ is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.

Is
S~T if ScToScT
an equivalence relation on P(A)?

Check: This is reflexive and symmetric, but not transitive.
So still no, it is not an equivalence relation.

Is
S~T if |S| = |T
an equivalence relation on P(A)?
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Let ~ be an equivalence relation on a set A, and let a € A. The
set of all elements b € A such that a ~ b is called the equivalence
class of a, denoted by [a].

Example: Consider the equivalence relation on A = {a,b, ¢} given
by
a~a, b~b c~c, a~c, and c~a.
Then
[a] ={a,c} =[c], and
[b] = {b}
are the two equivalence classes in A (with respect to this relation).

(We say there are two, not three, since “the equivalence classes”
refers to the sets themselves, not to the elements that generate
them.)
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