
Math 365 – Monday 3/25/19
Recall:
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Also, for series

f(x) =
1X

k=0

akx
k

and g(x) =
1X

k=0

bkx
k,

we have

f(x) + g(x) =
1X

k=0

(ak + bk)x
k

and f(x)g(x) =
1X

k=0

 
kX

i=0
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!
xk. (⇤)

Exercise 37. Recall that the generating function for a sequence {a0, a1, a2, . . . , } is

1X

k=0

akx
k.

(Considered “formally”, i.e. without

consideration of convergence.)

Give the generating functions, in terms of their series and in their simplified (closed) form, for each

of the following sequences. In many cases, you’ll use your answers from Exercise 36 (from last

time).

(a) an = n+ 1 for n = 0, 1, 2, . . . .

(b) an = 3
n
, for n = 0, 1, . . . .

(c) an =

(
1 n = 3k for some k 2 Z,
0, n 6= 3k for all k 2 Z,

for n = 0, 1, . . . .

(i.e. an is 1 if n is a multiple of 3, and is 0 otherwise).

(d) an = 1/n for n = 1, 2, . . . .

Exercise 38. For each of the following recursively defined sequences,

(i) solve using generating functions;

(ii) solve using the methods of Section 8.2 and compare to part (i);

(iii) check your answers by comparing the values you get by using your formula and by computing

recursively for the first three terms of the sequence.

(a) an = 2an�1 + 3, a0 = 1.

(b) an = 3an�1 + 4
n�1

.



Exercise 39.

(a) Consider the integer partitions of 4.

(i) Write a corresponding generating function, wherein the coe�cient of x4 is the number of

integer partitions of 4.

(ii) Make explicit the correspondence between the monomials in the expansion of your gen-

erating function and the integer partitions of 4 (like we did for the partitions of 5 in

class).

(b) Describe a combinatorial problem that is solved by calculating the coe�cient of x6 for the

following generating functions.

(i) (1 + x+ x2 + x3)4

(ii) (1 + x+ x2 + · · ·+)(1 + x2 + x4 + x6)(1 + x3 + x6)

(iii) (x+ x2 + x3)5

(c) For each of the following questions, give the corresponding generating function and determine

k such that the coe�cient of xk is the answer the question.

(i) How many di↵erent ways can 12 identical action figures can be given to five children so

that each child receives at most three action figures?

(ii) How many di↵erent ways 10 identical balloons can be given to four children if each child

receives at least two balloons?

(iii) How many di↵erent ways are there to choose a dozen bagels from three varieties–plain,

onion, and raisin–if at least two bagels of each kind but no more than three plain bagels

are chosen?

(iv) How many ways can you make change for $100 using $1 bills, $5 bills, $10 bills, and $20

bills?

Exercise 40. (Generating functions for partitions)

(a) Write the generating function for partitions with even-sized parts, i.e.

or but not or .

(b) Write the generating function for partitions with no more than two parts of each size, i.e.

or but not or .

(c) Write the generating function for partitions parts all of prime size, i.e.

or but not or .

(The prime numbers are the integers p greater than 1 that are divisible by 1 and p but no other

positive integers.)



Taylor series to know and love:

p1 ` xqn “
nÿ

k“0

ˆ
n

k

˙
xk “ 1 `

ˆ
n

1

˙
x `

ˆ
n

2

˙
x2 ` ¨ ¨ ¨ ` xn (finite)

1 ´ xn

1 ´ x
“

n´1ÿ

k“0

xk “ 1 ` x ` x2 ` ¨ ¨ ¨ ` xn´1
(finite)

1

1 ´ x
“

8ÿ

k“0

xk “ 1 ` x ` x2 ` ¨ ¨ ¨ (infinite)

ex “
8ÿ

k“0

xk{k! “ 1 ` x ` x2

2
` x3

3!
` ¨ ¨ ¨ (infinite)

The lefthand side of each is called the closed form for the series.

New Series from old: Let fpxq “
8ÿ

k“0

akx
k
and gpxq “

8ÿ

k“0

bkx
k
.

Then

fpxq ` gpxq “
8ÿ

k“0

pak ` bkqxk and fpxqgpxq “
8ÿ

k“0

˜
kÿ

i“0

aibk´i

¸
xk.

You can also di↵erentiate and integrate series to get new series.

Section 8.4: Generating functions.
A generating function for a sequence takuk“0,1,... is the series

8ÿ

k“0

akx
k.

(“Formal”: forget about

convergence!)

When possible, we rewrite the generating function in terms of a

simple expression of elementary functions, which we call closed

solutions.

For example, the generating function for the sequence

1, 1, 1, ¨ ¨ ¨ “ t1uk“0,1,... is

8ÿ

k“0

1 ˚ xk “ 1

1 ´ x
.

The generating function for the sequence 1, 12 ,
1
6 , ¨ ¨ ¨ “ t1{n!u is

8ÿ

n“0

xn{n! “ ex.



Section 8.4: Generating functions.
A generating function for a sequence takuk“0,1,... is the series

8ÿ

k“0

akx
k.

(“Formal”: forget about

convergence!)

When possible, we rewrite the generating function in terms of a

simple expression of elementary functions, which we call closed

solutions.

Not every generating function has a nice closed form, but that

shouldn’t stop you from writing it down. For example, the

generating function for the sequence 1, 0, 2, 0, 3, 0, . . . is

1 ` 0 ˚ x ` 2x2 ` 0 ˚ x3 ` 3x4 ` ¨ ¨ ¨ “
8ÿ

k“0

pk ` 1q ˚ x2k.

And the generating function for the

sequence0, 0, 22, 32, 0, 52, 0, 72, . . . , i.e. an “ n2
if n is prime and

an “ 0 otherwise is

22x2 ` 32x3 ` 52x5 ` 72x2 ` ¨ ¨ ¨ “
ÿ

p prime

p2xp.

A generating function for a sequence takuk“0,1,... is the series

8ÿ

k“0

akx
k.

(“Formal”: forget about

convergence!)

When possible, we rewrite the generating function in terms of a

simple expression of elementary functions, which we call closed

solutions.

Note that a finite sequence a0, a1, . . . , an is the same as the

infinite sequence a0, a1, . . . , an, 0, 0, . . . ; similarly, the generating

function for a finite sequence will be a finite degree polynomial:

8ÿ

k“0

akx
k “ a0 ` a1x ` a2x

2 ` ¨ ¨ ¨ anxn ` 0 ` 0 ` ¨ ¨ ¨ “
8ÿ

k“0

akx
k.

For example, for a fixed n, the generating function for the

sequence t
`n
k

˘
uk“0,1,...,n is

nÿ

k“0

ˆ
n

k

˙
xk “ px ` 1qn. You try Exercise 37



First application: solving recurrence relations
Take a generating function for some sequence tanu:

Gpxq “
8ÿ

n“0

anx
n “ a0 ` a1x ` a2x

2 ` ¨ ¨ ¨ .

Notice that

xGpxq “ a0x ` a1x
2 ` a2x

3 ` ¨ ¨ ¨ “
8ÿ

n“1

an´1x
n

x2Gpxq “ a0x
2 ` a1x

3 ` a2x
4 ` ¨ ¨ ¨ “

8ÿ

n“2

an´2x
n

.

.

.

xdGpxq “ a0x
d ` a1x

d`1 ` a2x
d`2 ` ¨ ¨ ¨ “

8ÿ

n“d

an´dx
n.

(Rewrite sums so that the power of x matches the index, to make

it easier to collect “like terms” when adding series!)



First application: solving recurrence relations
So say I have a sequence tanu that satisfies the recurrence relation

an “ 3an´1. (Sanity check: we already know the general solution

should look like an “ a03n .) Let Gpxq “ ∞8
n“0 anx

n
. Then

Gpxq “ a0 ` a1x ` a2x
2 ` a3x

3 ` . . .

“ a0 ` xpa1 ` a2x ` ¨ ¨ ¨ q Set aside d terms,

(where d “ degree of recurrence)

“ a0 ` x
8ÿ

n“0

an`1x
n

and factor out xd
from the rest.

“ a0 ` x
8ÿ

n“0

3anx
n

Plug in the recurrence relation.

“ a0 ` 3x
8ÿ

n“0

anx
n

Simplify.

“ a0 ` 3xGpxq. Return to closed form.

Gpxq “ a0 ` 3xGpxq.
Now solve for Gpxq:

a0 “ Gpxq ´ 3xGpxq “ p1 ´ 3xqGpxq;
and so for x ‰ 1{3,

Gpxq “ a0
1 ´ 3x

“ a0

ˆ
1

1 ´ y

˙ˇ̌
ˇ̌
y“3x

“ a0

8ÿ

n“0

p3xqn “
8ÿ

n“0

pa03nqxn.

Now compare to the original formula for Gpxq! This shows that

an “ a03n (as expected).

First application: solving recurrence relations

So say I have a sequence tanu that satisfies the recurrence relation

an “ 3an´1. (Sanity check: we already know the general solution

should look like an “ a03n .) Let Gpxq “ ∞8
n“0 anx

n
. Then

Gpxq “ a0 ` 3xGpxq.
Now solve for Gpxq:

a0 “ Gpxq ´ 3xGpxq “ p1 ´ 3xqGpxq;
and so for x ‰ 1{3,

Gpxq “ a0
1 ´ 3x

“ a0

ˆ
1

1 ´ y

˙ˇ̌
ˇ̌
y“3x

“ a0

8ÿ

n“0

p3xqn “
8ÿ

n“0

pa03nqxn.

Now compare to the original formula for Gpxq! This shows that

an “ a03n (as expected).



Ex 2: suppose I have a sequence satisfying

an “ 9an´2 ` 10n´2
with a0 “ 3 and a1 “ 2.

Let Gpxq “ ∞8
n“0 anx

n
. Then

Gpxq “ a0 ` a1x ` a2x
2 ` a3x

3 ` . . .

“ a0 ` a1x ` x2pa2 ` a3x ` ¨ ¨ ¨ q Set aside d terms,

(where d “ degree of recurrence)

“ a0 ` a1x ` x2
8ÿ

n“0

an`2x
n and factor out xd from the rest.

“ a0 ` a1x ` x2
8ÿ

n“0

p9an ` 10nqxn Plug in the recurrence relation.

“ a0 ` a1x ` 9x2
8ÿ

n“0

anx
n ` x2

8ÿ

n“0

p10xqn

Expand and simplify.

“ a0 ` a1x ` 9x2Gpxq ` x2
ˆ

1

1 ´ 10x

˙
. Return to closed forms.

Now solve for Gpxq:
a0 ` a1x ` x2

ˆ
1

1 ´ 10x

˙
“ Gpxq ´ 9x2Gpxq “ p1 ´ 9x2qGpxq;

So

Gpxq “ pa0 ` a1xqp1 ´ 10xq ` x2

p1 ´ 10xqp1 ´ 9x2q “ a0 ` pa1 ´ 10a0qx ` p1 ´ 10a1qx2
p1 ´ 10xqp1 ` 3xqp1 ´ 3xq

“ 3 ´ 28x ´ 19x2

p1 ´ 10xqp1 ` 3xqp1 ´ 3xq

“ 1

1 ´ 10x
`

ˆ
46

39

˙
1

1 ´ p´3xq `
ˆ

1

91

˙
1

1 ´ 10x
Review partial fractions decomposition!

Ex 2: suppose I have a sequence satisfying
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˙
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ˆ
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Ex 2: suppose I have a sequence satisfying

an “ 9an´2 ` 10n´2
with a0 “ 3 and a1 “ 2.

Let Gpxq “ ∞8
n“0 anx

n
. Then

Gpxq “ a0 ` a1x ` 9x2Gpxq ` x2
ˆ

1

1 ´ 10x

˙

Now solve for Gpxq:
Gpxq “ 1

1 ´ 10x
`

ˆ
46

39

˙
1

1 ´ p´3xq `
ˆ

1

91

˙
1

1 ´ 10x
Review partial fractions decomposition!

Putting back into series form, we get

Gpxq “
8ÿ

n“0

10nxn `
ˆ
46

39

˙ 8ÿ

n“0

p´3qnxn `
ˆ

1

91

˙ 8ÿ

n“0

3nxn

“
8ÿ

n“0

ˆ
10n `

ˆ
46

39

˙
p´3qn `

ˆ
1

91

˙
3n

˙
xn.

So

an “ 10n `
ˆ
46

39

˙
p´3qn `

ˆ
1

91

˙
3n Try Ex 38

Counting problems and Generating functions
Example: What is the coe�cient on x12 in

px2 ` x3 ` x4 ` x5qlooooooooooomooooooooooon
e1, glazed

px4 ` x5qloooomoooon
e2, choc.

px1 ` x2 ` x3qlooooooomooooooon
e3, jelly

?

This is equivalent to the question “How many integer solutions are

there to the equation

e1 ` e2 ` e3 “ 12

with

2 § e1 § 5, 4 § e2 § 5, 1 § e3 § 3?2

Which is the same as “How many ways can you pick 12 doughnuts

to bring to the o�ce if you’ve had requests for at least 2 glazed, 4

chocolate, and one jelly-filled, but when you get to the store, they

only have 5 glazed, 5 chocolate, and 3 jelly-filled left?”



Example: Use a generating function to answer the question “How

many non-negative integer solutions are there to

e1 ` e2 ` e3 “ 10

where e2 is a multiple of 2 and e3 is a multiple of 3?”

The answer is the same as the coe�cient of x10 in

p1 ` x ` x2 ` ¨ ¨ ¨ qloooooooooomoooooooooon
e1

p1 ` x2 ` x4 ` x6 ` ¨ ¨ ¨ qlooooooooooooooomooooooooooooooon
e2

p1 ` x3 ` x6 ` x9 ` ¨ ¨ ¨ qlooooooooooooooomooooooooooooooon
e3

,

which is the same as the coe�cient of x10 in

p1 ` x ` x2 ` ¨ ¨ ¨ ` x10qloooooooooooooomoooooooooooooon
e1

p1 ` x2 ` x4 ` ¨ ¨ ¨ ` x10qlooooooooooooooomooooooooooooooon
e2

p1 ` x3 ` x6 ` x9qloooooooooomoooooooooon
e3

,

since we would never use any terms that came from xa for a ° 10.
This is something we can plug into a calculator like WolframAlpha.

Example: Use a generating function to answer the question “How

many non-negative integer solutions are there to

e1 ` e2 ` e3 “ 10

where e2 is a multiple of 2 and e3 is a multiple of 3?”

The answer is the same as the coe�cient of x10 in. . .

This is something we can plug into a calculator like WolframAlpha:



Integer partitions

How many integer partitions are there of 5?

This is the same as the coe�cient of x5 in

p1 ` x ` x2 ` x3 ` x4 ` x5qp1 ` x2 ` x4qp1 ` x3qp1 ` x4qp1 ` x5q
“

`
px1q0 ` px1q1 ` px1q2 ` px1q3 ` px1q4 ` px1q5

˘
(pts of length 1)

`
px2q0 ` px2q1 ` px2q2

˘
(pts of length 2)

`
px3q0 ` px3q1

˘
(pts of length 3)

`
px4q0 ` px4q1

˘
(pts of length 4)

`
px5q0 ` px5q1

˘
(pts of length 5)

Why? For example, consider the partition .



Integer partitions

Counting integer partitions of 5 by looking at the coe↵. of x5 in

p1`x`x2 `x3 `x4 `x5qp1`x2 `x4qp1`x3qp1`x4qp1`x5q . . .

corresponds to

px1q2 from first factor, since there are 2 parts of length 1,

1 “ px2q0 from second factor, since there are 0 parts of length 2,

px3q1 from third factor, since there is 1 part of length 3,

1 “ px4q0 from fourth factor, since there are 0 parts of length 4, and

1 “ px5q0 from fourth factor, since there are 1 parts of length 5.

Integer partitions
Counting integer partitions of 5 by looking at the coe↵. of x5 in

p1`x`x2 `x3 `x4 `x5qp1`x2 `x4qp1`x3qp1`x4qp1`x5q . . .

corresponds to px1q2 ˚ 1 ˚ px3q1 ˚ 1 ˚ 1.

Similarly, the correspondence between the other partitions of 5 and

the monomials goes like

1 ˚ 1 ˚ 1 ˚ 1 ˚ px5q1 x ˚ 1 ˚ 1 ˚ px4q1 ˚ 1 1 ˚ px2q1 ˚ px3q1 ˚ 1 ˚ 1

px1q1 ˚ px2q2 ˚ 1 ˚ 1 ˚ 1 px1q3 ˚ px2q1 ˚ 1 ˚ 1 ˚ 1 px1q5 ˚ 1 ˚ 1 ˚ 1 ˚ 1



Notice that the coe�cient of x5 in the polynomial from the

previous slide is the same as the coe�cient of x5 in

˜ 8ÿ

i“0

xi
¸ ˜ 8ÿ

i“0

x2i
¸ ˜ 8ÿ

i“0

x3i
¸ ˜ 8ÿ

i“0

x4i
¸ ˜ 8ÿ

i“0

x5i
¸

“
5π

k“1

˜ 8ÿ

i“0

xki
¸

“
5π

k“1

ˆ
1

1 ´ xk

˙
.

Which is the same as the coe�cient of x5 in

˜ 8ÿ

i“0

xi
¸

˚
˜ 8ÿ

i“0

x2i
¸

˚
˜ 8ÿ

i“0

x3i
¸

˚
˜ 8ÿ

i“0

x4i
¸

˚
˜ 8ÿ

i“0

x5i
¸

˚
˜ 8ÿ

i“0

x6i
¸

loooomoooon
must use
the 1 term

˚
˜ 8ÿ

i“0

x7i
¸

loooomoooon
must use
the 1 term

¨ ¨ ¨

Notice that the coe�cient of x5 in the polynomial from the

previous slide is the same as the coe�cient of x5 in

˜ 8ÿ

i“0

xi
¸ ˜ 8ÿ

i“0

x2i
¸ ˜ 8ÿ

i“0

x3i
¸ ˜ 8ÿ

i“0

x4i
¸ ˜ 8ÿ

i“0

x5i
¸

“
5π

k“1

˜ 8ÿ

i“0

xki
¸

“
5π

k“1

ˆ
1

1 ´ xk

˙
.

Which is the same as the coe�cient of x5 in

˜ 8ÿ

i“0

xi
¸

˚
˜ 8ÿ

i“0

x2i
¸

˚
˜ 8ÿ

i“0

x3i
¸

˚ ¨ ¨ ¨ “
8π

k“1

˜ 8ÿ

i“0

xki
¸

So in general, the number of integer partitions of n, denoted ppnq,
is the coe�cient of xn in

8ÿ

n“0

ppnqxn “
8π

k“1

ˆ
1

1 ´ xk

˙
.


