Taylor series to know and love:

(1+2)" i <Z>xk =1+ (?)x + (Z)aﬁ +o a2 (finite)

k=0
1 — o7 n—1 o
1 L N1tz o] (finite)
— X
k=0
1 0
- :Zxk:1+x+x2+... (infinite)
— X
k=0
0 2 3
e =>u /k'—l—i—x—i—%—i—%—i— (infinite)

The lefthand side of each is called the closed form for the series.
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The lefthand side of each is called the closed form for the series.

New Series from old: Let f(x Z arz® and g(z
k=0
Then
0
f@) +g(z) = >l (ax +bp)a®  and  f(x)g

k=0

Z bkl‘

)

You can also differentiate and integrate series to get new series.
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= & (“Formal”: forget about
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When possible, we rewrite the generating function in terms of a
simple expression of elementary functions, which we call closed
solutions.

Not every generating function has a nice closed form, but that
shouldn’t stop you from writing it down. For example, the

generating function for the sequence 1,0,2,0,3,0,... is

0
1+0xx+222 +0%2® + 32+ ... = Z(k‘+1)*x2k.

k=0

And the generating function for the

sequence0, 0,22,32,0,5%,0,7%,..., i.e. a, = n? if n is prime and

an = 0 otherwise is

220 + 3223 +5%2° + TPt - = Z p2aP.

p prime
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When possible, we rewrite the generating function in terms of a
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A generating function for a sequence {ay}r—o,1,.. is the series

i ozt (“Formal”: forget about
convergence!)

When possible, we rewrite the generating function in terms of a

simple expression of elementary functions, which we call closed

solutions.

Note that a finite sequence ag, aq, ..., a, is the same as the

infinite sequence ag, a1,...,ay,,0,0,...; similarly, the generating

function for a finite sequence will be a finite degree polynomial:
0

Zakxk —ay+ a1 +ar’+ - a " +0+04 - = Zakxk.
k=0

For example, for a ﬁxed n, the generating function for the

sequence {( ) k=0.1,..

.

< > (x 4+ 1)". You try Exercise 37
k=0
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First application: solving recurrence relations
Take a generating function for some sequence {ay,}:

G(x) = Zanx”:ao+a1x+a2x2+---.

Notice that
zG(x) = apxr + ar1z? + aga® = Z ap_12"
n=1
[es}
QSQG(LL’) =aor? + a12® + agzt + - = Z AT
xdG(x) = apz? + a1z + a4 .. = Z Gppgt”

(Rewrite sums so that the power of 2 matches the index, to make
it easier to collect “like terms” when adding series!)
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First application: solving recurrence relations

So say | have a sequence {a,} that satisfies the recurrence relation
an = 3an—1. (Sanity check: we already know the general solution

should look like ) Let G(x) = >, anz™. Then

G(x) =

a0+a1x+a2x2+a3x3+...

ap + z(ay +agx + -+ +)

o]
apg + x Z Ani1x"
n=0

o0]
ap +x Z 3a,z"

n=0

o0
ag + 3x 2 anx"
n=0

ap + 3zG(z).

Set aside d terms,

(where d = degree of recurrence)

and factor out =% from the rest.

Plug in the recurrence relation.

Simplify.

Return to closed form.
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So say | have a sequence {a,} that satisfies the recurrence relation
an = 3ap—1. (Sanity check: we already know the general solution

should look like [a, = ag3" |) Let G(z) = Y7 anz™. Then

’G(l‘) =ap + 3$G(1‘).‘

Now solve for G(z):
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and so for = # 1/3,
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1—
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First application: solving recurrence relations

So say | have a sequence {a,} that satisfies the recurrence relation
an = 3ap—1. (Sanity check: we already know the general solution

should look like [a, = ag3" |) Let G(z) = Y7 anz™. Then

’G(l‘) = ap + 32G(z). ‘

Now solve for G(z):
ag = G(z) — 3zG(x) = (1 — 3z)G(x);
and so for = # 1/3,

Gla) = 1—395: ( >

e 0]
= ap Z(Sx) = Z (ap3™)x"
n=0 n=0
Now compare to the original formula for G(z)! This shows that
an = ap3" (as expected).
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an = 9ay,_o + 10" 2 with ag = 3 and a; = 2.

Let G(z) = Yo" azz™. Then

G(x)

a0+a1:n~|—a2x2~l—a3:1:3~l—...
ao + a1x + m2(a2 +asr+---) Set aside d terms,
(where d = degree of recurrence)
e}
ao + a1z + x2 Z Aniox” and factor out % from the rest.

n=0
a0

ao + a1z + x2 (9a, + 10™)x™  Plug in the recurrence relation.

n=0

e} [ee}

aop + a1z + 922 Z anz" + z? Z (10z)"
n=0 n=0

Expand and simplify.

1
ap + a1x + 9$2G($) + 22 (110> . Return to closed forms.
— 10z
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Ex 2: suppose | have a sequence satisfying
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an = 9ay_o + 1072 with ag = 3 and a; = 2.
Let G(x) = >0y anz". Then

1
G(x) = ag + a1z + 92°G(x) + 2° (1 — 10x>

Now solve for G(x):

ap + a1z + ( > = G(z) — 92°G(z) = (1 — 92*)G(z);

1—10x

So
(ap + a12)(1 — 10x) + 2> ag + (a1 — 10ag)z + (1 — 10ay)a?
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Ex 2: suppose | have a sequence satisfying
an = 9ay_o + 1072 with ag = 3 and a; = 2.
Let G(x) = >0y anz". Then

1—10x

1
G(x) = ag + a1z + 92°G(x) + 2° ( >

Now solve for G(x):

ap + a1z + < > = G(z) — 92°G(z) = (1 — 92*)G(z);

1—-10x
So
(ao + a1z)(1 — 10x) + 22 ap + (a1 — 10ag)x + (1 — 10a;)x?
G(z) = =
(1 —10z)(1 — 922) (1 —10z)(1 + 3z)(1 — 3x)
3 — 28z — 1922

(1 —10z)(1 + 3z)(1 — 3x)

_ 1 (6 1 (1 1
S 1-10z  \39) 1—(—3z) 91 ) 1— 10z

Review partial fractions decomposition!
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Let G(z) = Y azz™. Then
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Now solve for G(x):
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Review partial fractions decomposition!

Putting back into series form, we get
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Ex 2: suppose | have a sequence satisfying
an = 9a,_o + 1072 with ag = 3 and a; = 2.
Let G(z) = Y azz™. Then

1
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G(z) =ao + a1z + 92°G(z) + = (1—10x>

Now solve for G(x):
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Review partial fractions decomposition!

Putting back into series form, we get
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Ex 2: suppose | have a sequence satisfying
an = 9a,_o + 1072 with ag = 3 and a; = 2.
Let G(z) = Y azz™. Then

1
G(x) = ag + a1z + 92°G(z) + 2° (1 — 10x>

Now solve for G(x):

T 100 T \39) 1 (=32) T\91) 1102

Review partial fractions decomposition!

Putting back into series form, we get

— 10" " i _9\n,.n L n,_n
G(x) nz_:o 0"x™ + <39> nz_lo( 3)" ™ + <91>;03 T

S $ (e (1) o () )

an = 10" + <39> (=3)" + <91> 3 Try Ex 38

So



Counting problems and Generating functions

Example: What is the coefficient on z'2 in

(x2 + 2%+ 2t + :C5)(ac4 + x5)(a¢1 + 2%+ a:3)?
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there to the equation

e1+ e+ e3 =12
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Counting problems and Generating functions

Example: What is the coefficient on 2 in

(2® + 23 + 2 + 2°) (2* + 25) (2! + 2% + 23)?
~ g

e1, glazed e2, choc. es, jelly

This is equivalent to the question “How many integer solutions are
there to the equation

e1 +ex+e3 =12

with
2<e <5, 4<ey<h, 1<e3<3?”

Which is the same as “How many ways can you pick 12 doughnuts
to bring to the office if you've had requests for at least 2 glazed, 4
chocolate, and one jelly-filled, but when you get to the store, they
only have 5 glazed, 5 chocolate, and 3 jelly-filled left?"



Example: Use a generating function to answer the question “How
many non-negative integer solutions are there to

e1+e2+e3 =10

where eo is a multiple of 2 and e3 is a multiple of 37"
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Example: Use a generating function to answer the question “How
many non-negative integer solutions are there to

e1+e2+e3 =10

where eo is a multiple of 2 and e3 is a multiple of 37"

The answer is the same as the coefficient of 210 in

I+z+2®+- )1+ +2t+20 + ) +23 + 20 +27 + ),

N

Y Y Y
el ea es3

which is the same as the coefficient of z!0 in

I+z+z®++2') QT+ +2* +- -+ 20 (1 + 2% + 2% +29)
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€1 €2 €3



Example: Use a generating function to answer the question “How
many non-negative integer solutions are there to

e1+e2+e3 =10

where eo is a multiple of 2 and e3 is a multiple of 37"

The answer is the same as the coefficient of 210 in

I+z+2®+- )1+ +2t+20 + ) +23 + 20 +27 + ),

N

Y Y Y
el ea es3

which is the same as the coefficient of z!0 in

I+z+a++2)Q+2® +2* + -+ 29 (1 +2° + 2% +27),

N

~— ~~
€1 €2 €3

since we would never use any terms that came from z¢ for a > 10.
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since we would never use any terms that came from z¢ for a > 10.
This is something we can plug into a calculator like WolframAlpha.



Example: Use a generating function to answer the question “How
many non-negative integer solutions are there to

e1+ex+e3 =10

where e5 is a multiple of 2 and e3 is a multiple of 37"

The answer is the same as the coefficient of 2! in. ..
This is something we can plug into a calculator like WolframAlpha:

& WolframAlpha

(1 +x+X*2+x*3 + x*M + A5 + X6 + X7 + X8 + x 9+ x (10))*(1 + x*2 + x*4 + x*6 + x"8 4 =]

X 27 43038 14 152 1 7P 4B 103 + 12270 + 1410 +
155" +16x 7 + 1750+ 17x + 17x +17x2 + 162 + 15 %" +
+ 12x° + 103 4B + 728 45 142t 133 + 2% 1 x+ 1
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Integer partitions

How many integer partitions are there of 57

This is the same as the coefficient of z° in

(IT+z+2?+23+ 28+ 250 + 22 + 2N+ 2°) (1 + 2H (1 + 25)
_ ((1‘1)0+($1>1—1—(.%'1)24-(261)34-($1)4+($1)5)



Integer partitions

How many integer partitions are there of 57
This is the same as the coefficient of z° in

(IT+z+2?+23+ 28+ 250 + 22 + 2N+ 2°) (1 + 2H (1 + 25)
_ ((1‘1)0+($1>1—1—(.%'1)24-(261)34-($1)4+($1)5)

(($2)0 + (1‘2)1 + (552)2)
((IL’B)O + (333)1)
((.%'4)0 + (.1'4)1)
((LL‘5)O + (1,5)1)



Integer partitions

How many integer partitions are there of 57
This is the same as the coefficient of z° in

(IT+z+2?+23+ 28+ 250 + 22 + 2N+ 2°) (1 + 2H (1 + 25)
= ((1‘1)0 + (@) + @H?2 + (@3 + (@D + (x1)5) (pts of length 1)

(($2)0 + (»’32)1 + (552)2) (pts of length 2)
((m:«z)o + (333)1) (pts of length 3)
((x4)0 + (504)1) (pts of length 4)
((355)0 + (555)1) (pts of length 5)



Integer partitions

How many integer partitions are there of 57
This is the same as the coefficient of z° in

(IT+z+2?+23+ 28+ 250 + 22 + 2N+ 2°) (1 + 2H (1 + 25)
= ((1‘1)0 + (@) + @H?2 + (@3 + (@D + (x1)5) (pts of length 1)

(($2)0 + (»’32)1 + (552)2) (pts of length 2)
((m:«z)o + (333)1) (pts of length 3)
((x4)0 + (534)1) (pts of length 4)
(($5)0 + (555)1) (pts of length 5)

Why? For example, consider the partition @E



Integer partitions

Counting integer partitions of 5 by looking at the coeff. of 2° in

(I+z+a?+22 +ot +29) A+ 22+ )1 +23) (1 +2h) (1 +25) . ..

@E corresponds to

(x1)? from first factor, since there are 2 parts of length 1,

1= (332)0 from second factor, since there are 0 parts of length 2,
(x3)! from third factor, since there is 1 part of length 3,

1= (3:4)0 from fourth factor, since there are 0 parts of length 4, and
1 = (2%)° from fourth factor, since there are 1 parts of length 5.



Integer partitions
Counting integer partitions of 5 by looking at the coeff. of 2% in

(I+z+22+28 +a' + 251+ 22 + 21+ 231+ 2hH (1 +27) ...

@E corresponds to (z1)% % 1% (23)! % 1 % 1.



Integer partitions
Counting integer partitions of 5 by looking at the coeff. of 2% in

(I+z+22+28 +a' + 251+ 22 + 21+ 231+ 2hH (1 +27) ...
@E corresponds to (z1)% % 1% (23)! % 1 % 1.

Similarly, the correspondence between the other partitions of 5 and
the monomials goes like

Emmnm - H
Talslsls (@) |aslsls(@)l 1|15 @) s @)s1x1

T T :

(ajl)l*(xQ)Q*l*l*l (acl)?’*(xQ)l*l*l*l (x1)5*1*1*1*1




Notice that the coefficient of z° in the polynomial from the
previous slide is the same as the coefficient of z° in

(£ (E) (5 () (&)
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Notice that the coefficient of z° in the polynomial from the
previous slide is the same as the coefficient of z° in

(£ (E) (5 () (&)

“I1(Z) -11(%).

Which is the same as the coefficient of z° in

G G )

must use must use
the 1 term the 1 term




Notice that the coefficient of 2% in the polynomial from the
previous slide is the same as the coefficient of z° in

(B) (&) (5) (5) (27)

(5 T

i=0 k=1

Which is the same as the coefficient of z° in

() (52)- (&) 115

So in general, the number of integer partitions of n, denoted p(n),
is the coefficient of 2" in

niop(n)x” = ﬁ (1 —1xk> -

k=1




