Taylor series to know and love:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k = 1 + \binom{n}{k} x^k$$

 $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \cdots$

 $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k = 1 + \binom{n}{1} x + \binom{n}{2} x^2 + \dots + x^n$

 $e^x = \sum_{k=0}^{\infty} x^k / k! = 1 + x + \frac{x^2}{2!} + \frac{x^3}{2!} + \cdots$

The lefthand side of each is called the closed form for the series.

$$\binom{2}{2}$$

$$\setminus 2$$

$$\sqrt{2}$$

(finite)

(finite)

(infinite)

(infinite)

$$\frac{1-x^n}{1-x} = \sum_{k=0}^{n-1} x^k = 1 + x + x^2 + \dots + x^{n-1}$$

Taylor series to know and love: $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k = 1 + \binom{n}{1} x + \binom{n}{2} x^2 + \dots + x^n$

Then

 $\frac{1-x^n}{1-x} = \sum_{k=0}^{n-1} x^k = 1 + x + x^2 + \dots + x^{n-1}$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \cdots$$
 (infinite)
$$e^x = \sum_{k=0}^{\infty} x^k / k! = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \cdots$$
 (infinite)

The lefthand side of each is called the closed form for the series.

New Series from old: Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$ and $g(x) = \sum_{k=0}^{\infty} b_k x^k$.

(finite)

(finite)

(infinite)

 $f(x)+g(x)=\sum_{k=0}^{\infty}(a_k+b_k)x^k\quad\text{ and }\quad f(x)g(x)=\sum_{k=0}^{\infty}\left(\sum_{i=0}^ka_ib_{k-i}\right)x^k.$

You can also differentiate and integrate series to get new series.

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k. \qquad \qquad \begin{array}{c} \text{("Formal": forget about } \\ \text{convergence!)} \end{array}$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k. \qquad \qquad \text{("Formal": forget about convergence!)}$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

For example, the generating function for the sequence $1,1,1,\cdots=\{1\}_{k=0,1,\dots}$

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k. \qquad \qquad \text{("Formal": forget about convergence!)}$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

For example, the generating function for the sequence $1,1,1,\cdots=\{1\}_{k=0,1,\dots}$ is

$$\sum_{k=0}^{\infty} 1 * x^k$$

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k.$$
 ("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

For example, the generating function for the sequence $1,1,1,\cdots=\{1\}_{k=0,1,\dots}$ is

$$\sum_{k=0}^{\infty} 1 * x^k = \frac{1}{1-x}.$$

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k.$$
 ("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

For example, the generating function for the sequence $1,1,1,\cdots=\{1\}_{k=0,1,\dots}$ is

$$\sum_{k=0}^{\infty} 1 * x^k = \frac{1}{1-x}.$$

The generating function for the sequence $1, \frac{1}{2}, \frac{1}{6}, \dots = \{1/n!\}$

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k.$$
 ("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

For example, the generating function for the sequence $1,1,1,\cdots=\{1\}_{k=0,1,\dots}$ is

$$\sum_{k=0}^{\infty} 1 * x^k = \frac{1}{1-x}.$$

The generating function for the sequence $1, \frac{1}{2}, \frac{1}{6}, \dots = \{1/n!\}$ is

$$\sum_{n=0}^{\infty} x^n/n!$$

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k.$$
 ("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

For example, the generating function for the sequence $1,1,1,\cdots=\{1\}_{k=0,1,\dots}$ is

$$\sum_{k=0}^{\infty} 1 * x^k = \frac{1}{1-x}.$$

The generating function for the sequence $1, \frac{1}{2}, \frac{1}{6}, \dots = \{1/n!\}$ is

$$\sum_{n=0}^{\infty} x^n / n! = e^x.$$

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k.$$
 ("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Not every generating function has a nice closed form, but that shouldn't stop you from writing it down.

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k$$
. ("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Not every generating function has a nice closed form, but that shouldn't stop you from writing it down. For example, the generating function for the sequence $1,0,2,0,3,0,\ldots$

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k. \qquad \qquad \text{("Formal": forget about convergence!)}$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Not every generating function has a nice closed form, but that shouldn't stop you from writing it down. For example, the generating function for the sequence $1,0,2,0,3,0,\ldots$ is

$$1 + 0 * x + 2x^2 + 0 * x^3 + 3x^4 + \cdots$$

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k. \qquad \qquad \text{("Formal": forget about convergence!)}$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Not every generating function has a nice closed form, but that shouldn't stop you from writing it down. For example, the generating function for the sequence $1,0,2,0,3,0,\ldots$ is

$$1 + 0 * x + 2x^{2} + 0 * x^{3} + 3x^{4} + \dots = \sum_{k=0}^{\infty} (k+1) * x^{2k}.$$

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k$$
. ("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Not every generating function has a nice closed form, but that shouldn't stop you from writing it down. For example, the generating function for the sequence $1,0,2,0,3,0,\ldots$ is

$$1 + 0 * x + 2x^{2} + 0 * x^{3} + 3x^{4} + \dots = \sum_{k=0}^{\infty} (k+1) * x^{2k}.$$

And the generating function for the sequence $0,0,2^2,3^2,0,5^2,0,7^2,\ldots$, i.e. $a_n=n^2$ if n is prime and $a_n=0$ otherwise

A generating function for a sequence $\{a_k\}_{k=0,1,...}$ is the series

$$\sum_{k=0}^{\infty} a_k x^k. \qquad \qquad \text{("Formal": forget about convergence!)}$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Not every generating function has a nice closed form, but that shouldn't stop you from writing it down. For example, the generating function for the sequence $1,0,2,0,3,0,\ldots$ is

$$1 + 0 * x + 2x^{2} + 0 * x^{3} + 3x^{4} + \dots = \sum_{k=0}^{\infty} (k+1) * x^{2k}.$$

And the generating function for the sequence $0,0,2^2,3^2,0,5^2,0,7^2,\ldots$, i.e. $a_n=n^2$ if n is prime and $a_n=0$ otherwise is

$$2^2x^2 + 3^2x^3 + 5^2x^5 + 7^2x^2 + \dots = \sum_{\substack{p \text{ prime}}} p^2x^p.$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Note that a finite sequence a_0, a_1, \ldots, a_n is the same as the infinite sequence $a_0, a_1, \ldots, a_n, 0, 0, \ldots$;

$$\sum_{k=0}^{\infty} a_k x^k. \qquad \qquad \text{("Formal": forget about convergence!)}$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Note that a finite sequence a_0, a_1, \ldots, a_n is the same as the infinite sequence $a_0, a_1, \ldots, a_n, 0, 0, \ldots$; similarly, the generating function for a finite sequence will be a finite degree polynomial:

$$\sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + 0 + 0 + \dots = \sum_{k=0}^{\infty} a_k x^k.$$

$$\sum_{k=0}^{\infty} a_k x^k. \qquad \qquad \text{("Formal": forget about convergence!)}$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Note that a finite sequence a_0, a_1, \ldots, a_n is the same as the infinite sequence $a_0, a_1, \ldots, a_n, 0, 0, \ldots$; similarly, the generating function for a finite sequence will be a finite degree polynomial:

$$\sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + 0 + 0 + \dots = \sum_{k=0}^{\infty} a_k x^k.$$

For example, for a fixed n, the generating function for the sequence $\binom{n}{k}_{k=0,1,\dots,n}$ is

$$\sum_{k=0}^{n} \binom{n}{k} x^k$$

$$\sum_{k=0}^{\infty} a_k x^k. \qquad \qquad \text{("Formal": forget about convergence!)}$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Note that a finite sequence a_0, a_1, \ldots, a_n is the same as the infinite sequence $a_0, a_1, \ldots, a_n, 0, 0, \ldots$; similarly, the generating function for a finite sequence will be a finite degree polynomial:

$$\sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + 0 + 0 + \dots = \sum_{k=0}^{\infty} a_k x^k.$$

For example, for a fixed n, the generating function for the sequence $\binom{n}{k}_{k=0,1,\dots,n}$ is

$$\sum_{k=0}^{n} \binom{n}{k} x^k = (x+1)^n.$$

$$\sum_{k=0}^{\infty} a_k x^k.$$
 ("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Note that a finite sequence a_0, a_1, \ldots, a_n is the same as the infinite sequence $a_0, a_1, \ldots, a_n, 0, 0, \ldots$; similarly, the generating function for a finite sequence will be a finite degree polynomial:

$$\sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + 0 + 0 + \dots = \sum_{k=0}^{\infty} a_k x^k.$$

For example, for a fixed n, the generating function for the sequence $\binom{n}{k}_{k=0,1,\dots,n}$ is

$$\sum_{k=0}^{n} \binom{n}{k} x^k = (x+1)^n.$$
 You try Exercise 37

Take a generating function for some sequence $\{a_n\}$:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

Take a generating function for some sequence $\{a_n\}$:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

Notice that

$$xG(x) = a_0x + a_1x^2 + a_2x^3 + \cdots$$

Take a generating function for some sequence $\{a_n\}$:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

Notice that

$$xG(x) = a_0x + a_1x^2 + a_2x^3 + \dots = \sum_{n=1}^{\infty} a_{n-1}x^n$$

Take a generating function for some sequence $\{a_n\}$:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

Notice that

$$xG(x) = a_0x + a_1x^2 + a_2x^3 + \dots = \sum_{n=1}^{\infty} a_{n-1}x^n$$
$$x^2G(x) = a_0x^2 + a_1x^3 + a_2x^4 + \dots$$

Take a generating function for some sequence $\{a_n\}$:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

Notice that

$$xG(x) = a_0x + a_1x^2 + a_2x^3 + \dots = \sum_{n=1}^{\infty} a_{n-1}x^n$$
$$x^2G(x) = a_0x^2 + a_1x^3 + a_2x^4 + \dots = \sum_{n=2}^{\infty} a_{n-2}x^n$$

Take a generating function for some sequence $\{a_n\}$:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

Notice that

$$xG(x) = a_0x + a_1x^2 + a_2x^3 + \dots = \sum_{n=1}^{\infty} a_{n-1}x^n$$

$$x^2G(x) = a_0x^2 + a_1x^3 + a_2x^4 + \dots = \sum_{n=2}^{\infty} a_{n-2}x^n$$

$$\vdots$$

 $x^{d}G(x) = a_{0}x^{d} + a_{1}x^{d+1} + a_{2}x^{d+2} + \cdots$

Take a generating function for some sequence $\{a_n\}$:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

Notice that

$$xG(x) = a_0x + a_1x^2 + a_2x^3 + \dots = \sum_{n=1}^{\infty} a_{n-1}x^n$$

$$x^2G(x) = a_0x^2 + a_1x^3 + a_2x^4 + \dots = \sum_{n=2}^{\infty} a_{n-2}x^n$$

$$\vdots$$

$$x^{d}G(x) = a_{0}x^{d} + a_{1}x^{d+1} + a_{2}x^{d+2} + \dots = \sum_{n=0}^{\infty} a_{n-n}x^{n}.$$

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$.

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$).)

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$.

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then

$$G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then

should look like
$$a_n=a_03^n$$
.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then
$$G(x)=a_0+a_1x+a_2x^2+a_3x^3+\dots$$

$$=a_0+x(a_1+a_2x+\cdots)$$
 Set aside d terms,
$$\text{(where }d=\text{degree of recurrence)}$$

and factor out x^d from the rest.

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then

$$G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

$$= a_0 + x(a_1 + a_2 x + \dots)$$
 Set aside d terms, (where d = degree of recurrence)

$$=a_0+x\sum_{n=0}^{\infty}a_{n+1}x^n$$
 and factor out x^d from the rest.

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n = 3a_{n-1}$. (Sanity check: we already know the general solution

$$a_n=3a_{n-1}$$
. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $G(x)=a_0+a_1x+a_2x^2+a_3x^3+\dots$

$$=a_0+x(a_1+a_2x+\cdots)$$
 Set aside d terms, (where $d=$ degree of recurrence)

$$= a_0 + x \sum_{n=0}^{\infty} a_{n+1} x^n$$
 and factor out x^d from the rest.

$$=a_0+x\sum_{n=0}^{\infty}a_{n+1}x^n$$
 and factor out x^d from the rest.

$$=a_0+x\sum_{n=0}^{\infty}3a_nx^n$$
 Plug in the recurrence relation.

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then

$$G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

$$= a_0 + x(a_1 + a_2 x + \dots)$$
 Set aside d terms,
$$(\text{where } d = \text{degree of recurrence})$$

$$=a_0+x\sum_{n=0}^{\infty}a_{n+1}x^n$$
 and factor out x^d from the rest.

$$=a_0+x\sum_{n=0}^{\infty}3a_nx^n$$
 Plug in the recurrence relation.

$$=a_0+3x\sum_{n=0}^{\infty}a_nx^n$$
 Simplify.

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then

$$G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

$$= a_0 + x(a_1 + a_2 x + \dots)$$
 Set aside d terms, (where d = degree of recurrence)

$$= a_0 + x \sum_{n=0}^{\infty} a_{n+1} x^n \qquad \qquad \text{and factor out } x^d \text{ from the rest.}$$

$$=a_0+x\sum_{n=0}^{\infty}3a_nx^n$$
 Plug in the recurrence relation.

$$= a_0 + 3x \sum_{n=0}^{\infty} a_n x^n$$
 Simplify.

$$=a_0+3xG(x).$$
 Return to closed form.

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $G(x)=a_0+3xG(x).$

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $\boxed{G(x)=a_0+3xG(x).}$

Now solve for G(x):

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $\boxed{G(x)=a_0+3xG(x).}$

Now solve for G(x):

$$a_0 = G(x) - 3xG(x)$$

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $\boxed{G(x)=a_0+3xG(x).}$

Now solve for
$$G(x)$$
:

$$a_0 = G(x) - 3xG(x) = (1 - 3x)G(x);$$

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $\boxed{G(x)=a_0+3xG(x).}$

Now solve for
$$G(x)$$
:

$$a_0 = G(x) - 3xG(x) = (1 - 3x)G(x);$$

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $G(x)=a_0+3xG(x).$

Now solve for G(x):

$$a_0 = G(x) - 3xG(x) = (1 - 3x)G(x);$$

$$G(x) = \frac{a_0}{1 - 3x}$$

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $G(x)=a_0+3xG(x).$

Now solve for G(x):

$$a_0 = G(x) - 3xG(x) = (1 - 3x)G(x);$$

$$G(x) = \frac{a_0}{1 - 3x} = a_0 \left(\frac{1}{1 - y} \right) \Big|_{y = 3x}$$

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $\boxed{G(x)=a_0+3xG(x).}$

Now solve for G(x):

$$a_0 = G(x) - 3xG(x) = (1 - 3x)G(x);$$

$$G(x) = \frac{a_0}{1 - 3x} = a_0 \left(\frac{1}{1 - y} \right) \Big|_{y = 3x}$$

$$= a_0 \sum_{n=0}^{\infty} (3x)^n$$

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $\boxed{G(x)=a_0+3xG(x).}$

Now solve for G(x):

$$a_0 = G(x) - 3xG(x) = (1 - 3x)G(x);$$

$$G(x) = \frac{a_0}{1 - 3x} = a_0 \left(\frac{1}{1 - y}\right)\Big|_{y = 3x}$$

$$= a_0 \sum_{n=0}^{\infty} (3x)^n = \sum_{n=0}^{\infty} (a_0 3^n) x^n.$$

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $G(x)=a_0+3xG(x).$

Now solve for G(x):

$$a_0 = G(x) - 3xG(x) = (1 - 3x)G(x);$$

$$G(x) = \frac{a_0}{1 - 3x} = a_0 \left(\frac{1}{1 - y} \right) \Big|_{y = 3x}$$

$$= a_0 \sum_{n=0}^{\infty} (3x)^n = \sum_{n=0}^{\infty} (a_0 3^n) x^n.$$

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $\boxed{G(x)=a_0+3xG(x).}$

Now solve for G(x):

$$a_0 = G(x) - 3xG(x) = (1 - 3x)G(x);$$

and so for $x \neq 1/3$,

$$G(x) = \frac{a_0}{1 - 3x} = a_0 \left(\frac{1}{1 - y} \right) \Big|_{y = 3x}$$
$$= a_0 \sum_{n=0}^{\infty} (3x)^n = \sum_{n=0}^{\infty} (a_0 3^n) x^n.$$

Now compare to the original formula for G(x)!

So say I have a sequence $\{a_n\}$ that satisfies the recurrence relation $a_n=3a_{n-1}$. (Sanity check: we already know the general solution should look like $a_n=a_03^n$.) Let $G(x)=\sum_{n=0}^\infty a_nx^n$. Then $G(x)=a_0+3xG(x).$

Now solve for G(x):

$$a_0 = G(x) - 3xG(x) = (1 - 3x)G(x);$$

and so for $x \neq 1/3$,

$$G(x) = \frac{a_0}{1 - 3x} = a_0 \left(\frac{1}{1 - y} \right) \Big|_{y = 3x}$$
$$= a_0 \sum_{n=0}^{\infty} (3x)^n = \sum_{n=0}^{\infty} (a_0 3^n) x^n.$$

Now compare to the original formula for G(x)! This shows that $a_n = a_0 3^n$ (as expected).

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Ex 2: suppose I have a sequence satisfying $\frac{10^{n-2}}{10^{n-2}}$

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$.

Ex 2: suppose I have a sequence satisfying $a = 0a + 10^{n-2}$ with a = 5

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

= $a_0 + a_1 x + x^2 (a_2 + a_3 x + \dots)$

Set aside d terms,

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

$$= a_0 + a_1 x + x^2 (a_0 + a_0 x + \dots)$$
Set as

$$=a_0+a_1x+x^2(a_2+a_3x+\cdots)$$
 Set aside d terms, (where $d=$ degree of recurrence)

$$=a_0+a_1x+x^2\sum_{n=0}^{\infty}a_{n+2}x^n$$
 and factor out x^d from the rest.

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

= $a_0 + a_1 x + x^2 (a_2 + a_3 x + \dots)$ Set aside d term

$$=a_0+a_1x+x^2(a_2+a_3x+\cdots)$$
 Set aside d terms, (where $d=$ degree of recurrence)

$$=a_0+a_1x+x^2\sum_{n=0}^{\infty}a_{n+2}x^n$$
 and factor out x^d from the rest.

$$= a_0 + a_1 x + x^2 \sum_{n=0}^{\infty} (9a_n + 10^n) x^n$$
 Plug in the recurrence relation.

$$a_n = 9a_{n-2} + 10^{n-2}$$
 with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

$$= a_0 + a_1 x + x^2 (a_2 + a_3 x + \dots)$$
Set aside d terms, (where d = degree of recurrence)

$$=a_0+a_1x+x^2\sum_{n=0}a_{n+2}x^n$$
 and factor out x^d from the rest.

$$= a_0 + a_1 x + x^2 \sum_{n=0}^{\infty} (9a_n + 10^n) x^n$$
 Plug in the recurrence relation.

$$= a_0 + a_1 x + 9x^2 \sum_{n=0}^{\infty} a_n x^n + x^2 \sum_{n=0}^{\infty} (10x)^n$$

Expand and simplify.

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

= $a_0 + a_1 x + x^2 (a_2 + a_3 x + \dots)$ Set aside d terms,

$$(\textit{where } d = \textit{degree of recurrence})$$

$$= a_0 + a_1 x + x^2 \sum^{\infty} a_{n+2} x^n \qquad \text{and factor out } x^d \text{ from the rest.}$$

$$n=0$$

$$\sum_{n=0}^{\infty} (0a+10^n) \pi^n$$
Plug in the requirement relation

$$= a_0 + a_1 x + x^2 \sum_{n=0}^{\infty} (9a_n + 10^n) x^n$$
 Plug in the recurrence relation.

$$= a_0 + a_1 x + 9x^2 \sum_{n=0}^{\infty} a_n x^n + x^2 \sum_{n=0}^{\infty} (10x)^n$$

Expand and simplify.

$$=a_0+a_1x+9x^2G(x)+x^2\left(\frac{1}{1-10x}\right)$$
 . Return to closed forms.

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + 9x^2 G(x) + x^2 \left(\frac{1}{1 - 10x}\right)$$

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + 9x^2 G(x) + x^2 \left(\frac{1}{1 - 10x}\right)$$

Now solve for G(x):

$$a_0 + a_1 x + x^2 \left(\frac{1}{1 - 10x} \right) = G(x) - 9x^2 G(x)$$

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + 9x^2 G(x) + x^2 \left(\frac{1}{1 - 10x}\right)$$

Now solve for G(x):

$$a_0 + a_1 x + x^2 \left(\frac{1}{1 - 10x} \right) = G(x) - 9x^2 G(x) = (1 - 9x^2)G(x);$$

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + 9x^2 G(x) + x^2 \left(\frac{1}{1 - 10x}\right)$$

Now solve for G(x):

$$a_0 + a_1 x + x^2 \left(\frac{1}{1 - 10x}\right) = G(x) - 9x^2 G(x) = (1 - 9x^2)G(x);$$

 $G(x) = \frac{(a_0 + a_1 x)(1 - 10x) + x^2}{(1 - 10x)(1 - 9x^2)}$

$$x) = \frac{(a_0 + a_1 x)(1 - 10x) + x^2}{(1 - 10x)(1 - 9x^2)}$$

$$a_n = 9a_{n-2} + 10^{n-2}$$
 with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + 9x^2 G(x) + x^2 \left(\frac{1}{1 - 10x}\right)$$

Now solve for G(x):

$$a_0 + a_1 x + x^2 \left(\frac{1}{1 - 10x}\right) = G(x) - 9x^2 G(x) = (1 - 9x^2)G(x);$$

$$G(x) = \frac{(a_0 + a_1 x)(1 - 10x) + x^2}{(1 - 10x)(1 - 9x^2)} = \frac{a_0 + (a_1 - 10a_0)x + (1 - 10a_1)x^2}{(1 - 10x)(1 + 3x)(1 - 3x)}$$

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + 9x^2 G(x) + x^2 \left(\frac{1}{1 - 10x}\right)$$

Now solve for G(x):

$$a_0 + a_1 x + x^2 \left(\frac{1}{1 - 10x}\right) = G(x) - 9x^2 G(x) = (1 - 9x^2)G(x);$$

So
$$G(x) = \frac{(a_0 + a_1 x)(1 - 10x) + x^2}{(1 - 10x)(1 - 9x^2)} = \frac{a_0 + (a_1 - 10a_0)x + (1 - 10a_1)x^2}{(1 - 10x)(1 + 3x)(1 - 3x)}$$

$$= \frac{3 - 28x - 19x^2}{(1 - 10x)(1 + 3x)(1 - 3x)}$$

$$a_n = 9a_{n-2} + 10^{n-2}$$
 with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + 9x^2 G(x) + x^2 \left(\frac{1}{1 - 10x}\right)$$

Now solve for G(x):

$$a_0 + a_1 x + x^2 \left(\frac{1}{1 - 10x}\right) = G(x) - 9x^2 G(x) = (1 - 9x^2)G(x);$$

$$G(x) = \frac{(a_0 + a_1 x)(1 - 10x) + x^2}{(1 - 10x)(1 - 9x^2)} = \frac{a_0 + (a_1 - 10a_0)x + (1 - 10a_1)x^2}{(1 - 10x)(1 + 3x)(1 - 3x)}$$

$$= \frac{3 - 28x - 19x^2}{(1 - 10x)(1 + 3x)(1 - 3x)}$$

$$= \frac{1}{1 - 10x} + \left(\frac{46}{39}\right) \frac{1}{1 - (-3x)} + \left(\frac{1}{91}\right) \frac{1}{1 - 10x}$$

Review partial fractions decomposition!

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + 9x^2 G(x) + x^2 \left(\frac{1}{1 - 10x}\right)$$

Now solve for G(x):

$$G(x) = \frac{1}{1 - 10x} + \left(\frac{46}{39}\right) \frac{1}{1 - (-3x)} + \left(\frac{1}{91}\right) \frac{1}{1 - 10x}$$
 Review partial fractions decomposition!

Putting back into series form, we get

 $G(x) = \sum_{n=0}^{\infty} 10^n x^n + \left(\frac{46}{39}\right) \sum_{n=0}^{\infty} (-3)^n x^n + \left(\frac{1}{91}\right) \sum_{n=0}^{\infty} 3^n x^n$

$$G(x) = \sum_{n=0}^{\infty} 10^n x^n + \left(\frac{40}{39}\right) \sum_{n=0}^{\infty} (-3)^n x^n + \left(\frac{1}{91}\right) \sum_{n=0}^{\infty} 3^n x^n$$

 $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + 9x^2 G(x) + x^2 \left(\frac{1}{1 - 10x}\right)$$

Now solve for G(x):

$$G(x) = \frac{1}{1 - 10x} + \left(\frac{46}{39}\right) \frac{1}{1 - (-3x)} + \left(\frac{1}{91}\right) \frac{1}{1 - 10x}$$
 Review partial fractions decomposition!

Putting back into series form, we get

$$G(x) = \sum_{n=0}^{\infty} 10^n x^n + \left(\frac{46}{39}\right) \sum_{n=0}^{\infty} (-3)^n x^n + \left(\frac{1}{91}\right) \sum_{n=0}^{\infty} 3^n x^n$$
$$= \sum_{n=0}^{\infty} \left(10^n + \left(\frac{46}{39}\right) (-3)^n + \left(\frac{1}{91}\right) 3^n\right) x^n.$$

x 2: suppose I have a sequence satisfying $a_n = 9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + 9x^2 G(x) + x^2 \left(\frac{1}{1 - 10x}\right)$$

Now solve for G(x):

$$G(x) = \frac{1}{1 - 10x} + \left(\frac{46}{39}\right) \frac{1}{1 - (-3x)} + \left(\frac{1}{91}\right) \frac{1}{1 - 10x}$$
Review partial fractions decomposition!

Putting back into series form, we get

$$G(x) = \sum_{n=0}^{\infty} 10^n x^n + \left(\frac{46}{39}\right) \sum_{n=0}^{\infty} (-3)^n x^n + \left(\frac{1}{91}\right) \sum_{n=0}^{\infty} 3^n x^n$$
$$= \sum_{n=0}^{\infty} \left(10^n + \left(\frac{46}{39}\right) (-3)^n + \left(\frac{1}{91}\right) 3^n\right) x^n.$$

So $a_n = 10^n + \left(\frac{46}{39}\right)(-3)^n + \left(\frac{1}{91}\right)3^n$

a_n = $9a_{n-2} + 10^{n-2}$ with $a_0 = 3$ and $a_1 = 2$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$G(x) = a_0 + a_1 x + 9x^2 G(x) + x^2 \left(\frac{1}{1 - 10x}\right)$$

Now solve for G(x):

$$G(x) = \frac{1}{1 - 10x} + \left(\frac{46}{39}\right) \frac{1}{1 - (-3x)} + \left(\frac{1}{91}\right) \frac{1}{1 - 10x}$$
Review partial fractions decomposition!

Putting back into series form, we get

$$G(x) = \sum_{n=0}^{\infty} 10^n x^n + \left(\frac{46}{39}\right) \sum_{n=0}^{\infty} (-3)^n x^n + \left(\frac{1}{91}\right) \sum_{n=0}^{\infty} 3^n x^n$$
$$= \sum_{n=0}^{\infty} \left(10^n + \left(\frac{46}{39}\right)(-3)^n + \left(\frac{1}{91}\right)3^n\right) x^n.$$

So

$$a_n = 10^n + \left(\frac{46}{39}\right)(-3)^n + \left(\frac{1}{91}\right)3^n$$
 Try Ex 38

Counting problems and Generating functions

Example: What is the coefficient on x^{12} in

$$(x^2 + x^3 + x^4 + x^5)(x^4 + x^5)(x^1 + x^2 + x^3)$$
?

Counting problems and Generating functions

Example: What is the coefficient on x^{12} in

$$\underbrace{(x^2 + x^3 + x^4 + x^5)}_{e_1} \underbrace{(x^4 + x^5)}_{e_2} \underbrace{(x^1 + x^2 + x^3)}_{e_3}?$$

This is equivalent to the question "How many integer solutions are there to the equation

$$e_1 + e_2 + e_3 = 12$$

with

$$2 \le e_1 \le 5$$
, $4 \le e_2 \le 5$, $1 \le e_3 \le 3$?"

Counting problems and Generating functions

Example: What is the coefficient on x^{12} in

$$\underbrace{(x^2 + x^3 + x^4 + x^5)}_{e_1, \text{ glazed}} \underbrace{(x^4 + x^5)}_{e_2, \text{ choc.}} \underbrace{(x^1 + x^2 + x^3)}_{e_3, \text{ jelly}}?$$

This is equivalent to the question "How many integer solutions are there to the equation

$$e_1 + e_2 + e_3 = 12$$

with

$$2 \le e_1 \le 5$$
, $4 \le e_2 \le 5$, $1 \le e_3 \le 3$?"

Which is the same as "How many ways can you pick 12 doughnuts to bring to the office if you've had requests for at least 2 glazed, 4 chocolate, and one jelly-filled, but when you get to the store, they only have 5 glazed, 5 chocolate, and 3 jelly-filled left?"

Example: Use a generating function to answer the question "How many non-negative integer solutions are there to

$$e_1 + e_2 + e_3 = 10$$

where e_2 is a multiple of 2 and e_3 is a multiple of 3?"

Example: Use a generating function to answer the question "How many non-negative integer solutions are there to

$$e_1 + e_2 + e_3 = 10$$

where e_2 is a multiple of 2 and e_3 is a multiple of 3?"

The answer is the same as the coefficient of \boldsymbol{x}^{10} in

$$\underbrace{(1+x+x^2+\cdots)}_{e_1}\underbrace{(1+x^2+x^4+x^6+\cdots)}_{e_2}\underbrace{(1+x^3+x^6+x^9+\cdots)}_{e_3}$$

$$e_1 + e_2 + e_3 = 10$$

where e_2 is a multiple of 2 and e_3 is a multiple of 3?"

The answer is the same as the coefficient of x^{10} in

$$\underbrace{(1+x+x^2+\cdots)}_{e_1}\underbrace{(1+x^2+x^4+x^6+\cdots)}_{e_2}\underbrace{(1+x^3+x^6+x^9+\cdots)}_{e_3},$$

which is the same as the coefficient of x^{10} in

$$\underbrace{(1+x+x^2+\cdots+x^{10})}_{e_1}\underbrace{(1+x^2+x^4+\cdots+x^{10})}_{e_2}\underbrace{(1+x^3+x^6+x^9)}_{e_3}$$

$$e_1 + e_2 + e_3 = 10$$

where e_2 is a multiple of 2 and e_3 is a multiple of 3?"

The answer is the same as the coefficient of x^{10} in

$$\underbrace{(1+x+x^2+\cdots)}_{e_1}\underbrace{(1+x^2+x^4+x^6+\cdots)}_{e_2}\underbrace{(1+x^3+x^6+x^9+\cdots)}_{e_3},$$

which is the same as the coefficient of x^{10} in

$$\underbrace{(1+x+x^2+\cdots+x^{10})}_{e_1}\underbrace{(1+x^2+x^4+\cdots+x^{10})}_{e_2}\underbrace{(1+x^3+x^6+x^9)}_{e_3},$$

since we would never use any terms that came from x^a for a > 10.

$$e_1 + e_2 + e_3 = 10$$

where e_2 is a multiple of 2 and e_3 is a multiple of 3?"

The answer is the same as the coefficient of x^{10} in

$$\underbrace{(1+x+x^2+\cdots)}_{e_1}\underbrace{(1+x^2+x^4+x^6+\cdots)}_{e_2}\underbrace{(1+x^3+x^6+x^9+\cdots)}_{e_3},$$

which is the same as the coefficient of x^{10} in

$$\underbrace{(1+x+x^2+\cdots+x^{10})}_{e_1}\underbrace{(1+x^2+x^4+\cdots+x^{10})}_{e_2}\underbrace{(1+x^3+x^6+x^9)}_{e_3},$$

since we would never use any terms that came from x^a for a>10. This is something we can plug into a calculator like WolframAlpha.

$$e_1 + e_2 + e_3 = 10$$

where e_2 is a multiple of 2 and e_3 is a multiple of 3?"

The answer is the same as the coefficient of x^{10} in. . . This is something we can plug into a calculator like WolframAlpha:

Expanded form:

Step-by-step solution

$$x^{29} + x^{28} + 2\,x^{27} + 3\,x^{26} + 4\,x^{25} + 5\,x^{24} + 7\,x^{23} + 8\,x^{22} + 10\,x^{21} + 12\,x^{20} + 14\,x^{19} + \\ 15\,x^{18} + 16\,x^{17} + 17\,x^{16} + 17\,x^{15} + 17\,x^{14} + 17\,x^{13} + 16\,x^{12} + 15\,x^{11} + \\ 14\,x^{10} + 12\,x^{9} + 10\,x^{8} + 8\,x^{7} + 7\,x^{6} + 5\,x^{5} + 4\,x^{4} + 3\,x^{3} + 2\,x^{2} + x + 1$$

How many integer partitions are there of 5?

How many integer partitions are there of 5?

This is the same as the coefficient of x^5 in

$$(1+x+x^2+x^3+x^4+x^5)(1+x^2+x^4)(1+x^3)(1+x^4)(1+x^5)$$

$$= ((x^1)^0 + (x^1)^1 + (x^1)^2 + (x^1)^3 + (x^1)^4 + (x^1)^5)$$

$$((x^2)^0 + (x^2)^1 + (x^2)^2)$$

$$((x^3)^0 + (x^3)^1)$$

$$((x^4)^0 + (x^4)^1)$$

$$((x^5)^0 + (x^5)^1)$$

How many integer partitions are there of 5?

This is the same as the coefficient of x^5 in

$$(1+x+x^2+x^3+x^4+x^5)(1+x^2+x^4)(1+x^3)(1+x^4)(1+x^5)$$

$$= ((x^1)^0 + (x^1)^1 + (x^1)^2 + (x^1)^3 + (x^1)^4 + (x^1)^5)$$

$$((x^2)^0 + (x^2)^1 + (x^2)^2)$$

$$((x^3)^0 + (x^3)^1)$$

$$((x^4)^0 + (x^4)^1)$$

$$((x^5)^0 + (x^5)^1)$$

Why?

How many integer partitions are there of 5?

This is the same as the coefficient of x^5 in

$$\begin{array}{l} (1+x+x^2+x^3+x^4+x^5)(1+x^2+x^4)(1+x^3)(1+x^4)(1+x^5) \\ = \left((x^1)^0+(x^1)^1+(x^1)^2+(x^1)^3+(x^1)^4+(x^1)^5\right) & \text{(pts of length 1)} \\ \left((x^2)^0+(x^2)^1+(x^2)^2\right) & \text{(pts of length 2)} \\ \left((x^3)^0+(x^3)^1\right) & \text{(pts of length 3)} \\ \left((x^4)^0+(x^4)^1\right) & \text{(pts of length 4)} \\ \left((x^5)^0+(x^5)^1\right) & \text{(pts of length 5)} \end{array}$$

Why?

How many integer partitions are there of 5?

This is the same as the coefficient of x^5 in

$$\begin{array}{l} (1+x+x^2+x^3+x^4+x^5)(1+x^2+x^4)(1+x^3)(1+x^4)(1+x^5) \\ = \left((x^1)^0+(x^1)^1+(x^1)^2+(x^1)^3+(x^1)^4+(x^1)^5\right) & \text{(pts of length 1)} \\ \left((x^2)^0+(x^2)^1+(x^2)^2\right) & \text{(pts of length 2)} \\ \left((x^3)^0+(x^3)^1\right) & \text{(pts of length 3)} \\ \left((x^4)^0+(x^4)^1\right) & \text{(pts of length 4)} \\ \left((x^5)^0+(x^5)^1\right) & \text{(pts of length 5)} \end{array}$$

Why? For example, consider the partition \(\begin{aligned} \displaystyle \dintartartartartartartartartartartartar

Counting integer partitions of 5 by looking at the coeff. of \boldsymbol{x}^5 in

$$(1+x+x^2+x^3+x^4+x^5)(1+x^2+x^4)(1+x^3)(1+x^4)(1+x^5)\dots$$

corresponds to

 $(x^1)^2$ from first factor, since there are 2 parts of length 1, $1=(x^2)^0$ from second factor, since there are 0 parts of length 2, $(x^3)^1$ from third factor, since there is 1 part of length 3, $1=(x^4)^0$ from fourth factor, since there are 0 parts of length 4, and $1=(x^5)^0$ from fourth factor, since there are 1 parts of length 5.

Counting integer partitions of 5 by looking at the coeff. of \boldsymbol{x}^5 in

$$(1+x+x^2+x^3+x^4+x^5)(1+x^2+x^4)(1+x^3)(1+x^4)(1+x^5)\dots$$

corresponds to $(x^1)^2 * 1 * (x^3)^1 * 1 * 1$.

Counting integer partitions of 5 by looking at the coeff. of \boldsymbol{x}^5 in

$$(1+x+x^2+x^3+x^4+x^5)(1+x^2+x^4)(1+x^3)(1+x^4)(1+x^5)\dots$$

corresponds to $(x^1)^2 * 1 * (x^3)^1 * 1 * 1$.

Similarly, the correspondence between the other partitions of $\boldsymbol{5}$ and the monomials goes like

$$\left(\sum_{i=0}^{\infty} x^i\right) \left(\sum_{i=0}^{\infty} x^{2i}\right) \left(\sum_{i=0}^{\infty} x^{3i}\right) \left(\sum_{i=0}^{\infty} x^{4i}\right) \left(\sum_{i=0}^{\infty} x^{5i}\right)$$

 $=\prod_{k=1}^{5}\left(\sum_{i=0}^{\infty}x^{ki}\right)$

$$\left(\sum_{i=0}^{\infty} x^i\right) \left(\sum_{i=0}^{\infty} x^{2i}\right) \left(\sum_{i=0}^{\infty} x^{3i}\right) \left(\sum_{i=0}^{\infty} x^{4i}\right) \left(\sum_{i=0}^{\infty} x^{5i}\right)$$

$$\left(\sum_{i=0}^{\infty} x^i\right) \left(\sum_{i=0}^{\infty} x^{2i}\right) \left(\sum_{i=0}^{\infty} x^{3i}\right) \left(\sum_{i=0}^{\infty} x^{4i}\right) \left(\sum_{i=0}^{\infty} x^{5i}\right)$$

 $= \prod_{k=1}^{5} \left(\sum_{i=0}^{\infty} x^{ki} \right) = \prod_{k=1}^{5} \left(\frac{1}{1-x^k} \right).$

$$\left(\sum_{i=0}^{\infty} x^{i}\right) \left(\sum_{i=0}^{\infty} x^{2i}\right) \left(\sum_{i=0}^{\infty} x^{3i}\right) \left(\sum_{i=0}^{\infty} x^{4i}\right) \left(\sum_{i=0}^{\infty} x^{5i}\right)$$

$$= \prod_{k=1}^{5} \left(\sum_{i=0}^{\infty} x^{ki}\right) = \prod_{k=1}^{5} \left(\frac{1}{1-x^{k}}\right).$$

Which is the same as the coefficient of x^5 in

$$\left(\sum_{i=0}^{\infty} x^{i}\right) * \left(\sum_{i=0}^{\infty} x^{2i}\right) * \left(\sum_{i=0}^{\infty} x^{3i}\right) * \left(\sum_{i=0}^{\infty} x^{4i}\right)$$

$$* \left(\sum_{i=0}^{\infty} x^{5i}\right) * \left(\sum_{i=0}^{\infty} x^{6i}\right) * \left(\sum_{i=0}^{\infty} x^{7i}\right) \cdots$$
must use

the 1 term

$$\left(\sum_{i=0}^{\infty} x^i\right) \left(\sum_{i=0}^{\infty} x^{2i}\right) \left(\sum_{i=0}^{\infty} x^{3i}\right) \left(\sum_{i=0}^{\infty} x^{4i}\right) \left(\sum_{i=0}^{\infty} x^{5i}\right)$$
$$= \prod_{k=1}^{5} \left(\sum_{i=0}^{\infty} x^{ki}\right) = \prod_{k=1}^{5} \left(\frac{1}{1-x^k}\right).$$

Which is the same as the coefficient of x^5 in

$$\left(\sum_{i=0}^{\infty} x^i\right) * \left(\sum_{i=0}^{\infty} x^{2i}\right) * \left(\sum_{i=0}^{\infty} x^{3i}\right) * \dots = \prod_{k=1}^{\infty} \left(\sum_{i=0}^{\infty} x^{ki}\right)$$

So in general, the number of integer partitions of n, denoted p(n), is the coefficient of x^n in

$$\sum_{n=0}^{\infty} p(n)x^n = \prod_{k=1}^{\infty} \left(\frac{1}{1-x^k}\right).$$