Taylor series to know and love:

$$
\begin{align*}
(1+x)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k}=1+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+x^{n} \tag{finite}\\
\frac{1-x^{n}}{1-x} & =\sum_{k=0}^{n-1} x^{k}=1+x+x^{2}+\cdots+x^{n-1} \tag{finite}\\
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\cdots \tag{infinite}\\
e^{x} & =\sum_{k=0}^{\infty} x^{k} / k!=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots
\end{align*}
$$

(infinite)

The lefthand side of each is called the closed form for the series.

Taylor series to know and love:

$$
\begin{align*}
(1+x)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k}=1+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+x^{n} \tag{finite}\\
\frac{1-x^{n}}{1-x} & =\sum_{k=0}^{n-1} x^{k}=1+x+x^{2}+\cdots+x^{n-1} \tag{finite}\\
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\cdots \tag{infinite}\\
e^{x} & =\sum_{k=0}^{\infty} x^{k} / k!=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots
\end{align*}
$$

The lefthand side of each is called the closed form for the series.
New Series from old: Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ and $g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$.
Then
$f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k} \quad$ and $\quad f(x) g(x)=\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) x^{k}$.
You can also differentiate and integrate series to get new series.

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k} . \quad \text { ("Formal": forget about } \begin{gathered}
\text { convergence!) }
\end{gathered}
$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k} . \quad \text { ("Formal": forget about } \begin{gathered}
\text { convergence!) }
\end{gathered}
$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

For example, the generating function for the sequence
$1,1,1, \cdots=\{1\}_{k=0,1, \ldots}$

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k} . \quad \text { ("Formal": forget about } \begin{gathered}
\text { convergence!) }
\end{gathered}
$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

For example, the generating function for the sequence
$1,1,1, \cdots=\{1\}_{k=0,1, \ldots}$ is

$$
\sum_{k=0}^{\infty} 1 * x^{k}
$$

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k} . \quad \text { ("Formal": forget about } \begin{gathered}
\text { convergence!) }
\end{gathered}
$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

For example, the generating function for the sequence
$1,1,1, \cdots=\{1\}_{k=0,1, \ldots}$ is

$$
\sum_{k=0}^{\infty} 1 * x^{k}=\frac{1}{1-x}
$$

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k} . \quad \text { ("Formal": forget about } \begin{gathered}
\text { convergence!) }
\end{gathered}
$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

For example, the generating function for the sequence
$1,1,1, \cdots=\{1\}_{k=0,1, \ldots}$ is

$$
\sum_{k=0}^{\infty} 1 * x^{k}=\frac{1}{1-x}
$$

The generating function for the sequence $1, \frac{1}{2}, \frac{1}{6}, \cdots=\{1 / n!\}$

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k} . \quad \text { ("Formal": forget about } \begin{gathered}
\text { convergence!) }
\end{gathered}
$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

For example, the generating function for the sequence
$1,1,1, \cdots=\{1\}_{k=0,1, \ldots}$ is

$$
\sum_{k=0}^{\infty} 1 * x^{k}=\frac{1}{1-x}
$$

The generating function for the sequence $1, \frac{1}{2}, \frac{1}{6}, \cdots=\{1 / n!\}$ is

$$
\sum_{n=0}^{\infty} x^{n} / n!
$$

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k} . \quad \text { ("Formal": forget about } \begin{gathered}
\text { convergence!) }
\end{gathered}
$$

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

For example, the generating function for the sequence
$1,1,1, \cdots=\{1\}_{k=0,1, \ldots}$ is

$$
\sum_{k=0}^{\infty} 1 * x^{k}=\frac{1}{1-x}
$$

The generating function for the sequence $1, \frac{1}{2}, \frac{1}{6}, \cdots=\{1 / n!\}$ is

$$
\sum_{n=0}^{\infty} x^{n} / n!=e^{x}
$$

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Not every generating function has a nice closed form, but that shouldn't stop you from writing it down.

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Not every generating function has a nice closed form, but that shouldn't stop you from writing it down. For example, the generating function for the sequence $1,0,2,0,3,0, \ldots$

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Not every generating function has a nice closed form, but that shouldn't stop you from writing it down. For example, the generating function for the sequence $1,0,2,0,3,0, \ldots$ is

$$
1+0 * x+2 x^{2}+0 * x^{3}+3 x^{4}+\cdots
$$

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.

Not every generating function has a nice closed form, but that shouldn't stop you from writing it down. For example, the generating function for the sequence $1,0,2,0,3,0, \ldots$ is

$$
1+0 * x+2 x^{2}+0 * x^{3}+3 x^{4}+\cdots=\sum_{k=0}^{\infty}(k+1) * x^{2 k} .
$$

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.
Not every generating function has a nice closed form, but that shouldn't stop you from writing it down. For example, the generating function for the sequence $1,0,2,0,3,0, \ldots$ is

$$
1+0 * x+2 x^{2}+0 * x^{3}+3 x^{4}+\cdots=\sum_{k=0}^{\infty}(k+1) * x^{2 k} .
$$

And the generating function for the sequence $0,0,2^{2}, 3^{2}, 0,5^{2}, 0,7^{2}, \ldots$, i.e. $a_{n}=n^{2}$ if n is prime and $a_{n}=0$ otherwise

Section 8.4: Generating functions.

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.
Not every generating function has a nice closed form, but that shouldn't stop you from writing it down. For example, the generating function for the sequence $1,0,2,0,3,0, \ldots$ is

$$
1+0 * x+2 x^{2}+0 * x^{3}+3 x^{4}+\cdots=\sum_{k=0}^{\infty}(k+1) * x^{2 k} .
$$

And the generating function for the sequence $0,0,2^{2}, 3^{2}, 0,5^{2}, 0,7^{2}, \ldots$, i.e. $a_{n}=n^{2}$ if n is prime and $a_{n}=0$ otherwise is

$$
2^{2} x^{2}+3^{2} x^{3}+5^{2} x^{5}+7^{2} x^{2}+\cdots=\sum_{p \text { prime }} p^{2} x^{p} .
$$

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

("Formal": forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.
Note that a finite sequence $a_{0}, a_{1}, \ldots, a_{n}$ is the same as the infinite sequence $a_{0}, a_{1}, \ldots, a_{n}, 0,0, \ldots$;

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

("Formal" : forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.
Note that a finite sequence $a_{0}, a_{1}, \ldots, a_{n}$ is the same as the infinite sequence $a_{0}, a_{1}, \ldots, a_{n}, 0,0, \ldots$; similarly, the generating function for a finite sequence will be a finite degree polynomial:

$$
\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}+0+0+\cdots=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

("Formal" : forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.
Note that a finite sequence $a_{0}, a_{1}, \ldots, a_{n}$ is the same as the infinite sequence $a_{0}, a_{1}, \ldots, a_{n}, 0,0, \ldots$; similarly, the generating function for a finite sequence will be a finite degree polynomial:

$$
\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}+0+0+\cdots=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

For example, for a fixed n, the generating function for the sequence $\left\{\binom{n}{k}\right\}_{k=0,1, \ldots, n}$ is

$$
\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

("Formal" : forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.
Note that a finite sequence $a_{0}, a_{1}, \ldots, a_{n}$ is the same as the infinite sequence $a_{0}, a_{1}, \ldots, a_{n}, 0,0, \ldots$; similarly, the generating function for a finite sequence will be a finite degree polynomial:

$$
\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}+0+0+\cdots=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

For example, for a fixed n, the generating function for the sequence $\left\{\binom{n}{k}\right\}_{k=0,1, \ldots, n}$ is

$$
\sum_{k=0}^{n}\binom{n}{k} x^{k}=(x+1)^{n}
$$

A generating function for a sequence $\left\{a_{k}\right\}_{k=0,1, \ldots}$ is the series

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

("Formal" : forget about convergence!)

When possible, we rewrite the generating function in terms of a simple expression of elementary functions, which we call closed solutions.
Note that a finite sequence $a_{0}, a_{1}, \ldots, a_{n}$ is the same as the infinite sequence $a_{0}, a_{1}, \ldots, a_{n}, 0,0, \ldots$; similarly, the generating function for a finite sequence will be a finite degree polynomial:

$$
\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}+0+0+\cdots=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

For example, for a fixed n, the generating function for the sequence $\left\{\binom{n}{k}\right\}_{k=0,1, \ldots, n}$ is

$$
\sum_{k=0}^{n}\binom{n}{k} x^{k}=(x+1)^{n} . \quad \text { You try Exercise } 37
$$

First application: solving recurrence relations

Take a generating function for some sequence $\left\{a_{n}\right\}$:

$$
G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

First application: solving recurrence relations

Take a generating function for some sequence $\left\{a_{n}\right\}$:

$$
G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

Notice that

$$
x G(x)=a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\cdots
$$

First application: solving recurrence relations

Take a generating function for some sequence $\left\{a_{n}\right\}$:

$$
G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

Notice that

$$
x G(x)=a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\cdots=\sum_{n=1}^{\infty} a_{n-1} x^{n}
$$

(Rewrite sums so that the power of x matches the index, to make it easier to collect "like terms" when adding series!)

First application: solving recurrence relations

Take a generating function for some sequence $\left\{a_{n}\right\}$:

$$
G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

Notice that

$$
\begin{aligned}
x G(x) & =a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\cdots=\sum_{n=1}^{\infty} a_{n-1} x^{n} \\
x^{2} G(x) & =a_{0} x^{2}+a_{1} x^{3}+a_{2} x^{4}+\cdots
\end{aligned}
$$

(Rewrite sums so that the power of x matches the index, to make it easier to collect "like terms" when adding series!)

First application: solving recurrence relations

Take a generating function for some sequence $\left\{a_{n}\right\}$:

$$
G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

Notice that

$$
\begin{aligned}
x G(x) & =a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\cdots=\sum_{n=1}^{\infty} a_{n-1} x^{n} \\
x^{2} G(x) & =a_{0} x^{2}+a_{1} x^{3}+a_{2} x^{4}+\cdots=\sum_{n=2}^{\infty} a_{n-2} x^{n}
\end{aligned}
$$

(Rewrite sums so that the power of x matches the index, to make it easier to collect "like terms" when adding series!)

First application: solving recurrence relations

Take a generating function for some sequence $\left\{a_{n}\right\}$:

$$
G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

Notice that

$$
\begin{aligned}
x G(x) & =a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\cdots=\sum_{n=1}^{\infty} a_{n-1} x^{n} \\
x^{2} G(x) & =a_{0} x^{2}+a_{1} x^{3}+a_{2} x^{4}+\cdots=\sum_{n=2}^{\infty} a_{n-2} x^{n} \\
& \vdots \\
x^{d} G(x) & =a_{0} x^{d}+a_{1} x^{d+1}+a_{2} x^{d+2}+\cdots
\end{aligned}
$$

(Rewrite sums so that the power of x matches the index, to make it easier to collect "like terms" when adding series!)

First application: solving recurrence relations

Take a generating function for some sequence $\left\{a_{n}\right\}$:

$$
G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

Notice that

$$
\begin{aligned}
x G(x) & =a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\cdots=\sum_{n=1}^{\infty} a_{n-1} x^{n} \\
x^{2} G(x) & =a_{0} x^{2}+a_{1} x^{3}+a_{2} x^{4}+\cdots=\sum_{n=2}^{\infty} a_{n-2} x^{n} \\
& \vdots \\
x^{d} G(x) & =a_{0} x^{d}+a_{1} x^{d+1}+a_{2} x^{d+2}+\cdots=\sum_{n=d}^{\infty} a_{n-d} x^{n} .
\end{aligned}
$$

(Rewrite sums so that the power of x matches the index, to make it easier to collect "like terms" when adding series!)

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$.

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.)

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

$$
=a_{0}+x\left(a_{1}+a_{2} x+\cdots\right) \quad \text { Set aside } d \text { terms, }
$$

(where $d=$ degree of recurrence)
and factor out x^{d} from the rest.

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
\begin{array}{rlrl}
G(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& =a_{0}+x\left(a_{1}+a_{2} x+\cdots\right) & & \text { Set aside } d \text { terms, } \\
& & \text { (where } d=\text { degree of recurrence) } \\
& =a_{0}+x \sum_{n=0}^{\infty} a_{n+1} x^{n} & & \text { and factor out } x^{d} \text { from the rest. }
\end{array}
$$

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

$$
=a_{0}+x\left(a_{1}+a_{2} x+\cdots\right) \quad \text { Set aside } d \text { terms, }
$$

(where $d=$ degree of recurrence)
$=a_{0}+x \sum_{n=0}^{\infty} a_{n+1} x^{n}$
$=a_{0}+x \sum_{n=0}^{\infty} 3 a_{n} x^{n}$
and factor out x^{d} from the rest.

Plug in the recurrence relation.

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

$$
=a_{0}+x\left(a_{1}+a_{2} x+\cdots\right) \quad \text { Set aside } d \text { terms, }
$$

$$
\text { (where } d=\text { degree of recurrence) }
$$

$$
=a_{0}+x \sum_{n=0}^{\infty} a_{n+1} x^{n}
$$

$$
=a_{0}+x \sum_{n=0}^{\infty} 3 a_{n} x^{n}
$$

$$
=a_{0}+3 x \sum_{n=0}^{\infty} a_{n} x^{n}
$$

and factor out x^{d} from the rest.

Plug in the recurrence relation.

Simplify.

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

$$
=a_{0}+x\left(a_{1}+a_{2} x+\cdots\right) \quad \text { Set aside } d \text { terms, }
$$

(where $d=$ degree of recurrence)
$=a_{0}+x \sum_{n=0}^{\infty} a_{n+1} x^{n}$
$=a_{0}+x \sum_{n=0}^{\infty} 3 a_{n} x^{n}$
$=a_{0}+3 x \sum_{n=0}^{\infty} a_{n} x^{n}$
$=a_{0}+3 x G(x)$.
Plug in the recurrence relation.

Simplify.
Return to closed form.

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+3 x G(x)
$$

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+3 x G(x)
$$

Now solve for $G(x)$:

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+3 x G(x)
$$

Now solve for $G(x)$:

$$
a_{0}=G(x)-3 x G(x)
$$

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+3 x G(x)
$$

Now solve for $G(x)$:

$$
a_{0}=G(x)-3 x G(x)=(1-3 x) G(x)
$$

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+3 x G(x)
$$

Now solve for $G(x)$:

$$
a_{0}=G(x)-3 x G(x)=(1-3 x) G(x)
$$

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+3 x G(x)
$$

Now solve for $G(x)$:

$$
a_{0}=G(x)-3 x G(x)=(1-3 x) G(x)
$$

and so for $x \neq 1 / 3$,

$$
G(x)=\frac{a_{0}}{1-3 x}
$$

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+3 x G(x)
$$

Now solve for $G(x)$:

$$
a_{0}=G(x)-3 x G(x)=(1-3 x) G(x)
$$

and so for $x \neq 1 / 3$,

$$
G(x)=\frac{a_{0}}{1-3 x}=\left.a_{0}\left(\frac{1}{1-y}\right)\right|_{y=3 x}
$$

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+3 x G(x)
$$

Now solve for $G(x)$:

$$
a_{0}=G(x)-3 x G(x)=(1-3 x) G(x)
$$

and so for $x \neq 1 / 3$,

$$
\begin{aligned}
& G(x)=\frac{a_{0}}{1-3 x}=\left.a_{0}\left(\frac{1}{1-y}\right)\right|_{y=3 x} \\
& \quad=a_{0} \sum_{n=0}^{\infty}(3 x)^{n}
\end{aligned}
$$

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+3 x G(x)
$$

Now solve for $G(x)$:

$$
a_{0}=G(x)-3 x G(x)=(1-3 x) G(x)
$$

and so for $x \neq 1 / 3$,

$$
\begin{aligned}
& G(x)=\frac{a_{0}}{1-3 x}=\left.a_{0}\left(\frac{1}{1-y}\right)\right|_{y=3 x} \\
& \quad=a_{0} \sum_{n=0}^{\infty}(3 x)^{n}=\sum_{n=0}^{\infty}\left(a_{0} 3^{n}\right) x^{n}
\end{aligned}
$$

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+3 x G(x)
$$

Now solve for $G(x)$:

$$
a_{0}=G(x)-3 x G(x)=(1-3 x) G(x) ;
$$

and so for $x \neq 1 / 3$,

$$
\begin{aligned}
& G(x)=\frac{a_{0}}{1-3 x}=\left.a_{0}\left(\frac{1}{1-y}\right)\right|_{y=3 x} \\
& \quad=a_{0} \sum_{n=0}^{\infty}(3 x)^{n}=\sum_{n=0}^{\infty}\left(a_{0} 3^{n}\right) x^{n}
\end{aligned}
$$

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+3 x G(x)
$$

Now solve for $G(x)$:

$$
a_{0}=G(x)-3 x G(x)=(1-3 x) G(x)
$$

and so for $x \neq 1 / 3$,

$$
\begin{aligned}
& G(x)=\frac{a_{0}}{1-3 x}=\left.a_{0}\left(\frac{1}{1-y}\right)\right|_{y=3 x} \\
& \quad=a_{0} \sum_{n=0}^{\infty}(3 x)^{n}=\sum_{n=0}^{\infty}\left(a_{0} 3^{n}\right) x^{n}
\end{aligned}
$$

Now compare to the original formula for $G(x)$!

First application: solving recurrence relations

So say I have a sequence $\left\{a_{n}\right\}$ that satisfies the recurrence relation $a_{n}=3 a_{n-1}$. (Sanity check: we already know the general solution should look like $a_{n}=a_{0} 3^{n}$.) Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+3 x G(x)
$$

Now solve for $G(x)$:

$$
a_{0}=G(x)-3 x G(x)=(1-3 x) G(x) ;
$$

and so for $x \neq 1 / 3$,

$$
\begin{aligned}
& G(x)=\frac{a_{0}}{1-3 x}=\left.a_{0}\left(\frac{1}{1-y}\right)\right|_{y=3 x} \\
& \quad=a_{0} \sum_{n=0}^{\infty}(3 x)^{n}=\sum_{n=0}^{\infty}\left(a_{0} 3^{n}\right) x^{n}
\end{aligned}
$$

Now compare to the original formula for $G(x)$! This shows that $a_{n}=a_{0} 3^{n}$ (as expected).

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2
$$

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2 .
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2 .
$$

$$
\text { Let } G(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \text {. Then }
$$

$$
G(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2 .
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
\begin{aligned}
G(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& =a_{0}+a_{1} x+x^{2}\left(a_{2}+a_{3} x+\cdots\right)
\end{aligned}
$$

Set aside d terms,

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2 .
$$

$$
\text { Let } G(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \text {. Then }
$$

$$
\begin{aligned}
G(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& =a_{0}+a_{1} x+x^{2}\left(a_{2}+a_{3} x+\cdots\right)
\end{aligned}
$$

Set aside d terms,
(where $d=$ degree of recurrence)
$=a_{0}+a_{1} x+x^{2} \sum_{n=0}^{\infty} a_{n+2} x^{n} \quad$ and factor out x^{d} from the rest.

Ex 2: suppose I have a sequence satisfying $a_{n}=9 a_{n-2}+10^{n-2}$ with $a_{0}=3$ and $a_{1}=2$. Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
\begin{aligned}
G(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& =a_{0}+a_{1} x+x^{2}\left(a_{2}+a_{3} x+\cdots\right)
\end{aligned}
$$

Set aside d terms,
(where $d=$ degree of recurrence)

$$
\begin{aligned}
& =a_{0}+a_{1} x+x^{2} \sum_{n=0}^{\infty} a_{n+2} x^{n} \quad \text { and factor out } x^{d} \text { from the rest. } \\
& =a_{0}+a_{1} x+x^{2} \sum_{n=0}^{\infty}\left(9 a_{n}+10^{n}\right) x^{n} \quad \text { Plug in the recurrence relation. }
\end{aligned}
$$

Ex 2: suppose I have a sequence satisfying $a_{n}=9 a_{n-2}+10^{n-2}$ with $a_{0}=3$ and $a_{1}=2$. Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
\begin{aligned}
G(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& =a_{0}+a_{1} x+x^{2}\left(a_{2}+a_{3} x+\cdots\right)
\end{aligned}
$$

Set aside d terms,
(where $d=$ degree of recurrence)

$$
\begin{aligned}
& =a_{0}+a_{1} x+x^{2} \sum_{n=0}^{\infty} a_{n+2} x^{n} \quad \text { and factor out } x^{d} \text { from the rest. } \\
& =a_{0}+a_{1} x+x^{2} \sum_{n=0}^{\infty}\left(9 a_{n}+10^{n}\right) x^{n} \quad \text { Plug in the recurrence relation. } \\
& =a_{0}+a_{1} x+9 x^{2} \sum_{n=0}^{\infty} a_{n} x^{n}+x^{2} \sum_{n=0}^{\infty}(10 x)^{n}
\end{aligned}
$$

Expand and simplify.

Ex 2: suppose I have a sequence satisfying $a_{n}=9 a_{n-2}+10^{n-2}$ with $a_{0}=3$ and $a_{1}=2$. Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
\begin{aligned}
G(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& =a_{0}+a_{1} x+x^{2}\left(a_{2}+a_{3} x+\cdots\right)
\end{aligned}
$$

Set aside d terms,
(where $d=$ degree of recurrence)

$$
\begin{aligned}
& =a_{0}+a_{1} x+x^{2} \sum_{n=0}^{\infty} a_{n+2} x^{n} \quad \text { and factor out } x^{d} \text { from the rest. } \\
& =a_{0}+a_{1} x+x^{2} \sum_{n=0}^{\infty}\left(9 a_{n}+10^{n}\right) x^{n} \quad \text { Plug in the recurrence relation. } \\
& =a_{0}+a_{1} x+9 x^{2} \sum_{n=0}^{\infty} a_{n} x^{n}+x^{2} \sum_{n=0}^{\infty}(10 x)^{n}
\end{aligned}
$$

Expand and simplify.
$=a_{0}+a_{1} x+9 x^{2} G(x)+x^{2}\left(\frac{1}{1-10 x}\right) . \quad$ Return to closed forms.

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2 .
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+9 x^{2} G(x)+x^{2}\left(\frac{1}{1-10 x}\right)
$$

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2 .
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+9 x^{2} G(x)+x^{2}\left(\frac{1}{1-10 x}\right)
$$

Now solve for $G(x)$:

$$
a_{0}+a_{1} x+x^{2}\left(\frac{1}{1-10 x}\right)=G(x)-9 x^{2} G(x)
$$

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2 .
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+9 x^{2} G(x)+x^{2}\left(\frac{1}{1-10 x}\right)
$$

Now solve for $G(x)$:

$$
a_{0}+a_{1} x+x^{2}\left(\frac{1}{1-10 x}\right)=G(x)-9 x^{2} G(x)=\left(1-9 x^{2}\right) G(x)
$$

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2 .
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+9 x^{2} G(x)+x^{2}\left(\frac{1}{1-10 x}\right)
$$

Now solve for $G(x)$:

$$
a_{0}+a_{1} x+x^{2}\left(\frac{1}{1-10 x}\right)=G(x)-9 x^{2} G(x)=\left(1-9 x^{2}\right) G(x)
$$

So
$G(x)=\frac{\left(a_{0}+a_{1} x\right)(1-10 x)+x^{2}}{(1-10 x)\left(1-9 x^{2}\right)}$

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+9 x^{2} G(x)+x^{2}\left(\frac{1}{1-10 x}\right)
$$

Now solve for $G(x)$:

$$
a_{0}+a_{1} x+x^{2}\left(\frac{1}{1-10 x}\right)=G(x)-9 x^{2} G(x)=\left(1-9 x^{2}\right) G(x)
$$

So

$$
G(x)=\frac{\left(a_{0}+a_{1} x\right)(1-10 x)+x^{2}}{(1-10 x)\left(1-9 x^{2}\right)}=\frac{a_{0}+\left(a_{1}-10 a_{0}\right) x+\left(1-10 a_{1}\right) x^{2}}{(1-10 x)(1+3 x)(1-3 x)}
$$

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+9 x^{2} G(x)+x^{2}\left(\frac{1}{1-10 x}\right)
$$

Now solve for $G(x)$:

$$
a_{0}+a_{1} x+x^{2}\left(\frac{1}{1-10 x}\right)=G(x)-9 x^{2} G(x)=\left(1-9 x^{2}\right) G(x)
$$

So

$$
\begin{gathered}
G(x)=\frac{\left(a_{0}+a_{1} x\right)(1-10 x)+x^{2}}{(1-10 x)\left(1-9 x^{2}\right)}=\frac{a_{0}+\left(a_{1}-10 a_{0}\right) x+\left(1-10 a_{1}\right) x^{2}}{(1-10 x)(1+3 x)(1-3 x)} \\
=\frac{3-28 x-19 x^{2}}{(1-10 x)(1+3 x)(1-3 x)}
\end{gathered}
$$

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+9 x^{2} G(x)+x^{2}\left(\frac{1}{1-10 x}\right)
$$

Now solve for $G(x)$:

$$
a_{0}+a_{1} x+x^{2}\left(\frac{1}{1-10 x}\right)=G(x)-9 x^{2} G(x)=\left(1-9 x^{2}\right) G(x)
$$

So

$$
\begin{gathered}
G(x)=\frac{\left(a_{0}+a_{1} x\right)(1-10 x)+x^{2}}{(1-10 x)\left(1-9 x^{2}\right)}=\frac{a_{0}+\left(a_{1}-10 a_{0}\right) x+\left(1-10 a_{1}\right) x^{2}}{(1-10 x)(1+3 x)(1-3 x)} \\
=\frac{3-28 x-19 x^{2}}{(1-10 x)(1+3 x)(1-3 x)} \\
=\frac{1}{1-10 x}+\left(\frac{46}{39}\right) \frac{1}{1-(-3 x)}+\left(\frac{1}{91}\right) \frac{1}{1-10 x} \\
\text { Review partial fractions decomposition! }
\end{gathered}
$$

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2 .
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+9 x^{2} G(x)+x^{2}\left(\frac{1}{1-10 x}\right)
$$

Now solve for $G(x)$:

$$
G(x)=\frac{1}{1-10 x}+\left(\frac{46}{39}\right) \frac{1}{1-(-3 x)}+\left(\frac{1}{91}\right) \frac{1}{1-10 x}
$$

Review partial fractions decomposition!
Putting back into series form, we get

$$
G(x)=\sum_{n=0}^{\infty} 10^{n} x^{n}+\left(\frac{46}{39}\right) \sum_{n=0}^{\infty}(-3)^{n} x^{n}+\left(\frac{1}{91}\right) \sum_{n=0}^{\infty} 3^{n} x^{n}
$$

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2 .
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+9 x^{2} G(x)+x^{2}\left(\frac{1}{1-10 x}\right)
$$

Now solve for $G(x)$:

$$
G(x)=\frac{1}{1-10 x}+\left(\frac{46}{39}\right) \frac{1}{1-(-3 x)}+\left(\frac{1}{91}\right) \frac{1}{1-10 x}
$$

Review partial fractions decomposition!
Putting back into series form, we get

$$
\begin{aligned}
G(x) & =\sum_{n=0}^{\infty} 10^{n} x^{n}+\left(\frac{46}{39}\right) \sum_{n=0}^{\infty}(-3)^{n} x^{n}+\left(\frac{1}{91}\right) \sum_{n=0}^{\infty} 3^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left(10^{n}+\left(\frac{46}{39}\right)(-3)^{n}+\left(\frac{1}{91}\right) 3^{n}\right) x^{n} .
\end{aligned}
$$

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2 .
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+9 x^{2} G(x)+x^{2}\left(\frac{1}{1-10 x}\right)
$$

Now solve for $G(x)$:

$$
G(x)=\frac{1}{1-10 x}+\left(\frac{46}{39}\right) \frac{1}{1-(-3 x)}+\left(\frac{1}{91}\right) \frac{1}{1-10 x}
$$

Review partial fractions decomposition!
Putting back into series form, we get

$$
\begin{aligned}
G(x) & =\sum_{n=0}^{\infty} 10^{n} x^{n}+\left(\frac{46}{39}\right) \sum_{n=0}^{\infty}(-3)^{n} x^{n}+\left(\frac{1}{91}\right) \sum_{n=0}^{\infty} 3^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left(10^{n}+\left(\frac{46}{39}\right)(-3)^{n}+\left(\frac{1}{91}\right) 3^{n}\right) x^{n} .
\end{aligned}
$$

So

$$
a_{n}=10^{n}+\left(\frac{46}{39}\right)(-3)^{n}+\left(\frac{1}{91}\right) 3^{n}
$$

Ex 2: suppose I have a sequence satisfying

$$
a_{n}=9 a_{n-2}+10^{n-2} \text { with } a_{0}=3 \text { and } a_{1}=2 .
$$

Let $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
G(x)=a_{0}+a_{1} x+9 x^{2} G(x)+x^{2}\left(\frac{1}{1-10 x}\right)
$$

Now solve for $G(x)$:

$$
G(x)=\frac{1}{1-10 x}+\left(\frac{46}{39}\right) \frac{1}{1-(-3 x)}+\left(\frac{1}{91}\right) \frac{1}{1-10 x}
$$

Review partial fractions decomposition!
Putting back into series form, we get

$$
\begin{aligned}
G(x) & =\sum_{n=0}^{\infty} 10^{n} x^{n}+\left(\frac{46}{39}\right) \sum_{n=0}^{\infty}(-3)^{n} x^{n}+\left(\frac{1}{91}\right) \sum_{n=0}^{\infty} 3^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left(10^{n}+\left(\frac{46}{39}\right)(-3)^{n}+\left(\frac{1}{91}\right) 3^{n}\right) x^{n} .
\end{aligned}
$$

So

$$
a_{n}=10^{n}+\left(\frac{46}{39}\right)(-3)^{n}+\left(\frac{1}{91}\right) 3^{n}
$$

Counting problems and Generating functions

Example: What is the coefficient on x^{12} in

$$
\left(x^{2}+x^{3}+x^{4}+x^{5}\right)\left(x^{4}+x^{5}\right)\left(x^{1}+x^{2}+x^{3}\right) ?
$$

Counting problems and Generating functions

Example: What is the coefficient on x^{12} in

$$
\underbrace{\left(x^{2}+x^{3}+x^{4}+x^{5}\right)}_{e_{1}} \underbrace{\left(x^{4}+x^{5}\right)}_{e_{2}} \underbrace{\left(x^{1}+x^{2}+x^{3}\right)}_{e_{3}} ?
$$

This is equivalent to the question "How many integer solutions are there to the equation

$$
e_{1}+e_{2}+e_{3}=12
$$

with

$$
2 \leqslant e_{1} \leqslant 5, \quad 4 \leqslant e_{2} \leqslant 5, \quad 1 \leqslant e_{3} \leqslant 3 ?^{\prime \prime}
$$

Counting problems and Generating functions

Example: What is the coefficient on x^{12} in

$$
\underbrace{\left(x^{2}+x^{3}+x^{4}+x^{5}\right)}_{e_{1}, \text { glazed }} \underbrace{\left(x^{4}+x^{5}\right)}_{e_{2}, \text { choc. }} \underbrace{\left(x^{1}+x^{2}+x^{3}\right)}_{e_{3}, \text { jelly }} ?
$$

This is equivalent to the question "How many integer solutions are there to the equation

$$
e_{1}+e_{2}+e_{3}=12
$$

with

$$
2 \leqslant e_{1} \leqslant 5, \quad 4 \leqslant e_{2} \leqslant 5, \quad 1 \leqslant e_{3} \leqslant 3 ?^{\prime \prime}
$$

Which is the same as "How many ways can you pick 12 doughnuts to bring to the office if you've had requests for at least 2 glazed, 4 chocolate, and one jelly-filled, but when you get to the store, they only have 5 glazed, 5 chocolate, and 3 jelly-filled left?"

Example: Use a generating function to answer the question "How many non-negative integer solutions are there to

$$
e_{1}+e_{2}+e_{3}=10
$$

where e_{2} is a multiple of 2 and e_{3} is a multiple of 3 ?"

Example: Use a generating function to answer the question "How many non-negative integer solutions are there to

$$
e_{1}+e_{2}+e_{3}=10
$$

where e_{2} is a multiple of 2 and e_{3} is a multiple of 3 ?"
The answer is the same as the coefficient of x^{10} in

Example: Use a generating function to answer the question "How many non-negative integer solutions are there to

$$
e_{1}+e_{2}+e_{3}=10
$$

where e_{2} is a multiple of 2 and e_{3} is a multiple of 3 ?"
The answer is the same as the coefficient of x^{10} in

which is the same as the coefficient of x^{10} in
$\underbrace{\left(1+x+x^{2}+\cdots+x^{10}\right)}_{e_{1}} \underbrace{\left(1+x^{2}+x^{4}+\cdots+x^{10}\right)}_{e_{2}} \underbrace{\left(1+x^{3}+x^{6}+x^{9}\right)}_{e_{3}}$

Example: Use a generating function to answer the question "How many non-negative integer solutions are there to

$$
e_{1}+e_{2}+e_{3}=10
$$

where e_{2} is a multiple of 2 and e_{3} is a multiple of 3 ?"
The answer is the same as the coefficient of x^{10} in

which is the same as the coefficient of x^{10} in

since we would never use any terms that came from x^{a} for $a>10$.

Example: Use a generating function to answer the question "How many non-negative integer solutions are there to

$$
e_{1}+e_{2}+e_{3}=10
$$

where e_{2} is a multiple of 2 and e_{3} is a multiple of 3 ?"
The answer is the same as the coefficient of x^{10} in

which is the same as the coefficient of x^{10} in

since we would never use any terms that came from x^{a} for $a>10$.
This is something we can plug into a calculator like WolframAlpha.

Example: Use a generating function to answer the question "How many non-negative integer solutions are there to

$$
e_{1}+e_{2}+e_{3}=10
$$

where e_{2} is a multiple of 2 and e_{3} is a multiple of 3 ?"
The answer is the same as the coefficient of x^{10} in...
This is something we can plug into a calculator like WolframAlpha:

MOIfranA A

$\left(1+x+x^{\wedge} 2+x^{\wedge} 3+x^{\wedge} 4+x^{\wedge} 5+x^{\wedge} 6+x^{\wedge} 7+x^{\wedge} 8+x^{\wedge} 9+x^{\wedge}(10)\right) \star\left(1+x^{\wedge} 2+x^{\wedge} 4+x^{\wedge} 6+x^{\wedge} 8+\right.$

$$
\begin{aligned}
& x^{29}+x^{28}+2 x^{27}+3 x^{26}+4 x^{25}+5 x^{24}+7 x^{23}+8 x^{22}+10 x^{21}+12 x^{20}+14 x^{19}+ \\
& 15 x^{18}+16 x^{17}+17 x^{16}+17 x^{15}+17 x^{14}+17 x^{13}+16 x^{12}+15 x^{11}+ \\
& 14 x^{10}+12 x^{9}+10 x^{8}+8 x^{7}+7 x^{6}+5 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+x+1
\end{aligned}
$$

Integer partitions

How many integer partitions are there of 5 ?

Integer partitions

How many integer partitions are there of 5 ?
This is the same as the coefficient of x^{5} in

$$
\begin{aligned}
& \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)\left(1+x^{2}+x^{4}\right)\left(1+x^{3}\right)\left(1+x^{4}\right)\left(1+x^{5}\right) \\
& =\left(\left(x^{1}\right)^{0}+\left(x^{1}\right)^{1}+\left(x^{1}\right)^{2}+\left(x^{1}\right)^{3}+\left(x^{1}\right)^{4}+\left(x^{1}\right)^{5}\right) \\
& \quad\left(\left(x^{2}\right)^{0}+\left(x^{2}\right)^{1}+\left(x^{2}\right)^{2}\right) \\
& \quad\left(\left(x^{3}\right)^{0}+\left(x^{3}\right)^{1}\right) \\
& \quad\left(\left(x^{4}\right)^{0}+\left(x^{4}\right)^{1}\right) \\
& \quad\left(\left(x^{5}\right)^{0}+\left(x^{5}\right)^{1}\right)
\end{aligned}
$$

Integer partitions

How many integer partitions are there of 5?
This is the same as the coefficient of x^{5} in

$$
\begin{aligned}
& \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)\left(1+x^{2}+x^{4}\right)\left(1+x^{3}\right)\left(1+x^{4}\right)\left(1+x^{5}\right) \\
& =\left(\left(x^{1}\right)^{0}+\left(x^{1}\right)^{1}+\left(x^{1}\right)^{2}+\left(x^{1}\right)^{3}+\left(x^{1}\right)^{4}+\left(x^{1}\right)^{5}\right) \\
& \quad\left(\left(x^{2}\right)^{0}+\left(x^{2}\right)^{1}+\left(x^{2}\right)^{2}\right) \\
& \quad\left(\left(x^{3}\right)^{0}+\left(x^{3}\right)^{1}\right) \\
& \quad\left(\left(x^{4}\right)^{0}+\left(x^{4}\right)^{1}\right) \\
& \quad\left(\left(x^{5}\right)^{0}+\left(x^{5}\right)^{1}\right)
\end{aligned}
$$

Why?

Integer partitions

How many integer partitions are there of 5 ?
This is the same as the coefficient of x^{5} in

$$
\begin{aligned}
& \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)\left(1+x^{2}+x^{4}\right)\left(1+x^{3}\right)\left(1+x^{4}\right)\left(1+x^{5}\right) \\
& =\left(\left(x^{1}\right)^{0}+\left(x^{1}\right)^{1}+\left(x^{1}\right)^{2}+\left(x^{1}\right)^{3}+\left(x^{1}\right)^{4}+\left(x^{1}\right)^{5}\right) \quad(\text { pts of length } 1) \\
& \left(\left(x^{2}\right)^{0}+\left(x^{2}\right)^{1}+\left(x^{2}\right)^{2}\right) \quad(p t s \text { of length 2) } \\
& \left.\left(\left(x^{3}\right)^{0}+\left(x^{3}\right)^{1}\right) \quad \text { (pts of length } 3\right) \\
& \left(\left(x^{4}\right)^{0}+\left(x^{4}\right)^{1}\right) \quad \text { (pts of length 4) } \\
& \left(\left(x^{5}\right)^{0}+\left(x^{5}\right)^{1}\right) \\
& \text { (pts of length 5) }
\end{aligned}
$$

Why?

Integer partitions

How many integer partitions are there of 5 ?
This is the same as the coefficient of x^{5} in

$$
\begin{aligned}
& \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)\left(1+x^{2}+x^{4}\right)\left(1+x^{3}\right)\left(1+x^{4}\right)\left(1+x^{5}\right) \\
& =\left(\left(x^{1}\right)^{0}+\left(x^{1}\right)^{1}+\left(x^{1}\right)^{2}+\left(x^{1}\right)^{3}+\left(x^{1}\right)^{4}+\left(x^{1}\right)^{5}\right) \quad(p t s \text { of length } 1) \\
& \left(\left(x^{2}\right)^{0}+\left(x^{2}\right)^{1}+\left(x^{2}\right)^{2}\right) \quad(p t s \text { of length 2) } \\
& \left.\left(\left(x^{3}\right)^{0}+\left(x^{3}\right)^{1}\right) \quad \text { (pts of length } 3\right) \\
& \left(\left(x^{4}\right)^{0}+\left(x^{4}\right)^{1}\right) \quad \text { (pts of length 4) } \\
& \left(\left(x^{5}\right)^{0}+\left(x^{5}\right)^{1}\right) \\
& \text { (pts of length 5) }
\end{aligned}
$$

Why? For example, consider the partition \boxminus.

Integer partitions

Counting integer partitions of 5 by looking at the coeff. of x^{5} in

$$
\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)\left(1+x^{2}+x^{4}\right)\left(1+x^{3}\right)\left(1+x^{4}\right)\left(1+x^{5}\right) \ldots
$$

$\#$ corresponds to
$\left(x^{1}\right)^{2}$ from first factor, since there are 2 parts of length 1 , $1=\left(x^{2}\right)^{0}$ from second factor, since there are 0 parts of length 2 , $\left(x^{3}\right)^{1}$ from third factor, since there is 1 part of length 3 , $1=\left(x^{4}\right)^{0}$ from fourth factor, since there are 0 parts of length 4 , and $1=\left(x^{5}\right)^{0}$ from fourth factor, since there are 1 parts of length 5 .

Integer partitions

Counting integer partitions of 5 by looking at the coeff. of x^{5} in

$$
\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)\left(1+x^{2}+x^{4}\right)\left(1+x^{3}\right)\left(1+x^{4}\right)\left(1+x^{5}\right) \ldots
$$

\square corresponds to $\left(x^{1}\right)^{2} * 1 *\left(x^{3}\right)^{1} * 1 * 1$.

Integer partitions

Counting integer partitions of 5 by looking at the coeff. of x^{5} in

$$
\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)\left(1+x^{2}+x^{4}\right)\left(1+x^{3}\right)\left(1+x^{4}\right)\left(1+x^{5}\right) \ldots
$$

\square corresponds to $\left(x^{1}\right)^{2} * 1 *\left(x^{3}\right)^{1} * 1 * 1$.
Similarly, the correspondence between the other partitions of 5 and the monomials goes like

$\left(x^{1}\right)^{1} *\left(x^{2}\right)^{2} * 1 * 1 * 1$	$\left(x^{1}\right)^{3} *\left(x^{2}\right)^{1} * 1 * 1 * 1$	$\left(x^{1}\right)^{5} * 1 * 1 * 1 * 1$

Notice that the coefficient of x^{5} in the polynomial from the previous slide is the same as the coefficient of x^{5} in

$$
\left(\sum_{i=0}^{\infty} x^{i}\right)\left(\sum_{i=0}^{\infty} x^{2 i}\right)\left(\sum_{i=0}^{\infty} x^{3 i}\right)\left(\sum_{i=0}^{\infty} x^{4 i}\right)\left(\sum_{i=0}^{\infty} x^{5 i}\right)
$$

Notice that the coefficient of x^{5} in the polynomial from the previous slide is the same as the coefficient of x^{5} in

$$
\begin{aligned}
\left(\sum_{i=0}^{\infty} x^{i}\right) & \left(\sum_{i=0}^{\infty} x^{2 i}\right)\left(\sum_{i=0}^{\infty} x^{3 i}\right)\left(\sum_{i=0}^{\infty} x^{4 i}\right)\left(\sum_{i=0}^{\infty} x^{5 i}\right) \\
& =\prod_{k=1}^{5}\left(\sum_{i=0}^{\infty} x^{k i}\right)
\end{aligned}
$$

Notice that the coefficient of x^{5} in the polynomial from the previous slide is the same as the coefficient of x^{5} in

$$
\begin{gathered}
\left(\sum_{i=0}^{\infty} x^{i}\right)\left(\sum_{i=0}^{\infty} x^{2 i}\right)\left(\sum_{i=0}^{\infty} x^{3 i}\right)\left(\sum_{i=0}^{\infty} x^{4 i}\right)\left(\sum_{i=0}^{\infty} x^{5 i}\right) \\
=\prod_{k=1}^{5}\left(\sum_{i=0}^{\infty} x^{k i}\right)=\prod_{k=1}^{5}\left(\frac{1}{1-x^{k}}\right)
\end{gathered}
$$

Notice that the coefficient of x^{5} in the polynomial from the previous slide is the same as the coefficient of x^{5} in

$$
\begin{gathered}
\left(\sum_{i=0}^{\infty} x^{i}\right)\left(\sum_{i=0}^{\infty} x^{2 i}\right)\left(\sum_{i=0}^{\infty} x^{3 i}\right)\left(\sum_{i=0}^{\infty} x^{4 i}\right)\left(\sum_{i=0}^{\infty} x^{5 i}\right) \\
=\prod_{k=1}^{5}\left(\sum_{i=0}^{\infty} x^{k i}\right)=\prod_{k=1}^{5}\left(\frac{1}{1-x^{k}}\right)
\end{gathered}
$$

Which is the same as the coefficient of x^{5} in

$$
\begin{aligned}
\left(\sum_{i=0}^{\infty} x^{i}\right) *\left(\sum_{i=0}^{\infty} x^{2 i}\right) & *\left(\sum_{i=0}^{\infty} x^{3 i}\right) * \\
& *\left(\sum_{i=0}^{\infty} x^{5 i}\right) * \underbrace{\left(\sum_{i=0}^{\infty} x^{4 i}\right)}_{\substack{\text { must use } \\
\text { the } 1 \text { term }}} x^{6 i})
\end{aligned} \underbrace{\left(\sum_{i=0}^{\infty} x^{7 i}\right)}_{\begin{array}{c}
\text { must use } \\
\text { the } 1 \text { term }
\end{array}} \cdots .
$$

Notice that the coefficient of x^{5} in the polynomial from the previous slide is the same as the coefficient of x^{5} in

$$
\begin{gathered}
\left(\sum_{i=0}^{\infty} x^{i}\right)\left(\sum_{i=0}^{\infty} x^{2 i}\right)\left(\sum_{i=0}^{\infty} x^{3 i}\right)\left(\sum_{i=0}^{\infty} x^{4 i}\right)\left(\sum_{i=0}^{\infty} x^{5 i}\right) \\
=\prod_{k=1}^{5}\left(\sum_{i=0}^{\infty} x^{k i}\right)=\prod_{k=1}^{5}\left(\frac{1}{1-x^{k}}\right) .
\end{gathered}
$$

Which is the same as the coefficient of x^{5} in

$$
\left(\sum_{i=0}^{\infty} x^{i}\right) *\left(\sum_{i=0}^{\infty} x^{2 i}\right) *\left(\sum_{i=0}^{\infty} x^{3 i}\right) * \cdots=\prod_{k=1}^{\infty}\left(\sum_{i=0}^{\infty} x^{k i}\right)
$$

So in general, the number of integer partitions of n, denoted $p(n)$, is the coefficient of x^{n} in

$$
\sum_{n=0}^{\infty} p(n) x^{n}=\prod_{k=1}^{\infty}\left(\frac{1}{1-x^{k}}\right)
$$

