Math 365 - Wednesday 3/20/19-8.2 and 8.4

Exercise 35. Consider the recurrence relation

$$
a_{n}=8 a_{n-2}-16 a_{n-4}+F(n) .
$$

(a) Write the associated homogeneous recursion relation and solve for its general solution $\left\{h_{n}\right\}$.
(b) For each of the following $F(n)$, write the general form for the particular solution (don't solve for the unknowns).
(i) $F(n)=n^{3}$
(ii) $F(n)=n 2^{n}$
(iii) $F(n)=\left(n^{2}-2\right)(-2)^{n}$
(iv) $F(n)=2$
(v) $F(n)=(-2)^{n}$
(vi) $F(n)=n^{2} 4^{n}$
(vii) $F(n)=n^{4} 2^{n}$
(c) Find the general solution to

$$
a_{n}=8 a_{n-2}-16 a_{n-4}+(-2)^{n} .
$$

(d) Find the general solution to

$$
a_{n}=8 a_{n-2}-16 a_{n-4}+n^{3} .
$$

(e) Pick an example of appropriate initial conditions for the sequence in part (c), and solve for the corresponding specific solution. Check your answer by computing the first 6 terms of the sequence both recursively and using your closed formula.

Exercise 36.

(a) Explicitly compute the series for

$$
\frac{1}{(1-x)^{3}} \quad \text { and } \quad \frac{1}{(1-x)^{4}}
$$

by taking derivatives and rescaling appropriately. Conjecture what the general formula for the series for $1 /(1-x)^{n}$.
(b) Substitute $y=3 x$ into the series for $\frac{1}{1-y}$ to get the series for $\frac{1}{1-3 x}$. What is the series for $1 /(1-4 x)$? What is the series for $1 /(1+x)$?
(c) Substitute $y=x^{3}$ into the series for $\frac{1}{1-y}$ to get the series for $\frac{1}{1-x^{3}}$. What is the series for $1 /\left(1-x^{4}\right)$? What is the series for $1 /\left(1-2 x^{3}\right)$?
(d) Use the fact that $\frac{d}{d x}(\ln (1-x))=-\frac{1}{1-x}$ to compute the series for $\ln (1-x)$. (Integrate, and pick your " $+C$ " to make it so that evaluating your series at $x=0$ matches correctly with evaluating $\ln (1-x)$.)

Today: Section 8.2, continued.
Last time:
To solve recurrence relations, the best we can do is make educated guesses, according to what kind of relation we have.

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k},
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and $c_{k} \neq 0$.
Solutions to this kind of relation come in the form r^{n}, where r is a root of the characteristic equation, which is obtained by plugging in r^{n}, dividing through by r^{n-k}, and solving for 0 :

$$
r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0
$$

The roots of this equation are called the characteristic roots.

Example from last time: plugging $a_{n}=r^{n}$ into the recursion relation

$$
a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}
$$

gets

$$
r^{n}=-r^{n-1}+r^{n-2}+r^{n-3}
$$

which is true if and only if

$$
\begin{aligned}
0 & =r^{n}+r^{n-1}-r^{n-2}-r^{n-3} \\
& =r^{n-3}\left(r^{3}+r^{2}-r-1\right)
\end{aligned}
$$

which is true if and only if $r=0$ or

$$
\underbrace{0=r^{3}+r^{2}-r-1}_{\text {characteristic equation }}=(r+1)^{2}(r-1) \text {. }
$$

The characteristic roots are $r_{1}=1$ (with multiplicity 1) and $r_{2}=-1$ (with multiplicity 2).

Theorem: Solving linear homogeneous recurrences
Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation has roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$. Then a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}$ if and only if

$$
a_{n}=p_{1}(n) r_{1}^{n}+p_{2}(n) r_{2}^{n}+\cdots+p_{\ell}(n) r_{\ell}^{n}
$$

where $p_{i}(n)$ are polynomials in n of degree $m_{i}-1$.

Example: $a_{n}=a_{n-1}+5 a_{n-2}-a_{n-3}-8 a_{n-4}-4 a_{n-5}$.
Characteristic equation:

$$
0=r^{5}-r^{4}-5 r^{3}+r^{2}+8 r+4=(r+1)^{3}(r-2)^{2}
$$

General solution:

$$
a_{n}=\left(\alpha_{0}+\alpha_{1} n+\alpha_{2} n^{2}\right)(-1)^{n}+\left(\beta_{0}+\beta_{1} n\right)(2)^{n} .
$$

Non-homogeneous equations

Suppose your recurrence is linear and constant coefficient in a_{i} 's, but is not homogeneous. In other words, it is in the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)
$$

where $F(n)$ is a function only in n (no a_{i} 's). The relation
$h_{n}=c_{1} h_{n-1}+c_{2} h_{n-2}+\cdots+c_{k} h_{n-k} \quad\left(\right.$ so that $\left.a_{n}=h_{n}+F(n)\right)$
is called the associated homogeneous recurrence relation.
Ex: $a_{n}=3 a_{n-1}+2 n$.

$$
F(n)=2 n, \quad \text { Assoc. hom: } h_{n}=3 h_{n-1} .
$$

Ex: $a_{n}=5 a_{n-1}-6 a_{n-2}+7^{n}$.

$$
F(n)=7^{n}, \quad \text { Assoc. hom: } h_{n}=5 h_{n-1}-6 h_{n-2} .
$$

The following theorem says that if we can find one solution to a_{n}, then the general solutions to h_{n} will help us build all the rest of the solutions to a_{n}.

Theorem: Solving non-homogeneous equations
(a) If $\left\{\hat{a}_{n}\right\}_{n \in \mathbb{N}}$ is one solution of the non-homogeneous linear recurrence relation with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n),
$$

then every solution is of the form $\left\{a_{n}=\hat{a}_{n}+h_{n}\right\}_{n \in \mathbb{N}}$, where $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ is a solution of the associated homogeneous recurrence relation.
(b) Finding \hat{a}_{n} : If $F(n)=Q(n) R^{n}$, where

- $Q(n)$ is a polynomial in n, and
- R is a constant,
then there is a solution to a_{n} of the form

$$
\hat{a}_{n}=n^{m} q(n) R^{n}
$$

where

- $\operatorname{deg}(q(n)) \leqslant \operatorname{deg}(Q(n))$, and
- $m=$ mult. of R in the characteristic equation (possibly 0).

Ex: Find all solutions to $a_{n}=3 a_{n-1}+2 n$. What is the solution with $a_{1}=3$?

1. Break the sequence into two parts: homogeneous h_{n} and a function of n : $\quad a_{n}=h_{n}+F(n)$.
2. Solve for h_{n} :

- compute the characteristic equation;
- factor to compute roots and multiplicities;
- build the general solution to h_{n}.

3. Fine one solution \hat{a}_{n} by guessing something of a similar form.

$$
\text { If } F(n)=Q(n) R^{n}, \quad \text { guess } \hat{a}_{n}=n^{m} q(n) R^{n}
$$

where $m=$ mult of R, and $q_{n}=b_{0}+b_{1} n+b_{2} n^{2}+\cdots+b_{d} n^{d}$ where $d=\operatorname{deg}(Q(n))$.
Example: $a_{n}=4 a_{n-1}+3 a_{n-2}-18 a_{n-3}+4^{n}$
Homog: $h_{n}=4 h_{n-1}+3 h_{n-2}-18 h_{n-3}$ and $F(n)=4^{n}$.
Char eq: $0=r^{3}-4 r^{2}-3 r+18=(r+2)(r-3)^{2}$
Homog sol: $h_{n}=\alpha(-2)^{n}+(\alpha+\beta n) 3^{n}$
Particular solution guess: $\hat{a}_{n}=b 4^{n} \quad$ (gives $b=32 / 3$)
General sol: $a_{n}=\alpha(-2)^{n}+(\alpha+\beta n) 3^{n}+\frac{32}{3} 4^{n}$.

1. Break the sequence into two parts: homogeneous h_{n} and a function of n : $\quad a_{n}=h_{n}+F(n)$.
2. Solve for h_{n} :

- compute the characteristic equation;
- factor to compute roots and multiplicities;
- build the general solution to h_{n}.

3. Fine one solution \hat{a}_{n} by guessing something of a similar form.

$$
\text { If } F(n)=Q(n) R^{n}, \quad \text { guess } \hat{a}_{n}=n^{m} q(n) R^{n}
$$

where $m=$ mult of R, and $q_{n}=b_{0}+b_{1} n+b_{2} n^{2}+\cdots+b_{d} n^{d}$ where $d=\operatorname{deg}(Q(n))$.
Example: $a_{n}=4 a_{n-1}+3 a_{n-2}-18 a_{n-3}+n 4^{n}$
Homog: $h_{n}=4 h_{n-1}+3 h_{n-2}-18 h_{n-3} \quad$ and $\quad F(n)=n 4^{n}$.
Char eq: $0=r^{3}-4 r^{2}-3 r+18=(r+2)(r-3)^{2}$
Homog sol: $h_{n}=\alpha(-2)^{n}+(\alpha+\beta n) 3^{n}$
Particular solution guess: $\hat{a}_{n}=\left(b_{0}+b_{1} n\right) 4^{n}$
(gives $b_{0}=1376 / 9$ and $b_{1}=-63 / 3$)
General sol: $a_{n}=\alpha(-2)^{n}+(\alpha+\beta n) 3^{n}+\left(\frac{1376}{9}-\frac{63}{3} n\right) 4^{n}$.

1. Break the sequence into two parts: homogeneous h_{n} and a function of n : $\quad a_{n}=h_{n}+F(n)$.
2. Solve for h_{n} :

- compute the characteristic equation;
- factor to compute roots and multiplicities;
- build the general solution to h_{n}.

3. Fine one solution \hat{a}_{n} by guessing something of a similar form.

$$
\text { If } F(n)=Q(n) R^{n}, \quad \text { guess } \hat{a}_{n}=n^{m} q(n) R^{n}
$$

where $m=$ mult of R, and $q_{n}=b_{0}+b_{1} n+b_{2} n^{2}+\cdots+b_{d} n^{d}$ where $d=\operatorname{deg}(Q(n))$.
Example: $a_{n}=4 a_{n-1}+3 a_{n-2}-18 a_{n-3}+3^{n}$
Homog: $h_{n}=4 h_{n-1}+3 h_{n-2}-18 h_{n-3}$ and $F(n)=3^{n}$.
Char eq: $0=r^{3}-4 r^{2}-3 r+18=(r+2)(r-3)^{2}$
Homog sol: $h_{n}=\alpha(-2)^{n}+(\alpha+\beta n) 3^{n}$
Particular solution guess: $\hat{a}_{n}=b n^{2} 3^{n}$
(gives $b=3 / 2$)
General sol: $a_{n}=\alpha(-2)^{n}+(\alpha+\beta n) 3^{n}+\frac{3}{2} n^{2} 3^{n}$.

1. Break the sequence into two parts: homogeneous h_{n} and a function of n : $\quad a_{n}=h_{n}+F(n)$.
2. Solve for h_{n} :

- compute the characteristic equation;
- factor to compute roots and multiplicities;
- build the general solution to h_{n}.

3. Fine one solution \hat{a}_{n} by guessing something of a similar form.

$$
\text { If } F(n)=Q(n) R^{n}, \quad \text { guess } \hat{a}_{n}=n^{m} q(n) R^{n}
$$

where $m=$ mult of R, and $q_{n}=b_{0}+b_{1} n+b_{2} n^{2}+\cdots+b_{d} n^{d}$ where $d=\operatorname{deg}(Q(n))$.
Example: $a_{n}=4 a_{n-1}+3 a_{n-2}-18 a_{n-3}+n 3^{n}$
Homog: $h_{n}=4 h_{n-1}+3 h_{n-2}-18 h_{n-3}$ and $F(n)=3^{n}$.
Char eq: $0=r^{3}-4 r^{2}-3 r+18=(r+2)(r-3)^{2}$
Homog sol: $h_{n}=\alpha(-2)^{n}+(\alpha+\beta n) 3^{n}$
Particular solution guess: $\hat{a}_{n}=\left(b_{0}+b_{1} n\right) n^{2} 3^{n}$
(gives $b_{0}=21 / 50$ and $b_{1}=1 / 10$)
General sol: $a_{n}=\alpha(-2)^{n}+(\alpha+\beta n) 3^{n}+\left(\frac{21}{50}+\frac{1}{10} n\right) n^{2} 3^{n}$.

Section 8.4: Generating functions.

Taylor series to know and love:

$$
\begin{align*}
(1+x)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k}=1+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+x^{n} \tag{finite}\\
\frac{1-x^{n}}{1-x} & =\sum_{k=0}^{n-1} x^{k}=1+x+x^{2}+\cdots+x^{n-1} \tag{finite}\\
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\cdots \tag{infinite}\\
e^{x} & =\sum_{k=0}^{\infty} x^{k} / k!=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots \tag{infinite}
\end{align*}
$$

Combining series: Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ and $g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$. Then

$$
f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k} \quad \text { and } \quad f(x) g(x)=\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) x^{k} .
$$

Example: Compute the series for $\frac{1}{(1-x)^{2}}$ using $\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}$. Approach 1: Use the multiplication rule,

$$
\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right)=\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) x^{k}
$$

on

$$
\frac{1}{(1-x)^{2}}=\frac{1}{1-x} * \frac{1}{1-x}=\left(\sum_{k=0}^{\infty} x^{k}\right)\left(\sum_{k=0}^{\infty} x^{k}\right) .
$$

Here, $a_{i}=b_{i}=1$ for all i.
So

$$
\sum_{i=0}^{k} a_{i} b_{k-i}=\sum_{i=0}^{k} 1 * 1=k+1 .
$$

Thus

$$
\frac{1}{(1-x)^{2}}=\sum_{k=0}^{\infty}(k+1) x^{k}=1+2 x+3 x^{2}+4 x^{3}+\cdots .
$$

Example: Compute the series for $\frac{1}{(1-x)^{2}}$ using $\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}$.
Approach 2: Use derivatives, noting that

$$
\frac{d}{d x} \frac{1}{1-x}=\frac{d}{d x}(1-x)^{-1}=(-1)(1-x)^{-2}(-1)=\frac{1}{(1-x)^{2}} .
$$

Thus,

$$
\begin{aligned}
\frac{1}{(1-x)^{2}} & =\frac{d}{d x}(1-x)^{-1}=\frac{d}{d x} \sum_{k=0}^{\infty} x^{k} \\
& =\sum_{k=0}^{\infty} \frac{d}{d x} x^{k} \\
& =\sum_{k=0}^{\infty} k x^{k-1} \quad(\text { change summation: let } j=k-1) \\
& =\sum_{j=0}^{\infty}(j+1) x^{j}=1+2 x+3 x^{2}+4 x^{3}+\cdots
\end{aligned}
$$

You try: Exercise 36

